This section explains how to install Debian GNU/Linux from an existing
Unix or Linux system, without using the menu-driven installer as
explained in the rest of the manual. This “cross-install”
HOWTO has been requested by users switching to Debian GNU/Linux from
Red Hat, Mandriva, and SUSE. In this section some familiarity with
entering *nix commands and navigating the file system is assumed. In
this section, $
symbolizes a command to be entered in
the user's current system, while #
refers to a
command entered in the Debian chroot.
Once you've got the new Debian system configured to your preference, you can migrate your existing user data (if any) to it, and keep on rolling. This is therefore a “zero downtime” Debian GNU/Linux install. It's also a clever way for dealing with hardware that otherwise doesn't play friendly with various boot or installation media.
Note | |
---|---|
As this is a mostly manual procedure, you should bear in mind that you will need to do a lot of basic configuration of the system yourself, which will also require more knowledge of Debian and of Linux in general than performing a regular installation. You cannot expect this procedure to result in a system that is identical to a system from a regular installation. You should also keep in mind that this procedure only gives the basic steps to set up a system. Additional installation and/or configuration steps may be needed. |
With your current *nix partitioning tools, repartition the hard drive as needed, creating at least one filesystem plus swap. You need around 1012MB of space available for a console only install, or about 2539MB if you plan to install X (more if you intend to install desktop environments like GNOME or KDE Plasma).
Next, create file systems on the partitions. For example, to create an
ext3 file system on partition /dev/sda6
(that's
our example root partition):
# mke2fs -j /dev/sda6
To create an ext2 file system instead, omit -j
.
Initialize and activate swap (substitute the partition number for your intended Debian swap partition):
# mkswap /dev/sda5
# sync # swapon /dev/sda5
Mount one partition as /mnt/debinst
(the
installation point, to be the root (/
) filesystem
on your new system). The mount point name is strictly arbitrary, it is
referenced later below.
# mkdir /mnt/debinst
# mount /dev/sda6
/mnt/debinst
Note | |
---|---|
If you want to have parts of the filesystem (e.g. /usr) mounted on separate partitions, you will need to create and mount these directories manually before proceeding with the next stage. |
The utility used by the Debian installer, and recognized as the
official way to install a Debian base system, is
debootstrap. It uses wget and
ar, but otherwise depends only on
/bin/sh
and basic Unix/Linux tools[22]. Install wget and
ar if they aren't already on your current system,
then download and install debootstrap.
Or, you can use the following procedure to install it manually. Make a work folder for extracting the .deb into:
# mkdir work # cd work
The debootstrap binary is located in the Debian archive (be sure to select the proper file for your architecture). Download the debootstrap .deb from the pool, copy the package to the work folder, and extract the files from it. You will need to have root privileges to install the files.
# ar -x debootstrap_0.X.X_all.deb # cd / # zcat /full-path-to-work/work/data.tar.gz | tar xv
debootstrap can download the needed files directly
from the archive when you run it. You can substitute any Debian
archive mirror for http.us.debian.org/debian
in
the command example below, preferably a mirror close to you
network-wise. Mirrors are listed at
http://www.debian.org/mirror/list.
If you have a trixie Debian GNU/Linux installation image mounted at
/cdrom
, you could substitute a file URL instead
of the http URL: file:/cdrom/debian/
Substitute one of the following for ARCH
in the debootstrap command:
amd64
,
arm64
,
armel
,
armhf
,
i386
,
mips64el
,
mipsel
,
ppc64el
,
riscv64
,
s390x
.
# /usr/sbin/debootstrap --arch ARCH trixie \ /mnt/debinst http://ftp.us.debian.org/debian
If the target architecture is different than the host, you should add the
--foreign
option.
Now you've got a real Debian system, though rather lean, on disk. chroot into it:
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
If the target architecture is different from the host, you will need to first copy qemu-user-static to the new host:
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin # LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
After chrooting you may need to set the terminal definition to be compatible with the Debian base system, for example:
# export TERM=xterm-color
Depending on the value of TERM, you may have to install the
ncurses-term
package to get support for it.
If the target architecture is different from the host, you need to finish the multi-stage boot strap:
/debootstrap/debootstrap --second-stage
At this point /dev/
only contains very basic device
files. For the next steps of the installation additional device files may
be needed. There are different ways to go about this and which method you
should use depends on the host system you are using for the installation,
on whether you intend to use a modular kernel or not, and on whether you
intend to use dynamic (e.g. using udev
) or static
device files for the new system.
A few of the available options are:
install the makedev package, and create a default set of static device files using (after chrooting)
# apt install makedev # mount none /proc -t proc # cd /dev # MAKEDEV generic
manually create only specific device files using MAKEDEV
bind mount /dev from your host system on top of /dev in the target system; note that the postinst scripts of some packages may try to create device files, so this option should only be used with care
You need to create /etc/fstab
.
# editor /etc/fstab
Here is a sample you can modify to suit:
# /etc/fstab: static file system information. # # file system mount point type options dump pass /dev/XXX / ext3 defaults 0 1 /dev/XXX /boot ext3 ro,nosuid,nodev 0 2 /dev/XXX none swap sw 0 0 proc /proc proc defaults 0 0 /dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0 /dev/XXX /tmp ext3 rw,nosuid,nodev 0 2 /dev/XXX /var ext3 rw,nosuid,nodev 0 2 /dev/XXX /usr ext3 rw,nodev 0 2 /dev/XXX /home ext3 rw,nosuid,nodev 0 2
Use mount -a
to mount all the file systems you
have specified in your /etc/fstab
, or, to mount
file systems individually, use:
# mount /path # e.g.: mount /usr
Current Debian systems have mountpoints for removable media under
/media
, but keep compatibility symlinks in
/
. Create these as as needed, for example:
# cd /media # mkdir cdrom0 # ln -s cdrom0 cdrom # cd / # ln -s media/cdrom
You can mount the proc file system multiple times and to arbitrary
locations, though /proc
is customary. If you didn't use
mount -a
, be sure to mount proc before continuing:
# mount -t proc proc /proc
The command ls /proc
should now show a non-empty
directory. Should this fail, you may be able to mount proc from outside
the chroot:
# mount -t proc proc /mnt/debinst/proc
Setting the third line of the file /etc/adjtime
to
“UTC” or “LOCAL” determines
whether the system will interpret the hardware clock as being set to UTC
respective local time. The following command allows you to set that.
# editor /etc/adjtime
Here is a sample:
0.0 0 0.0 0 UTC
The following command allows you to choose your timezone.
# dpkg-reconfigure tzdata
To configure networking, edit
/etc/network/interfaces
,
/etc/resolv.conf
,
/etc/hostname
and
/etc/hosts
.
# editor /etc/network/interfaces
Here are some simple examples from
/usr/share/doc/ifupdown/examples
:
###################################################################### # /etc/network/interfaces -- configuration file for ifup(8), ifdown(8) # See the interfaces(5) manpage for information on what options are # available. ###################################################################### # The loopback interface isn't really required any longer, but can be used # if needed. # # auto lo # iface lo inet loopback # To use dhcp: # # auto eth0 # iface eth0 inet dhcp # An example static IP setup: (network, broadcast and gateway are optional) # # auto eth0 # iface eth0 inet static # address 192.168.0.42 # network 192.168.0.0 # netmask 255.255.255.0 # broadcast 192.168.0.255 # gateway 192.168.0.1
Enter your nameserver(s) and search directives in
/etc/resolv.conf
:
# editor /etc/resolv.conf
A simple example /etc/resolv.conf
:
search example.com nameserver 10.1.1.36 nameserver 192.168.9.100
Enter your system's host name (2 to 63 characters):
# echo DebianHostName > /etc/hostname
And a basic /etc/hosts
with IPv6 support:
127.0.0.1 localhost 127.0.1.1 DebianHostName # The following lines are desirable for IPv6 capable hosts ::1 ip6-localhost ip6-loopback fe00::0 ip6-localnet ff00::0 ip6-mcastprefix ff02::1 ip6-allnodes ff02::2 ip6-allrouters ff02::3 ip6-allhosts
If you have multiple network cards, you should arrange the names of
driver modules in the /etc/modules
file into the
desired order. Then during boot, each card will be associated with the
interface name (eth0, eth1, etc.) that you expect.
Debootstrap will have created a very basic
/etc/apt/sources.list
that will allow installing
additional packages. However, you may want to add some additional sources,
for example for source packages and security updates:
deb-src http://ftp.us.debian.org/debian trixie main deb http://security.debian.org/ trixie-security main deb-src http://security.debian.org/ trixie-security main
Make sure to run apt update
after you have
made changes to the sources list.
To configure your locale settings to use a language other than
English, install the locales
support package
and configure it. Currently the use of UTF-8 locales is recommended.
# apt install locales # dpkg-reconfigure locales
To configure your keyboard (if needed):
# apt install console-setup # dpkg-reconfigure keyboard-configuration
Note that the keyboard cannot be set while in the chroot, but will be configured for the next reboot.
If you intend to boot this system, you probably want a Linux kernel and a boot loader. Identify available pre-packaged kernels with:
# apt search linux-image
Then install the kernel package of your choice using its package name.
# apt install linux-image-arch-etc
To make your Debian GNU/Linux system bootable, set up your boot loader to load the installed kernel with your new root partition. Note that debootstrap does not install a boot loader, but you can use apt inside your Debian chroot to do so.
Check info grub
for instructions on setting up the
bootloader. If you are keeping the system you used to install Debian, just
add an entry for the Debian install to your existing grub2
grub.cfg
.
Installing and setting up grub2
is as easy as:
# apt install grub-pc
# grub-install /dev/sda
# update-grub
The second command will install grub2 (in this case in
the MBR of sda
). The last command will create a sane
and working /boot/grub/grub.cfg
.
Note that this assumes that a /dev/sda
device file has
been created. There are alternative methods to install grub2,
but those are outside the scope of this appendix.
In case you can login to the system via console, you can skip this section. If the system should be accessible via the network later on, you need to install SSH and set up access.
# apt install ssh
Root login with password is disabled by default, so setting up access can be done by setting a password and re-enable root login with password:
# passwd # editor /etc/ssh/sshd_config
This is the option to be enabled:
PermitRootLogin yes
Access can also be set up by adding an ssh key to the root account:
# mkdir /root/.ssh # cat << EOF > /root/.ssh/authorized_keys ssh-rsa .... EOF
Lastly, access can be set up by adding a non-root user and setting a password:
# adduser joe # passwd joe
As mentioned earlier, the installed system will be very basic. If you would like to make the system a bit more mature, there is an easy method to install all packages with “standard” priority:
# tasksel install standard
Of course, you can also just use apt to install packages individually.
After the installation there will be a lot of downloaded packages in
/var/cache/apt/archives/
. You can free up some
diskspace by running:
# apt clean