Debian GNU/Linux asennusohje

26. marraskuuta 2021
Debian GNU/Linux asennusohje

Copyright © 2004 – 2021 Debianin asentimen työryhmä

Tämä ohjekirja on vapaa; voit levittää sitä edelleen ja/tai muuttaa sitä GNU yleisen lisenssin (GPL lisenssi) ehtojen mukaisesti. Ole hyvä ja lue käyttöehdot Liite F.

Build version of this manual: 20210805.
Sisältö

1 Tervetuloa Debianin pariin
1.1 Mikä Debian on? ... 1
1.2 Mitä GNU/Linux on? .. 1
1.3 Mitä on Debian GNU/Linux? ... 2
1.4 Mikä on Debian GNU/kFreeBSD? 3
1.5 Mikä on Debian GNU/Hurd? ... 3
1.6 What is the Debian Installer? ... 3
1.7 Debianin hankkiminen .. 3
1.8 Tämän ohjeen uusimman version hankkiminen 3
1.9 Tämän ohjeen rakenne .. 3
1.10 Apu ohjeen kirjoittamiseen on tervetullutta 4
1.11 Tekijänoikeuksista ja ohjelmistojen käyttöehdoista 4

2 Laitteistovaatimukset
2.1 Tuetut laitealustat .. 6
2.1.1 Tuetut laitealustat .. 6
2.1.2 CPU Support ... 7
2.1.3 Sylmikrot .. 7
2.1.4 Moniprosessorijärjestelmät .. 7
2.1.5 Graphics Hardware Support 7
2.1.6 Verkkolaitteet .. 7
2.1.6.1 Langattomat verkkokortit 7
2.1.7 Pistekirjoitsusnäytöt ... 8
2.1.8 Puhesyntetisaattorilaitteet 8
2.1.9 Oheislaitteet ja muu laitteisto 8
2.1.9.1 Oheislaitteet ja muu laitteisto 8
2.2 Laiteohjelmistoa tarvitsevat laitteet 8
2.3 Purchasing Hardware Specifically for GNU/Linux 8
2.3.1 Vältä suojattuja tai suljettuja laitteita 9
2.4 Asennustieto
4 Asennustaitoiden hankkiminen

4.1	Official Debian GNU/Linux installation images	18
4.2	Tiedostojen noutaminen Debianin asennuspalvelimilta	18
4.2.1	Where to Find Installation Files	18
4.3	Tiedostojen valmistelu käynnistetäessä USB-muistilta	18
4.3.1	Preparing a USB stick using a hybrid CD/DVD image	19
4.3.2	Manually copying files to the USB stick	20
4.3.3	Manually copying files to the USB stick — the flexible way	20
4.3.3.1	Partitioning and adding a boot loader	20
4.3.3.2	Adding the installer files	21
4.4	Tiedostojen valmistelu käynnistetäessä kiinteilevyiltä	22
4.4.1	Hard disk installer booting from Linux using GRUB	22
4.4.2	Hard disk installer booting from DOS using loadlin	22
4.5	Tiedostojen valmistelu verkosta käynnistämiseen TFTP:llä	22
4.5.1	DHCP-palvelimen asetukset	23
4.5.1.1	PXE-käynnistykseen käyttöönottot DHCP-asetuksissa	23
4.5.2	BOOTP-palvelimen käyttöönnotto	24
4.5.3	TFTP-palvelimen käyttöönnotto	24
4.5.4	Siirretään TFTP-otokset paikalleen	25
4.6	Automaattinen asennus	25
4.6.1	Automaattinen asennus Debianin asentimella	25
4.7	Verifying the integrity of installation files	25

5 Asennusjärjestelmän käynnistäminen

5.1	Asentimen käynnistäminen suoritinperheellä 64-bit PC	26
5.1.1	Käynnistys USB-muistilta	26
5.1.2	Booting from optical disc (CD/DVD)	26
5.1.3	Käynnistämisen Windowsista	27
5.1.4	Booting from DOS using loadlin	27
5.1.5	Booting from Linux using GRUB	27
5.1.6	Käynnistys TFTP:llä	27
5.1.6.1	NIC tai emolevy joka tukee PXE:tä	27
5.1.6.2	NIC jossa on BootROM verkosta käynnistämiseen	28
5.1.6.3	Etherboot	28
5.1.7	Käynnistysruutu	28
5.1.8	The Graphical Installer	29
5.2	Esteettömyys	30
5.2.1	Installer front-end	30
5.2.2	USB pistekirjoitusläätöt	30
5.2.3	Sarjaportin pistekirjoitusläätöt	30
5.2.4	Software Speech Synthesis	30
5.2.5	Puhesyntetisasattorilaitteet	30
5.2.6	Lisälaitteet	31
5.2.7	Suurikonstrastinen teema	31
5.2.8	Zoom	31
5.2.9	Expert install, rescue mode, automated install	31
5.2.10	Accessibility of the installed system	31
5.3	Käynnistysparametrit	31
5.3.1	Boot console	31
5.3.2	Debianin asentimen parametrit	32
5.3.3	Valmiita vastauksia käynnistysparametreille	34
5.3.4	Parametrien väliittäminen ytimen moduleille	34
5.3.5	Ytimen moduulien lisääminen kieltolistalle	34
5.4	Asennusprosessin viianetsintä	35
5.4.1	Reliability of optical media	35
6 Debianin asentimen käyttö

6.1 Asentimen toiminta 39
6.1.1 Using the graphical installer 39
6.2 Osien esittely 40
6.3 Yksittäisten osien käyttäminen 41
6.3.1 Debianin asentimen asetusten teko ja laiteasetukset 41
6.3.1.1 Käytettävissä olevan muistin määrä / niukan muistin tila 41
6.3.1.2 Maa-asetuston valinta 42
6.3.1.3 Näppäimistön valinta 42
6.3.1.4 Etsitään Debianin asentimen ISO-otosta 42
6.3.1.5 Verkkosäätöjen valinta 43
6.3.1.5.1 Automatic network configuration 43
6.3.1.5.2 Manual network configuration 43
6.3.1.5.3 IPv4 and IPv6 43
6.3.2 Käyttäjät ja salasanat 44
6.3.2.1 Asetetaan päälähetäjän salasanana 44
6.3.2.2 Luo tavallisen käyttäjän tunnus 44
6.3.3 Valitaan aiakävyläkykyst ja asetetaan kellonikaik 44
6.3.4 Osiojen teko ja liitoskohtien valinta 44
6.3.4.1 Tuotut osioiminn vaihtoehtot 45
6.3.4.2 Ohjattu osiointi 46
6.3.4.3 Tee osiet itse 47
6.3.4.4 Monilevynmääräiset asetukset (ohjelmallisesti toteutettu RAID) 47
6.3.4.5 Loogisten levyineiden hallintaohjelman (LVM) asetukset 49
6.3.4.6 Salattujen levyineiden asetukset 50
6.3.5 Perusjärjestelmän asennus 52
6.3.6 Asennetaan lisää ohjelmia 52
6.3.6.1 Tehdään apt:n asetukset 53
6.3.6.1.1 Installing from more than one CD or DVD image 53
6.3.6.1.2 Asentaminen verkossa olevalta asennuspalvelimelta 53
6.3.6.1.3 Choosing a network mirror 54
6.3.6.2 Ohjelmien valinta ja asentaminen 54
6.3.7 Järjestelmän käynnistymään kiintolevyllä 55
6.3.7.1 Etsitaikaan muita käyttöjärjestelmiä 55
6.3.7.2 Install the Grub Boot Loader on the drive 55
6.3.7.3 Jatketaan ilman käynnistystä 56
6.3.8 Päätetään asennus 56
6.3.8.1 Tehdään kallon asetukset 56
6.3.8.2 Järjestelmän uudelleenkäynnistys 56
6.3.9 Troubleshooting 56
6.3.9.1 Asentimen lokien lukeuminen 56
6.3.9.2 Komentotulkin käyttö ja lokien lukeminen 56
6.3.10 Installation over network-console 57

6.4 Puuttuvan laitetiedoston lataaminen 58
6.4.1 Taltion valmistelu 58
6.4.2 Laiteohjelmisto ja asennettu järjestelmä 59
6.4.3 Completing the Installed System 59

6.5 Customization 60
6.5.1 Installing an alternative init system 60
7 Asennetun Debian-järjestelmän käynnistäminen
7.1 Totuuden hetki ... 61
7.2 Salattujen levyniteiden liittäminen 61
7.2.1 Vikojen esittäminen 62
7.3 Sisäänkirjaustyönteen loppuunsaanto 62

8 Mitä seuraavaksi?
8.1 Ajetaan järjestelmä alas 63
8.2 Asennoidu oikein Debianiin 63
8.2.1 Debianin paketointijärjestelmä 63
8.2.2 Additional Software Available for Debian 64
8.2.3 Vaihtoehtoja sovelluksille 64
8.2.4 Tehtävien ajastettu suoritus 64
8.3 Lisää lukemista ja lisätietoja 64
8.4 Järjestelmän asetukset sähköpostin käyttöönotto
8.4.1 Sähköpostin oletusasetukset 65
8.4.2 Sähköpostien lähetykselläinen toiminta ... 65
8.4.3 Exim4 Mail Transport Agentin asetukset ... 65
8.5 Uuden ytimen käyttöojaaminen 66
8.6 Hajonneen järjestelmän korjaaminen 66

A Asennus-Howto
A.1 Valmistelevat toimet 67
A.2 Asentimen käynnistys 67
A.2.1 Optical disc .. 67
A.2.2 USB-muisti ... 67
A.2.3 Verkkokäynnistys 68
A.2.4 Käynnistys kiintolevyytä 68
A.3 Asennus .. 68
A.4 Lähettä asennusraportti 69
A.5 Ja lopuksi… .. 69

B Asennuksen automatisointi valmiilla vastauksilla
B.1 Johdanto .. 70
B.1.1 Valmiiden vastausten tallennustapojen ... 70
B.1.2 Rajoituksia ... 71
B.2 Valmiiden vastausten käyttö 71
B.2.1 Valmiiden vastausten tiedoston lataaminen 71
B.2.2 Ammattilaista valmistaa vastauksia käynnistystapojen 72
B.2.3 Auto mode .. 72
B.2.4 Valmiiden vastausten yhteydessä hyödyntää niiden käyttöön ... 74
B.2.5 Examples of boot prompt preseeding 74
B.2.6 DHCP-palvelin kertomaa mistä valmiiden vastausten tiedosto löytyy 74
B.3 Valmiiden vastausten tiedoston lataaminen 75
B.4 Valmiiden vastausten tiedoston sisältö (julkaisuulline bullseye) 76
B.4.1 Kokoosuus ... 76
B.4.2 Verkkosetukset 76
B.4.3 Päättyneen verkon kautta 78
B.4.4 Asennuspalvelimen asetukset 78
B.4.5 Käyttäjätunnuksen luonti 78
B.4.6 Kellon ja aikavyöhykkeen asetukset 79
B.4.7 Osiointi ... 80
B.4.7.1 Esimerkki osioinnista 80
B.4.7.2 Osiointi käyttäen RAIDiä 82
B.4.7.3 Määritellään miten osiot liitetään 83
B.4.8 Perusjärjestelmän asennus 83
B.4.9 Apt:n asetukset 83
B.4.10 Pakettien valinta 84
B.4.11 Käynnistyslataimen asennus 85

SISÄLTÖ
B.4.12 Asennuksen lopetus .. 85
B.4.13 Valmiit vastaukset muille paketeille 86
B.5 Lisäasetukset ... 86
B.5.1 Mielivaltaisten komentojen käynnistämien asennuksen aikana
B.5.2 Oletusarvojen muuttaminen valmiilla vastauksilla 86
B.5.3 Valmiiden vastausten tiedostojen lataaminen ketjussa ... 87
C Osiot Debianille ... 88
C.1 Debianin osiot ja osioiden koot 88
C.2 Hakemistopuu ... 88
C.3 Osioointisuositus .. 89
C.4 Laitenimet Linuxissa ... 90
C.5 Debianin osioointisovellukset 90
C.5.1 64-bit PC ja osiointi .. 90
D Sekalaista ... 92
D.1 Linuxin laitetiedostot ... 92
D.1.1 Hiiren asetukset .. 92
D.2 Tehtävien vaatima levytila .. 93
D.3 Debian GNU/Linuxin asentaminen Unix/Linux-järjestelmästä.
D.3.1 Alkuunpääsy ... 94
D.3.2 Asennetaan debootstrap .. 94
D.3.3 Suoritetaan debootstrap .. 95
D.3.4 Perusjärjestelmän asetukset 95
D.3.4.1 Luo laitetiedostot .. 95
D.3.4.2 Liitetään osiot .. 96
D.3.4.3 Aikavyöhyke .. 96
D.3.4.4 Verkon asetukset .. 97
D.3.4.5 Aptin asetukset ... 98
D.3.4.6 Näppäimistön asetukset ja maa-asetusto 98
D.3.5 Asennetaan ydin .. 98
D.3.6 Käynnistyslataimen asetukset 98
D.3.7 Remote access: Installing SSH and setting up access 98
D.3.8 Viimeistely ... 99
D.4 Debian GNU/Linux:in asennus käyttäen Parallel Line IP:tä (PLIP)
D.4.1 Vaatimukset ... 99
D.4.2 Lähdekoneen asetukset ... 100
D.4.3 Asennetaan kohdekone .. 100
D.5 Debian GNU/Linux:in asennus käyttäen PPPP over Ethernet:tiä (PPPoE) 100
E Hallinnolliset tiedot .. 102
E.1 Tietoa tästä ohjeesta ... 102
E.2 Ohjetalkoisiin osallistuminen 102
E.3 Tärkeimmät avustajat .. 102
E.4 Tavaramerkit ... 103
F GNU yleinen lisenssi (GPL lisenssi) 104
F.1 Johdanto .. 104
F.2 GNU yleinen lisenssi (GPL lisenssi) 105
F.3 Miten näitä ehtoja voi soveltaa uusiin ohjelmiin? 107
Taulukot

3 Ennen Debian GNU/Linux asennusta
 3.1 Hardware Information Helpful for an Install 13
 3.2 Suositellut vähimmäisvaatimukset laitteistolle 15
Tiivistelmä

Tässä oppaassa on asennusohjeet Debian GNU/Linux version 11 käyttöjärjestelmän (koodinimi "bullseye") asennamisesta 64-bit PC-laitealustalle ("amd64"). Mukana on myös linkkejä lisätietoon ja neuvoja miten parhaiten käytät uutta Debian-järjestelmääsi.

VAROITUS

This translation of the installation guide is not up-to-date and currently there is no one actively working on updating it. Keep this in mind when reading it; it may contain outdated or wrong information. Read or double-check the English variant, if in doubt. If you can help us with updating the translation, please contact debian-boot@lists.debian.org or the debian-i10n-xxx mailinglist for this language. Many thanks

Suomennos on valmis mutta tarkistuslukijoita kaivataan. Jos tarkistuset suomennosta, lähetä korjauvehdotuksia vaikkapa sähköpostiosoitteella debian-i10n-finnish@lists.debian.org.
Debian GNU/Linux version 11
asentaminen laitealustalle amd64

Päättöksesi kokeilla Debiania ilahduttaa, ja olemme varmoja Debianin GNU/Linux-jakelun osoittautuvan ainutlaatuiseksi. Debian GNU/Linux on koostanut yhtenevää kokonaisuuden korkealaatuisista vapaista ohjelmista kaikilta maailman kulmilta. Uskomme tämän kokonaisuuden olevan enemmän kuin osiensa summa.

Toivomme silti aikaa löytyvän koko käsikirjan lukemiseen ja lisätiedon auttavan todennäköisesti menestyksekäämpään asennuskokemukseen.
Luku 1
Tervetuloa Debianin pariin

Tässä luvussa on katsaus Debian-projektiin ja Debian GNU/Linux-jakeluun. Jos olet jo perehtynyt Debian-projektin historiaan ja Debian GNU/Linux-jakeluun, voit halutessasi siirtyä seuraavaan lukuun.

1.1 Mikä Debian on?

Kehittäjät osallistuvat erilaisiin tehtäviin, muun muassa: WWW- ja FTP-palvelimien hallintaan, grafiikan suunnittelun, ohjelmistokäyttöoikeiden lainmukaisuuden tutkimiseen, dokumenttien kirjoittamiseen ja luonnollisesti ohjelmistopakettien ylläpitämiseen.

Aatteemme julistamiseksi ja Debianin edustamiin asioihin kehittäjien houkuttelemiseksi Debian-projekti on julkaissut joukon dokumentteja, jotka valottavat arvojamme ja opastavat siihen, mitä Debian-kehittäjänä toimimin tarkoittaa.

- Debianin vapaiden ohjelmien ohjeisto on selkeä ja kattava esitys Debianin ehdosta vapaille ohjelmille. Sillä on suuri vaikutusvalta vapaiden ohjelmien liikkeessä, ja se antoi perustan julistukselle The Open Source Definition.

- Debianin linjan kuvaus on laaja määrätilmälä Debian-projektin laatuvaaatimistukseksi.

Debian-kehittäjät osallistuvat myös joukkoon muita projekteja: jotkin niistä liittyvät Debianiin, kun taas toiset Linuxiiin ja koko yhteisöön yleensä, esim.:

- Filesystem Hierarchy Standard (FHS) pyrkii standardoimaan tiedostojen sijoitelun Linuxin tiedostojärjestelmässä. FHS auttaa ohjelmien kehittäjiä keskittymään ohjelmien suunnittelun eikä pohtimaan miten ohjelmistopaketti asennetaan eri GNU/Linux-jakeluissa.

- Debian Jr. on Debianin sisäinen projekti varmistamaan Debianilla olevan tarjottavaa nuorimmille käyttäjielle.

Yleisempää tietoa Debianista löytyy Debianin usein kysytyistä kysymyksistä.

1.2 Mitä GNU/Linux on?

GNU/Linux is an operating system: a series of programs that let you interact with your computer and run other programs.

Käyttöjärjestelmä koostuu erilaisista perusohjelmista, joita tietokone tarvitsee lähettääkseen tietoa ja vastaanottaaan komentoja käyttäjiä; tiedon lukemiseen ja kirjoittamiseen kiintolevyille, nauhoille ja tulostimille; muistinhallintaan; ja muiden ohjelmien käynnistämiseen. Käyttöjärjestelmän tärkein osa on ydin. GNU/Linux-järjestelmässä
ylälistoi GNU:n projektin kanssa tietojenkäsittelytieteen opiskelijan Linus Torvaldsin julkistamalla GNU Project.

Linuxin historia

Kanssa ovat Debian-projektin ylläpitämät lukuisat sähköpostilistat (tätä kirjoitettaessa listoja on yli 322). Yhden tai ansiosta tietoturvapäivitykset voidaan noutaa ja asentaa automaattisesti Internetistä.

Linus Torvalds continues to coordinate the work of several hundred developers with the help of a number of subsystem maintainers. There is an official website for the Linux kernel. Information about the linux-kernel mailing list can be found on the linux-kernel mailing list FAQ.

Debian-filosofian ja -menettelytapojen yhdistäminen GNU-työkaluihin, Linux-ytimeen ja muihin tärkeisiin vapaisiin ohjelmiin on johtanut tähän aiheutuvaan aiheutuvaan

1.3 Mitä on Debian GNU/Linux?

Debian GNU/Linux is modelled on the Unix operating system. From the start, GNU/Linux was designed to be a multi-tasking, multi-user system. These facts are enough to make GNU/Linux different from other well-known operating systems. However, GNU/Linux is even more different than you might imagine. In contrast to other operating systems, Nobody owns GNU/Linux. Much of its development is done by unpaid volunteers.

1.4 Mikä on Debian GNU/kFreeBSD?

Debian GNU/kFreeBSD is a Debian GNU system with the kFreeBSD kernel.
This port of Debian is currently only being developed for the i386 and amd64 architectures, although ports to other architectures is possible.
Please note that Debian GNU/kFreeBSD is not a Linux system, and thus some information on Linux system may not apply to it.
For more information, see the Debian GNU/kFreeBSD ports page and the debian-bsd@lists.debian.org mailing list.

1.5 Mikä on Debian GNU/Hurd?

Debian GNU/Hurd is a Debian GNU system with the GNU Hurd — a set of servers running on top of the GNU Mach microkernel.
Hurd on vielä keskeneräinen ja sopimaton tavalliseen käyttöön, mutta työtä jatketaan. Hurdia kehitetään tällä hetkellä vain i386-arkkitehtuurille, mutta siiroksia muille arkkitehtuureille tehdään kunhan järjestelmä saadaan va-kaamaksi.
Please note that Debian GNU/Hurd is not a Linux system, and thus some information on Linux system may not apply to it.
Lisää voi lukea Debian GNU/Hurd -siirroksen sivulta ja sähköpostilistalta debian-hurd@lists.debian.org.

1.6 What is the Debian Installer?

Debian Installer, also known as ”d-i”, is the software system to install a basic working Debian system. A wide range of hardware such as embedded devices, laptops, desktops and server machines is supported and a large set of free software for many purposes is offered.
The installation is conducted by answering a basic set of questions. Also available are an expert mode that allows to control every aspect of the installation and an advanced feature to perform automated installations. The installed system can be used as is or further customized. The installation can be performed from a multitude of sources: USB, CD/DVD/Blu-Ray or the network. The installer supports localized installations in more than 80 languages.
The installer has its origin in the boot-floppies project, and it was first mentioned by Joey Hess in 2000. Since then the installation system has been continuously developed by volunteers improving and adding more features.
More information can be found on the Debian Installer page, on the Wiki and on the debian-boot mailing list.

1.7 Debianin hankkiminen

For information on how to download Debian GNU/Linux from the Internet or from whom official Debian installation media can be purchased, see the distribution web page. The list of Debian mirrors contains a full set of official Debian mirrors, so you can easily find the nearest one.
Debian voidaan päivittää asennuksen jälkeen hyvin helposti. Asennus avustaa asetuksien teossa siten, että päivi- tykset voi tehdä asennuksen jälkeen jos tarvetta on.

1.8 Tämän ohjeen uusimman version hankkiminen

1.9 Tämän ohjeen rakenne

Tämä ohje on tarkoitettu käskirjaksi ensimmäistä kertaa Debiania käyttäville. Lukijan asiantuntemuksen tasosta py- ritään olettamaan mahdollisimman vähän. Lukijalla oletetaan kuitenkin olevan perustiedot tietokoneensa laitteiden toiminnasta.
Asiantuntevat käyttäjätkin löytänevät kiinnostavia tiedonjyväsiä ohjeesta, muun muassa asennuksen vähimmäiskoosta, Debianin asennusjärjestelmän tukemista laitteista ja niin edelleen. Asiantuntevien käyttäjien kannattaa selailia ohjeesta kiinnostavia kohtia.

Päätiriteissä tämä ohje on tarkoitettu tuottavaksi järjestelyssä, jolloin asennus käydlään läpi vaiheittaan alusta loppuun. Tässä ovat Debian GNU/Linuxin asennuksen vaiheet ja tämän ohjeen vastaavat luvut:

3. Luvun Luku 4 avulla löydät käytettävän asennustavan tarvitsemat asennustiedostot.
4. The next Luku 5 describes booting into the installation system. This chapter also discusses troubleshooting procedures in case you have problems with this step.
5. Perform the actual installation according to Luku 6. This involves choosing your language, configuring peripheral driver modules, configuring your network connection, so that remaining installation files can be obtained directly from a Debian server (if you are not installing from a set of CD/DVD installation images), partitioning your hard drives and installation of a base system, then selection and installation of tasks. (Some background about setting up the partitions for your Debian system is explained in Liite C.)

Kun järjestelmän asennus on valmis, voidaan lukea luku Luku 8. Luvusta ilmenee mistä löytyy lisätietoa Linuxista ja Debianista ja miten ydin vaihdetaan.

Lopuksi luvussa Liite E on tietoa tästä ohjeesta ja osallistumisesta ohjeen kirjoittamiseen.

1.10 Apu ohjeen kirjoittamiseen on tervetullutta

Ohjeen lähdekoodikin on julkisesti saatavilla; luvussa Liite E kerrotaan miten ohjeen laatimiseen voi osallistua. Tervetulleita ovat ehdotukset, huomautukset, korjaustiedostot ja vikailmoitukset (kohdista vikailmoitukset paketille nimeltä installation-guide).

1.11 Tekijänoikeuksista ja ohjelmistojen käyttöehdoista

Calling software free doesn’t mean that the software isn’t copyrighted, and it doesn’t mean that installation media containing that software must be distributed at no charge. Free software, in part, means that the licenses of individual programs do not require you to pay for the privilege of distributing or using those programs. Free software also means that not only may anyone extend, adapt, and modify the software, but that they may distribute the results of their work as well.
Monien järjestelmän ohjelmien käyttöehtona on *GNU yleinen lisenssi* (General Public Licence), johon usein viitataan vain nimellä ”GPL”. GPL vaatii jaettavaksi myös ohjelman lähdekoodin aina kun ohjelman suorituskelapoista versiota levitetään ja käyttöehdojen takaavan kaikille käyttäjille oikeuden muokata ohjelmistoa. Tämän ehdon ansiosta kaikkien tuollaisten ohjelmien lähdekoodi on saatavilla Debian-järjestelmässä.

Muunkinlaisia tekijänoikeusilmoituksia ja ohjelmien käyttöehdoja on käytössä Debianissa olevissa ohjelmissa. Tekijänoikeudet ja käyttöehdot jokaiselle asennetulle paketille löytyvät tiedostosta `/usr/share/doc/paketin-nimi/copyright`.

Lisää tietoa käyttöehdoista ja ohjelmiston riittävästä vapaudesta liitetään Debianin pääjakeluun löytyvän *Debianin vapaiden ohjelmistojen ohjeistosta* (DFSG).

Tärkein tämän ohjelmiston mukana tuleva oikeudellinen ilmoitus on *ettei mitään takuuta ole*. Ohjelmoijat ovat tehneet ohjelmiston hyödyttävänä yhteisönä. Mitään takeita ei anneta ohjelmiston soveltuvuudesta mihinkään tiettyyn tarkoitukseen. Koska ohjelmisto on vapaa on käyttäjällä kuitenkin mahdollisuus muokata ohjelmistoa tarpeisiinsa — ja nauttia muiden käyttäjien tekemistä parannuksista.

1Ohjeet Debianin lähdekoodipakettien löytämisestä, purkamisesta ja saorituskelapoisten ohjelmien koostamisesta löytyvät Debian VUK:stä kohdasta ”Basics of the Debian Package Management System”.
Luku 2

Laitteistovaatimukset

Tässä luvussa on tietoa laitteista joilla pääsee alkuun Debianin kanssa. Mukana on myös viitteitä lisätietoon GNU:n ja Linuxin tukemista laitteista.

2.1 Tuetut laitteet

Debian does not impose hardware requirements beyond the requirements of the Linux or kFreeBSD kernel and the GNU tool-sets. Therefore, any architecture or platform to which the Linux or kFreeBSD kernel, libc, gcc, etc. have been ported, and for which a Debian port exists, can run Debian. Please refer to the Ports pages at https://www.debian.org/ports/amd64/ for more details on 64-bit PC architecture systems which have been tested with Debian GNU/Linux.

Tässä luvussa ei kerrota kaikkia laitealustan 64-bit PC tuettuja laitteistokokoonpanoja, vaan kerrotaan yleisempää tietoa ja annetaan viitteet joista lisätietoa löytyy.

2.1.1 Tuetut laitealustat

Debian GNU/Linux 11 supports 9 major architectures and several variations of each architecture known as "flavors".

<table>
<thead>
<tr>
<th>Suoritinperhe</th>
<th>Nimi Debianissa</th>
<th>Suoritinarkkitehtuuri</th>
<th>Malli</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel x86-koneet</td>
<td>i386</td>
<td>default x86 machines</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xen PV domains only</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood and Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM with hardware FPU</td>
<td>armhf</td>
<td>multiplatform</td>
<td>armmp</td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bit MIPS (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS (little-endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 or newer machines</td>
<td></td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td>IPL, VM-lukijalta ja DASD:ltää</td>
<td>generic</td>
</tr>
</tbody>
</table>

This document covers installation for the 64-bit PC architecture using the Linux kernel. If you are looking for information on any of the other Debian-supported architectures take a look at the Debian-Ports pages.

2.1.2 CPU Support

Sekä AMD64- että Intel 64-suorittimet ovat tuettuja.
2.1.3 Sylimikrot

From a technical point of view, laptops are normal PCs, so all information regarding PC systems applies to laptops as well. Installations on laptops nowadays usually work out of the box, including things like automatically suspending the system on closing the lid and laptop specific hardware buttons like those for disabling the wifi interfaces (“airplane mode”). Nonetheless sometimes the hardware vendors use specialized or proprietary hardware for some laptop-specific functions which might not be supported. To see if your particular laptop works well with GNU/Linux, see for example the Linux Laptop pages.

2.1.4 Moniprosessorijärjestelmät

Multiprocessor support — also called "symmetric multiprocessing" or SMP — is available for this architecture. The standard Debian 11 kernel image has been compiled with SMP-alternatives support. This means that the kernel will detect the number of processors (or processor cores) and will automatically deactivate SMP on uniprocessor systems.

Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so called "multi-core" processors. These contain two or more processor units, called "cores", in one physical chip.

2.1.5 Graphics Hardware Support

Debian’s support for graphical interfaces is determined by the underlying support found in X.Org’s X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional "firmware" blobs (see Kohta 2.2).

On modern PCs, having a graphical display usually works out of the box. For quite a lot of hardware, 3D acceleration also works well out of the box, but there is still some hardware that needs binary firmware blobs to work well. In some cases there have been reports about hardware on which installation of additional graphics card firmware was required even for basic graphics support.

Details on supported graphics hardware and pointing devices can be found at https://wiki.freedesktop.org/xorg/. Debian 11 ships with X.Org version 7.7.

2.1.6 Verkkolaitteet

Almost any network interface card (NIC) supported by the Linux kernel should also be supported by the installation system; drivers should normally be loaded automatically. This includes most PCI/PCI-Express cards as well as PCMCIA/Express Cards on laptops.

ISDN is supported, but not during installation.

2.1.6.1 Langattomat verkkokortit

Langattomat verkkokortit ovat yleensä tuettuja ja kasvava joukko langattomia sovittimia on tuettu virallisessa Linux-ytimessä, vaikkakin monet niistä vaativat laiteohjelmiston lataamisen.

Asennin kehottaa lataamaan laiteohjelmiston jos laiteohjelmisto tarvitaan. Katso kohdasta Kohta 6.4 tarkempaa tietoja laiteohjelmiston lataamisesta asennuksen aikana.

Langattomat sovittimet joita virallinen Linux-ydin ei tuu voidaan yleensä saada toimimaan Debian GNU/Linuxissä, mutta ne eivät ole tuettuja asennuksen aikana.

Jos langattoman kanssa on vaikeuksia eikä asennuksen aikana ole käytettävissä toista verkkosovittintaa, on Debian GNU/Linux -jaketun asentaminen silti mahdollista käyttämällä täysii CD-ROM- tai DVD-otoksia. Valitse vaihtoehto olla tekemättä verkon asetukset tai asenna käyttämällä ainakin CD:llä/DVD:llä olevia asennuspaketteja. Tarvittava ajuri ja laiteohjelmisto voidaan asentaa kun asennus on päättynyt (uudelleenkäynnistyksen jälkeen) ja verkon asetukset voidaan tehdä edellä.

2.1.7 Pistekirjoitusnäytöt

2.1.8 Puhesyntetisaaattorilaitteet
Support for hardware speech synthesis devices is determined by the underlying support found in speakup. Only supports integrated boards and external devices connected to a serial port (no USB, serial-to-USB or PCI adapters are supported). Details on supported hardware speech synthesis devices can be found on the speakup website. Debian GNU/Linux 11 ships with speakup version 3.1.6.

2.1.9 Oheislaitteet ja muu laitteisto
Linux supports a large variety of hardware devices such as mice, printers, scanners, PCMCIA/CardBus/ExpressCard and USB devices. However, most of these devices are not required while installing the system.

USB hardware generally works fine. On some very old PC systems some USB keyboards may require additional configuration (see Kohta 3.6.6). On modern PCs, USB keyboards and mice work without requiring any specific configuration.

2.2 Laiteohjelmistoa tarvitsevat laitteet
Besides the availability of a device driver, some hardware also requires so-called firmware or microcode to be loaded into the device before it can become operational. This is most common for network interface cards (especially wireless NICs), but for example some USB devices and even some hard disk controllers also require firmware.

With many graphics cards, basic functionality is available without additional firmware, but the use of advanced features requires an appropriate firmware file to be installed in the system. In some cases, a successful installation can still end up in a black screen or garbled display when rebooting into the installed system. If that happens, some workarounds can be tried to log in anyway (see Kohta 6.4.3).

On many older devices which require firmware to work, the firmware file was permanently placed in an EEPROM/Flash chip on the device itself by the manufacturer. Nowadays most new devices do not have the firmware embedded this way anymore, so the firmware file must be uploaded into the device by the host operating system every time the system boots.

Useimmissa tapauksissa laiteohjelmisto ei ole Debian GNU/Linux-projektin kriteerien mukaisesti vapaa eikä siitä niin ollen voida ottaa mukaan jakelun tai asennusjärjestelmänä. Jos itse laiteajuri on mukana jakelussa ja jos Debian GNU/Linux voi laillisesti vähittää laiteohjelmistoa, se on usein saatavilla erillisenä pakettina pakettivaraston epävapaasta (non-free) osasta.

However, this does not mean that such hardware cannot be used during an installation. Starting with Debian GNU/Linux 5.0, debian-installer supports loading firmware files or packages containing firmware from a removable medium, such as a USB stick. See Kohta 6.4 for detailed information on how to load firmware files or packages during the installation.

If the debian-installer prompts for a firmware file and you do not have this firmware file available or do not want to install a non-free firmware file on your system, you can try to proceed without loading the firmware. There are several cases where a driver prompts for additional firmware because it may be needed under certain circumstances, but the device does work without it on most systems (this e.g. happens with certain network cards using the tg3 driver).

2.3 Purchasing Hardware Specifically for GNU/Linux
Useat myyjät toimittavat laitteita joissa on Debian tai muu GNU/Linux-jakelu esiasennettuna. Mahdollisesti palvelusta on maksettava lisähintaa, mutta sillä saa jonkinlaisen mielenrauhan, kun voi varmistua laitteiston olevan hyvin tuettu GNU/Linuxissä.

Jos joudut ostamaan tietokoneen jonka mukana tulee Windows, lue Windowsin mukana tulevat käyttöehdot huolella; saattaa olla mahdollista hylätä käyttöoikeus ja saada osa rahoista takaisin myyjältä. Googlettaimen Internetistä hakuunalla ”windows refund” saattaa löytää käyttökoipioisia neuvoja asiasta.

Olipa ostamassa esiasennettua Linux-konetta tai konetta ilman käyttöjärjestelmää, tai jopa käytettyä tietokonetta, on aina tärkeää tarkistaa onko laitteille tuki Linux-ytimessä. Tarkista onko laitteisto mainittu yllä olevissa viitteissä. Kerro myyjälle ostavasi Linux-järjestelmää. Tue Linux-ystävällisiä laitevalmistajia.
2.3.1 Vältä suojuutta ja suljettuja laitteita

Some hardware manufacturers simply won’t tell us how to write drivers for their hardware. Others won’t allow us access to the documentation without a non-disclosure agreement that would prevent us from releasing the driver’s source code, which is one of the central elements of free software. Since we haven’t been granted access to usable documentation on these devices, they simply won’t work under Linux.

In many cases there are standards (or at least some de-facto standards) describing how an operating system and its device drivers communicate with a certain class of devices. All devices which comply to such a (de-facto-)standard can be used with a single generic device driver and no device-specific drivers are required. With some kinds of hardware (e.g. USB "Human Interface Devices", i.e. keyboards, mice, etc., and USB mass storage devices like USB flash disks and memory card readers) this works very well and practically every device sold in the market is standards-compliant.

In other fields, among them e.g. printers, this is unfortunately not the case. While there are many printers which can be addressed via a small set of (de-facto-)standard control languages and therefore can be made to work without problems in any operating system, there are quite a few models which only understand proprietary control commands for which no usable documentation is available and therefore either cannot be used at all on free operating systems or can only be used with a vendor-supplied closed-source driver.

Even if there is a vendor-provided closed-source driver for such hardware when purchasing the device, the practical lifespan of the device is limited by driver availability. Nowadays product cycles have become short and it is not uncommon that a short time after a consumer device has ceased production, no driver updates get made available any more by the manufacturer. If the old closed-source driver does not work anymore after a system update, an otherwise perfectly working device becomes unusable due to lacking driver support and there is nothing that can be done in this case. You should therefore avoid buying closed hardware in the first place, regardless of the operating system you want to use it with.

You can help improve this situation by encouraging manufacturers of closed hardware to release the documentation and other resources necessary for us to provide free drivers for their hardware.

2.4 Asennustaltiot

This section will help you determine which different media types you can use to install Debian. There is a whole chapter devoted to media, Luku 4, which lists the advantages and disadvantages of each media type. You may want to refer back to this page once you reach that section.

2.4.1 CD-ROM/DVD-ROM/BD-ROM

Installation from optical disc is supported for most architectures.

On PCs SATA, IDE/ATAPI, USB and SCSI optical drives are supported, as are FireWire devices that are supported by the ohci1394 and sbp2 drivers.

2.4.2 USB-muistitikku

USB flash disks a.k.a. USB memory sticks have become a commonly used and cheap storage device. Most modern computer systems also allow booting the debian-installer from such a stick. Many modern computer systems, in particular netbooks and thin laptops, do not have an optical drive anymore at all and booting from USB media is the standard way of installing a new operating system on them.

2.4.3 Verkko

You can also boot the installation system over the network without needing any local media like CDs/DVDs or USB sticks. If you already have a netboot-infrastructure available (i.e. you are already running DHCP and TFTP services in your network), this allows an easy and fast deployment of a large number of machines. Setting up the necessary infrastructure requires a certain level of technical experience, so this is not recommended for novice users.

Levytön asennus, jossa käynnistetään paikallisverkosta ja NFS-liitetään kaikki paikalliset tiedostojärjestelmät, on toinen mahdollisuus.
2.4.4 Kiintolevy
Booting the installation system directly from a hard disk is another option for many architectures. This will require some other operating system to load the installer onto the hard disk. This method is only recommended for special cases when no other installation method is available.

2.4.5 Un*x- tai GNU-järjestelmä
If you are running another Unix-like system, you could use it to install Debian GNU/Linux without using the debian-installer described in the rest of this manual. This kind of install may be useful for users with otherwise unsupported hardware or on hosts which can’t afford downtime. If you are interested in this technique, skip to the Kohta D.3. This installation method is only recommended for advanced users when no other installation method is available.

2.4.6 Tuetut massamuistit
The Debian installer contains a kernel which is built to maximize the number of systems it runs on.

Generally, the Debian installation system includes support for IDE (also known as PATA) drives, SATA and SCSI controllers and drives, USB, and FireWire. The supported file systems include FAT, Win-32 FAT extensions (VFAT) and NTFS.

2.5 Muistivaatimuksset ja levytilan tarve

The installer normally automatically enables memory-saving tricks to be able to run on such low-memory system, but on architectures that are less tested it may miss doing so. It can however be enabled manually by appending the lowmem=1 or even lowmem=2 boot parameter (see also Kohta 6.3.1.1 and Kohta 5.3.2).

Installation on systems with less memory¹ or disk space available may be possible but is only advised for experienced users.

¹Installation images that support the graphical installer require more memory than images that support only the text-based installer and should not be used on systems with less than 780MB of memory. If there is a choice between booting the text-based and the graphical installer, the former should be selected on such systems.
Luku 3

Ennen Debian GNU/Linuxin asennusta

Tässä luvussa käsitellään Debianin asentamisen valmistelevia toimia, jotka tehdään ennen kuin asenninta edes käynnistetään. Tähän kuuluvat varmuuskopioiden ottaminen, tietojen kerääminen laitteistosta ja tarvittavan tiedon etsiminen.

3.1 Katsaus asennusprosessiin

Ensinnä huomio uudelleenasennuksista. Tilanne joka vaatisi Debianin asentamisen kokonaan uudelleen on hyvin harvinainen; ehkäpä kiintolevyn mekaaninen hajoaminen olisi tyypillisin tapaus.

Useiden paljon käytettyjen käyttöjärjestelmien kanssa voidaan joutua asentamaan alusta asti kun on tapahtunut vakava virhe tai kun päivitetään uuteen käyttöjärjestelmän versioon. Vaikka täysin uutta asennusta ei tarvitsisikaan tehdä, joutuu usein asentamaan käytetyt ohjelmat uudelleen, jotta ne toimisivat kunnolla uudessa käyttöjärjestelmässä.

Käyttäessä Debian GNU/Linuxia, on paljon todennäköisempää, että vikatilanteessa käyttöjärjestelmä voidaan korjata eikä sitä tarvitse asentaa uudelleen. Päivitykset eivät koskaan vaadi kaiken asentamista uudelleen; Debian osaa aina päivittää itse itsensä. Lisäksi ohjelmat ovat melkein aina yhteensopivia peräkkäisissä Debianin julkaissaissa. Jos ohjelman uusi versio vaatii uudempia tukiohjelmia, Debianin paketointijärjestelmä varmistaa kaikkien tarpeellisten ohjelmien löytyvän ja tulevan asennetuiksi automaattisesti. Korostetaan vielä, että paljon työtä on tehty, jotta uuudelleen asennusta ei olisi välttämätöntä, joten uudelleenasennusta olisi pidettävä viimeisenä vaihtoehtona. Asennointa ei ole tarkoitetut uudelleenasennukseen jo asennetun järjestelmän päälle. Tässä on luettelo asennusprosessin vaiheista:

1. Siltä levyltä johon asennetaan pitäisi kopioada kaikki tiedot varmuuskopiaksi.
2. Kerää tietoja tietokoneesta ja kaikki tarvittavat ohjeet ennen kuin asennus aloitetaan.
3. Locate and/or download the installer software and any specialized driver or firmware files your machine requires.
4. Set up boot media such as CDs/DVDs/USB sticks or provide a network boot infrastructure from which the installer can be booted.
5. Käynnistä asennusjärjestelmä.
6. Valitse asennuskieli.
7. Käynnistä Ethernetliitäntä, jos se on käytettävissä.
8. If necessary, resize existing partitions on your target harddisk to make space for the installation.
9. Luo ja liitä ne osiot joihin Debian asennetaan.
11. Select and install additional software.
12. Asenna käynnistyslatain käynnistämään Debian GNU/Linux ja/tai tietokoneen vanha käyttöjärjestelmä.
LUKU 3. ENNEN DEBIAN GNU/LINUXIN ASENNUSTA

3.2. OTA VARMUUSKOPIOT KONEEN TIEDOISTA!

Laitealustalla 64-bit PC on mahdollista käyttää graafista asennusjärjestelmää. Lisätietoja tästä graafisesta asentimesta kertoo Kohta 5.1.8.

Jos asennuksen aikana tulee pulmia, auttaa kun tietää mitkä paketit ovat mukana missäkin vaiheessa. Esitellään tämän asennusprosessin pääosia näyttelevät ohjelmat:

Tämä ohje on pääasiassa Debianin asentimen, debian-installer, käyttöohje. Asennin tunnistaa laitteiston ja lataa sopivat ajurit, tekee verkkoasetukset dhcp-client:n avulla, käynnistää debootstrapin asentamaan peruskokoopannan paketit ja käynnistää taskselin, jonka avulla valitaan lisää ohjelmia asemennuksessa. Useat muut ohjelmat näyttelevät pienempiä osia tässä prosessissa, mutta debian-installerin työ on päättynyt, kun uusi järjestelmä käynnistettiään ensimmäisen kerran.

Järjestelmää voi sovittaa omiin tarpeisiinsa valitsemalla taskselin avulla erilaisia esimääriteltyjä ohjelmakoelmaa, kuten webbipalvelin tai työpöytäympäristö.

One important option during the installation is whether or not to install a graphical desktop environment, consisting of the X Window System and one of the available graphical desktop environments. If you choose not to select the "Desktop environment" task, you will only have a relatively basic, command line driven system. Installing the Desktop environment task is optional because in relation to a text-mode-only system it requires a comparatively large amount of disk space and because many Debian GNU/Linux systems are servers which don’t really have any need for a graphical user interface to do their job.

Just be aware that the X Window System is completely separate from debian-installer, and in fact is much more complicated. Troubleshooting of the X Window System is not within the scope of this manual.

3.2 Ota varmuuskopiot koneen tiedoista!

Before you start, make sure to back up every file that is now on your system. If this is the first time a non-native operating system is going to be installed on your computer, it is quite likely you will need to re-partition your disk to make room for Debian GNU/Linux. Anytime you partition your disk, you run a risk of losing everything on the disk, no matter what program you use to do it. The programs used in the installation of Debian GNU/Linux are quite reliable and most have seen years of use; but they are also quite powerful and a false move can cost you. Even after backing up, be careful and think about your answers and actions. Two minutes of thinking can save hours of unnecessary work.

If you are creating a multi-boot system, make sure that you have the distribution media of any other present operating systems on hand. Even though this is normally not necessary, there might be situations in which you could be required to reinstall your operating system's boot loader to make the system boot or in a worst case even have to reinstall the complete operating system and restore your previously made backup.

3.3 Tarvittavat tiedot

3.3.1 Ohjeet

3.3.1.1 Asennusohje

Ohje jota parhaitin luett. Se on virallinen versio Debianin julkaisun bullseye Asennusohjeesta, saatavilla useina tiedostomuotoina ja käännöksinä.

3.3.1.2 Laitteiston ohjekirjat

Sisältävät usein hyödyllistä tietoa laitteiston asetusten teosta ja käytöstä.

- The Debian Wiki hardware page

3.3.2 Laitetietojen löytäminen

Useissa tapauksissa asennin osaa automaattisesti tunnistaa laitteet. Mutta varmuuden vuoksi suositellaan tutustumista tietokoneen laitteisiin ennen asennusta.

Laitetietoja voidaan kerätä seuraavista paikoista:

- Jokaisen tietokoneen osan mukana tulleet käsikirjat.

- The BIOS/UEFI setup screens of your computer. You can view these screens when you start your computer by pressing a combination of keys. Check your manual for the combination. Often, it is the Delete or the F2 key, but some manufacturers use other keys or key combinations. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.
• Kunkin osan pakkauslaatikot.
• Windowsin Ohjauskeskuksen ikkuna Järjestelmä.
• Toisen käyttöjärjestelmän järjestelmäkomentoja ja -työkalut, mukaan lukien tiedostoselaimen näytöt. Tällä tavalla löytyy tietoa erityisesti keskusmuistista ja kiintolevytilasta.
• Järjestelmän pääkäyttäjä tai Internet-palveluntarjoaja. Näiltä tahoilta saa tietää verkkoasetukset ja sähköpostin asetukset.

<table>
<thead>
<tr>
<th>Taulukko 3.1 Hardware Information Helpful for an Install</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laite</td>
</tr>
<tr>
<td>Kiintolevyt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Network interfaces</td>
</tr>
<tr>
<td>Tulostin</td>
</tr>
<tr>
<td>Näytönäyttö</td>
</tr>
</tbody>
</table>

3.3.3 Laitteiden yhteensopivuus

Many products work without trouble on Linux. Moreover, hardware support in Linux is improving daily. However, Linux still does not run as many different types of hardware as some operating systems.

Drivers in Linux in most cases are not written for a certain "product" or "brand" from a specific manufacturer, but for a certain hardware/chipset. Many seemingly different products/brands are based on the same hardware design; it is not uncommon that chip manufacturers provide so-called "reference designs" for products based on their chips which are then used by several different device manufacturers and sold under lots of different product or brand names.

This has advantages and disadvantages. An advantage is that a driver for one chipset works with lots of different products from different manufacturers, as long as their product is based on the same chipset. The disadvantage is that it is not always easy to see which actual chipset is used in a certain product/brand. Unfortunately sometimes device manufacturers change the hardware base of their product without changing the product name or at least the product version number, so that when having two items of the same brand/product name bought at different times, they can sometimes be based on two different chipsets and therefore use two different drivers or there might be no driver at all for one of them.

For USB and PCI/PCI-Express/ExpressCard devices, a good way to find out on which chipset they are based is to look at their device IDs. All USB/PCI/PCI-Express/ExpressCard devices have so called "vendor" and "product" IDs, and the combination of these two is usually the same for any product based on the same chipset.

On Linux systems, these IDs can be read with the `lsusb` command for USB devices and with the `lspci -nn` command for PCI/PCI-Express/ExpressCard devices. The vendor and product IDs are usually given in the form of two hexadecimal numbers, separated by a colon, such as "1d6b:0002".

An example for the output of `lsusb`: "Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub", whereby 1d6b is the vendor ID and 0002 is the product ID.

An example for the output of `lspci -nn` for an Ethernet card: "03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)". The IDs are given inside the rightmost square brackets, i.e. here 10ec is the vendor- and 8168 is the product ID.

As another example, a graphics card could give the following output: "04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] see ATI RV710 [Radeon HD 4350] [1002:954f]".

On Windows systems, the IDs for a device can be found in the Windows device manager on the tab "details", where the vendor ID is prefixed with VEN_ and the product ID is prefixed with DEV_. On Windows 7 systems, you have to select the property "Hardware IDs" in the device manager's details tab to actually see the IDs, as they are not displayed by default.

Searching on the internet with the vendor/product ID, "Linux" and "driver" as the search terms often results in information regarding the driver support status for a certain chipset. If a search for the vendor/product ID does not yield
usable results, a search for the chip code names, which are also often provided by lsusb and lspci ("RTL8111"/"RTL8168B" in the network card example and "RV710" in the graphics card example), can help.

3.3.3.1 Testing hardware compatibility with a Live-System

Debian GNU/Linux is also available as a so-called "live system" for certain architectures. A live system is a preconfigured ready-to-use system in a compressed format that can be booted and used from a read-only medium like a CD or DVD. Using it by default does not create any permanent changes on your computer. You can change user settings and install additional programs from within the live system, but all this only happens in the computer's RAM, i.e. if you turn off the computer and boot the live system again, everything is reset to its defaults. If you want to see whether your hardware is supported by Debian GNU/Linux, the easiest way is to run a Debian live system on it and try it out.

There are a few limitations in using a live system. The first is that as all changes you do within the live system must be held in your computer's RAM, this only works on systems with enough RAM to do that, so installing additional large software packages may fail due to memory constraints. Another limitation with regards to hardware compatibility testing is that the official Debian GNU/Linux live system contains only free components, i.e. there are no non-free firmware files included in it. Such non-free packages can of course be installed manually within the system, but there is no automatic detection of required firmware files like in the debian-installer, so installation of non-free components must be done manually if needed.

Information about the available variants of the Debian live images can be found at the Debian Live Images website.

3.3.4 Verkkoasetukset

If your computer is connected to a fixed network (i.e. an Ethernet or equivalent connection — not a dialup/PPP connection) which is administered by somebody else, you should ask your network's system administrator for this information:

- Konenimi (tämän voi ehkä keksiä itse).
- Verkkoaluenimi.
- Tietokoneen IP-osoite.
- Verkossa käytettävä verkon peitto.
- Oletusyhdyskäytävän IP-osoite, jos verkossa on yhdyskäytävyi.
- Nimipäivelimena (DNS) käytettävä verkon kone.

If the network you are connected to uses DHCP (Dynamic Host Configuration Protocol) for configuring network settings, you don’t need this information because the DHCP server will provide it directly to your computer during the installation process.

If you have internet access via DSL or cable modem (i.e. over a cable tv network) and have a router (often provided preconfigured by your phone or catv provider) which handles your network connectivity, DHCP is usually available by default.

As a rule of thumb: if you run a Windows system in your home network and did not have to manually perform any network settings there to achieve Internet access, network connectivity in Debian GNU/Linux will also be configured automatically.

If you use a WLAN/WiFi network, you should find out:

- The ESSID ("network name") of your wireless network.
- The WEP or WPA/WPA2 security key to access the network (if applicable).

3.4 Vähimmäisvaatimukset laitteistolle

Pöytätietokoneen olisi olisi oltava vähintään 1 GHz Pentium 4.

The minimum values assumes that swap will be enabled and a non-liveCD image is used. The "No desktop" value assumes that the non-graphical (text-based) installer is used.
The actual minimum memory requirements are a lot less than the numbers listed in this table. With swap enabled, it is possible to install Debian with as little as 350MB. The same goes for the disk space requirements, especially if you pick and choose which applications to install; see Kohta D.2 for additional information on disk space requirements.

It is possible to run a graphical desktop environment on older or low-end systems, but in that case it is recommended to install a window manager that is less resource-hungry than those of the GNOME or KDE Plasma desktop environments; alternatives include xfce4, icewm and wmaker, but there are others to choose from.

On melkein mahdotonta antaa yleisiä muistin tai levytilan kokovaatimuksia palvelinasennuksille, koska ne riippuvat niin paljon siitä mihin palvelinta käytetään.

Muista, ettei näihin kokoihin sisälly muu tavallisesti koneessa oleva tieto, kuten käyttäjien tiedostot, sähköpostit ja muu tieto. On aina parasta varata omille tiedostoilleen ja tiedoilleen runsaasti tilaa.

Disk space required for the smooth operation of the Debian GNU/Linux system itself is taken into account in these recommended system requirements. Notably, the /var partition contains a lot of state information specific to Debian in addition to its regular contents, like logfiles. The dpkg files (with information on all installed packages) can easily consume 40MB. Also, apt puts downloaded packages here before they are installed. You should usually allocate at least 200MB for /var, and a lot more if you install a graphical desktop environment.

3.5 Monikäynnistettävän koneen osiointi etukäteen

Levyn osiointi tarkoittaa levyn jakamista osiin. Jokainen osa on riippumaton valaiseiniin pystyttämiseen; huonekalujen lisääminen yhteen huoneeseen ei vaikuta muihin.

If you already have an operating system on your system (Windows 9x, Windows NT/2000/XP/2003/Vista/7, OS/2, MacOS, Solaris, FreeBSD, …) which uses the whole disk and you want to stick Debian on the same disk, you will need to repartition it. Debian requires its own hard disk partitions. It cannot be installed on Windows or Mac OS X partitions. It may be able to share some partitions with other Unix systems, but that’s not covered here. At the very least you will need a dedicated partition for the Debian root filesystem.

You can find information about your current partition setup by using a partitioning tool for your current operating system, such as the integrated Disk Manager in Windows or fdisk in DOS. Partitioning tools always provide a way to show existing partitions without making changes.

Several modern operating systems offer the ability to move and resize certain existing partitions without destroying their contents. This allows making space for additional partitions without losing existing data. Even though this works quite well in most cases, making changes to the partitioning of a disk is an inherently dangerous action and should only be done after having made a full backup of all data. For FAT/FAT32 and NTFS partitions as used by DOS and Windows systems, the ability to move and resize them losslessly is provided both by debian-installer as well as by the integrated Disk Manager of Windows 7.

To losslessly resize an existing FAT or NTFS partition from within debian-installer go to the partitioning step, select the option for manual partitioning, select the partition to resize, and simply specify its new size.

Creating and deleting partitions can be done from within debian-installer as well as from an existing operating system. As a rule of thumb, partitions should be created by the system for which they are to be used, i.e. partitions to be used by Debian GNU/Linux should be created from within debian-installer and partitions to be used from another operating system should be created from there. debian-installer is capable of creating non-Linux partitions, and partitions created this way usually work without problems when used in other operating systems, but there are a few rare corner cases in which this could cause problems, so if you want to be sure, use the native partitioning tools to create partitions for use by other operating systems.

If you are going to install more than one operating system on the same machine, you should install all other system(s) before proceeding with the Debian installation. Windows and other OS installations may destroy your ability to start Debian, or encourage you to reformat non-native partitions.

Toimenpiteiden seurauksena on mahdollista korjata, mutta muiden käyttöjärjestelmien asentaminen ensiksi on helpoin.

Taulukko 3.2 Suositellut vähimmäissäavaimukset laatteistolle

<table>
<thead>
<tr>
<th>Asennustapa</th>
<th>Muisti (vähintään)</th>
<th>Muisti (suositus)</th>
<th>Kiintolevy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ei työpöytää</td>
<td>256 Mt</td>
<td>512 Mt</td>
<td>2 gigatavua</td>
</tr>
<tr>
<td>Työpöytäympäristö</td>
<td>1 gigabytes</td>
<td>2 gigatavua</td>
<td>10 Gt</td>
</tr>
</tbody>
</table>

Toimenpiteiden seurauksena on mahdollista korjata, mutta muiden käyttöjärjestelmien asentaminen ensiksi on helpoin.
3.6 Laiteasetukset ja käyttöjärjestelmän asetukset ennen asennusta

This section will walk you through pre-installation hardware setup, if any, that you will need to do prior to installing Debian. Generally, this involves checking and possibly changing BIOS/UEFI/system firmware settings for your system. The "BIOS/UEFI" or "system firmware" is the core software used by the hardware; it is most critically invoked during the bootstrap process (after power-up).

3.6.1 Invoking the BIOS/UEFI Set-Up Menu

The BIOS/UEFI provides the basic functions needed to boot your machine and to allow your operating system to access your hardware. Your system provides a BIOS/UEFI setup menu, which is used to configure the BIOS/UEFI. To enter the BIOS/UEFI setup menu you have to press a key or key combination after turning on the computer. Often it is the Delete or the F2 key, but some manufacturers use other keys. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.

3.6.2 Käynnistyslaitteen valinta

Within the BIOS/UEFI setup menu, you can select which devices shall be checked in which sequence for a bootable operating system. Possible choices usually include the internal harddisks, the CD/DVD-ROM drive and USB mass storage devices such as USB sticks or external USB harddisks. On modern systems there is also often a possibility to enable network booting via PXE.

Depending on the installation media (CD/DVD ROM, USB stick, network boot) you have chosen you should enable the appropriate boot devices if they are not already enabled.

Most BIOS/UEFI versions allow you to call up a boot menu on system startup in which you select from which device the computer should start for the current session. If this option is available, the BIOS/UEFI usually displays a short message like "press F12 for boot menu" on system startup. The actual key used to select this menu varies from system to system; commonly used keys are F12, F11 and F8. Choosing a device from this menu does not change the default boot order of the BIOS/UEFI, i.e. you can start once from a USB stick while having configured the internal harddisk as the normal primary boot device.

If your BIOS/UEFI does not provide you with a boot menu to do ad-hoc choices of the current boot device, you will have to change your BIOS/UEFI setup to make the device from which the debian-installer shall be booted the primary boot device.

Unfortunately some computers may contain buggy BIOS/UEFI versions. Booting debian-installer from a USB stick might not work even if there is an appropriate option in the BIOS/UEFI setup menu and the stick is selected as the primary boot device. On some of these systems using a USB stick as boot medium is impossible; others can be tricked into booting from the stick by changing the device type in the BIOS/UEFI setup from the default "USB harddisk" or "USB stick" to "USB ZIP" or "USB CDROM". In particular if you use an isohybrid installation image on a USB stick (see Kohta 4.3.1), changing the device type to "USB CDROM" helps on some BIOSes which will not boot from a USB stick in USB harddisk mode. You may need to configure your BIOS/UEFI to enable "USB legacy support".

If you cannot manipulate the BIOS/UEFI to boot directly from a USB stick you still have the option of using an ISO copied to the stick. Boot debian-installer using Kohta 4.4 and, after scanning the hard drives for an installer ISO image, select the USB device and choose an installation image.

3.6.3 Systems with UEFI firmware

UEFI ("Unified Extensible Firmware Interface") is a new kind of system firmware that is used on many modern systems and is - among other uses - intended to replace the classic PC BIOS.

Currently most PC systems that use UEFI also have a so-called "Compatibility Support Module" (CSM) in the firmware, which provides exactly the same interfaces to an operating system as a classic PC BIOS, so that software written for the classic PC BIOS can be used unchanged. Nonetheless UEFI is intended to one day completely replace the old PC BIOS without being fully backwards-compatible and there are already a lot of systems with UEFI but without CSM.

On systems with UEFI there are a few things to take into consideration when installing an operating system. The way the firmware loads an operating system is fundamentally different between the classic BIOS (or UEFI in CSM mode) and native UEFI. One major difference is the way the harddisk partitions are recorded on the harddisk. While the classic BIOS and UEFI in CSM mode use a DOS partition table, native UEFI uses a different partitioning scheme called "GUID Partition Table" (GPT). On a single disk, for all practical purposes only one of the two can be used and in case of a multi-boot setup with different operating systems on one disk, all of them must therefore use the same
type of partition table. Booting from a disk with GPT is only possible in native UEFI mode, but using GPT becomes more and more common as hard disk sizes grow, because the classic DOS partition table cannot address disks larger than about 2 Terabytes while GPT allows for far larger disks. The other major difference between BIOS (or UEFI in CSM mode) and native UEFI is the location where boot code is stored and in which format it has to be. This means that different bootloaders are needed for each system.

The latter becomes important when booting debian-installer on a UEFI system with CSM because debian-installer checks whether it was started on a BIOS- or on a native UEFI system and installs the corresponding bootloader. Normally this simply works but there can be a problem in multi-boot environments. On some UEFI systems with CSM the default boot mode for removable devices can be different from what is actually used when booting from hard disk, so when booting the installer from a USB stick in a different mode from what is used when booting another already installed operating system from the hard disk, the wrong bootloader might be installed and the system might be unbootable after finishing the installation. When choosing the boot device from a firmware boot menu, some systems offer two separate choices for each device, so that the user can select whether booting shall happen in CSM or in native UEFI mode.

3.6.4 Secure boot

Another UEFI-related topic is the so-called "secure boot" mechanism. Secure boot means a function of UEFI implementations that allows the firmware to only load and execute code that is cryptographically signed with certain keys and thereby blocking any (potentially malicious) boot code that is unsigned or signed with unknown keys. In practice the only key accepted by default on most UEFI systems with secure boot is a key from Microsoft used for signing the Windows bootloader. Debian includes a "shim" bootloader signed by Microsoft, so should work correctly on systems with secure boot enabled.

3.6.5 Disabling the Windows "fast boot"/"fast startup" feature

Windows offers a feature (called "fast boot" in Windows 8, "fast startup" in Windows 10) to cut down system startup time. Technically, when this feature is enabled, Windows does not do a real shutdown and a real cold boot afterwards when ordered to shut down, but instead does something resembling a partial suspend to disk to reduce the "boot" time. As long as Windows is the only operating system on the machine, this is unproblematic, but it can result in problems and data loss, when you have a dual boot setup, in which another operating system accesses the same filesystems as Windows does. In that case the real state of the filesystem can be different from what Windows believes it to be after the "boot" and this could cause filesystem corruption upon further write accesses to the filesystem. Therefore in a dual boot setup, to avoid filesystem corruption the "fast boot"/"fast startup" feature has to be disabled within Windows.

Furthermore, the Windows Update mechanism has (sometimes) been known to automatically re-enable this feature, after it has been previously disabled by the user. It is suggested to re-check this setting periodically.

It may also be necessary to disable "fast boot" to even allow access to UEFI setup to choose to boot another operating system or debian-installer. On some UEFI systems, the firmware will reduce "boot" time by not initialising the keyboard controller or USB hardware; in these cases, it is necessary to boot into Windows and disable this feature to allow for a change of boot order.

3.6.6 Varottavia laitetason ilmiöitä

Tuki USB BIOS:lle ja näppäimistöille If you have no PS/2-style keyboard, but only a USB model, on some very old PCs you may need to enable legacy keyboard emulation in your BIOS setup to be able to use your keyboard in the bootloader menu, but this is not an issue for modern systems. If your keyboard does not work in the bootloader menu, consult your mainboard manual and look in the BIOS for "Legacy keyboard emulation" or "USB keyboard support" options.
Luku 4

Asennustaltioiden hankkiminen

4.1 Official Debian GNU/Linux installation images

By far the easiest way to install Debian GNU/Linux is from a set of official Debian installation images. You can buy a set of CDs/DVDs from a vendor (see the CD vendors page). You may also download the installation images from a Debian mirror and make your own set, if you have a fast network connection and a CD/DVD burner (see the Debian CD/DVD page and Debian CD FAQ for detailed instructions). If you have such optical installation media, and they are bootable on your machine, which is the case on all modern PCs, you can skip right to Luku 5. Much effort has been expended to ensure the most-used files are on the first CD and DVD image, so that a basic desktop installation can be done with only the first DVD or - to a limited extent - even with only the first CD image.

As CDs have a rather limited capacity by today’s standards, not all graphical desktop environments are installable with only the first CD; for some desktop environments a CD installation requires either network connectivity during the installation to download the remaining files or additional CDs.

Also, keep in mind: if the installation media you are using don’t contain some packages you need, you can always install those packages afterwards from your running new Debian system (after the installation has finished). If you need to know on which installation image to find a specific package, visit https://cdimage-search.debian.org/.

If your machine doesn’t support booting from optical media (only relevant on very old PC systems), but you do have a set of CD/DVD, you can use an alternative strategy such as hard disk, usb stick, net boot, or manually loading the kernel from the disc to initially boot the system installer. The files you need for booting by another means are also on the disc; the Debian network archive and folder organization on the disc are identical. So when archive file paths are given below for particular files you need for booting, look for those files in the same directories and subdirectories on your installation media.

Once the installer is booted, it will be able to obtain all the other files it needs from the disc.

If you don’t have an installation media set, then you will need to download the installer system files and place them on the hard disk or usb stick or a connected computer so they can be used to boot the installer.

4.2 Tiedostojen noutaminen Debianin asennuspalvelimilta

Lähimmän (ja siten luultavasti nopeimman) asennuspalvelimen löytyää Debianin asennuspalvelimien luettelosta.

4.2.1 Where to Find Installation Files

Various installation files can be found on each Debian mirror in the directory debian/dists/bullseye/main/installer-amd64/current/images/ — the MANIFEST lists each image and its purpose.

4.3 Tiedostojen valmistelu käynnistettäessä USB-muistilta

To prepare the USB stick, we recommend to use a system where GNU/Linux is already running and where USB is supported. With current GNU/Linux systems the USB stick should be automatically recognized when you insert it. If it is not you should check that the usb-storage kernel module is loaded. When the USB stick is inserted, it will be mapped to a device named /dev/sdX, where the "X" is a letter in the range a-z. You should be able to see to which device the USB stick was mapped by running the command lsblk before and after inserting it. (The output of dmesg (as root) is another possible method for that.) To write to your stick, you may have to turn off its write protection.
4.3. Preparing a USB stick using a hybrid CD/DVD image

Debian installation images for this architecture are created using the \texttt{isohybrid} technology; that means they can be written directly to a USB stick, which is a very easy way to make an installation media. Simply choose an image (such as the netinst, CD or DVD-1) that will fit on your USB stick. See Kohta 4.1 to get an installation image.

Alternatively, for very small USB sticks, only a few megabytes in size, you can download the \texttt{mini.iso} image from the \texttt{netboot} directory (at the location mentioned in Kohta 4.2.1).

The installation image you choose should be written directly to the USB stick, overwriting its current contents.

For example, when using an existing GNU/Linux system, the image file can be written to a USB stick as follows, after having made sure that the stick is unmounted:

\begin{verbatim}
cp debian.iso /dev/sdX
sync
\end{verbatim}

Information about how to do this on other operating systems can be found in the Debian CD FAQ.

The image must be written to the whole-disk device and not a partition, e.g. /dev/sdb and not /dev/sdb1. Do not use tools like \texttt{unetbootin} which alter the image.

Simply writing the installation image to USB like this should work fine for most users. The other options below are more complex, mainly for people with specialised needs.

The hybrid image on the stick does not occupy all the storage space, so it may be worth considering using the free space to hold firmware files or packages or any other files of your choice. This could be useful if you have only one stick or just want to keep everything you need on one device.

To do so, use cfdisk or any other partitioning tool to create an additional partition on the stick. Then create a (FAT) filesystem on the partition, mount it and copy or unpack the firmware onto it, for example with:

\begin{verbatim}
mkdosfs -n FIRMWARE /dev/sdX3
mount /dev/sdX3 /mnt
cd /mnt
tar xzvf /path/to/firmware.tar.gz
cd /
umount /mnt
\end{verbatim}

Take care that you use the correct device name for your USB stick. The \texttt{mkdosfs} command is contained in the \texttt{dosfstools} Debian package.
4.3.2 Manually copying files to the USB stick

Prior to isohybrid technology being used for Debian installation images, the methods documented in the chapters below were used to prepare media for booting from USB devices. These have been superseded by the technique in Kohta 4.3.1, but have been left here for educational and historical purposes and in case they are useful to some user.

An alternative to the method described in Kohta 4.3.1 is to manually copy the installer files, and also an installation image to the stick. Note that the USB stick should be at least 1 GB in size (smaller setups are possible using the files from netboot, following Kohta 4.3.3).

There is an all-in-one file `hd-media/boot.img.gz` which contains all the installer files (including the kernel) as well as `syslinux` and its configuration file.

Simply extract this image directly to your USB stick:

```
# zcat boot.img.gz > /dev/sdX
```

After that, mount the USB memory stick (`mount /dev/sdX /mnt`), which will now have a FAT filesystem on it, and copy a Debian ISO image (netinst or full CD; see Kohta 4.1) to it. Unmount the stick (`umount /mnt`) and you are done.

4.3.3 Manually copying files to the USB stick — the flexible way

If you like more flexibility or just want to know what’s going on, you should use the following method to put the files on your stick. One advantage of using this method is that — if the capacity of your USB stick is large enough — you have the option of copying any ISO image, even a DVD image, to it.

4.3.3.1 Partitioning and adding a boot loader

Nyt näytetään miten käytetään USB-muistin ensimmäistä osiota eikä koko muistia.

In order to start the kernel after booting from the USB stick, we will put a boot loader on the stick. Although any boot loader should work, it's convenient to use `syslinux`, since it uses a FAT16 partition and can be reconfigured by just editing a text file. Any operating system which supports the FAT file system can be used to make changes to the configuration of the boot loader.

First, you need to install the `syslinux` and `mtools` packages on your system.
Since most USB sticks come pre-configured with a single FAT16 partition, you probably won’t have to repartition or reformat the stick. If you have to do that anyway, use `cfdisk` or any other partitioning tool to create a FAT16 partition now, and then install an MBR using:

```bash
# cat /usr/lib/syslinux/mbr/mbr.bin > /dev/sdX
```

Now create the filesystem using:

```bash
# mkdosfs /dev/sdX1
```

Take care that you use the correct device name for your USB stick. The `mkdosfs` command is contained in the `dosfstools` Debian package.

Don't forget to activate the "bootable" flag.

Having a correctly partitioned USB stick (now), you need to put `syslinux` on the FAT16 partition with:

```bash
# syslinux /dev/sdX1
```

Again, take care that you use the correct device name. The partition must not be mounted when starting `syslinux`. This procedure writes a boot sector to the partition and creates the file `ldlinux.sys` which contains the boot loader code.

4.3.3.2 Adding the installer files

There are two different installation variants to choose here: The hd-media variant needs an installation ISO file on the stick, to load installer modules and the base system from. The netboot installer however will load all that from a Debian mirror.

According to your choice, you have to download some installer files from the hd-media or netboot subdirectory of `debain/dists/bullseye/main/installer-amd64/current/images/` on any Debian mirror:

- `vmlinuz` or `linux` (kernel binary)
- `initrd.gz` (initial ramdisk image)

You can choose between either the text-based version of the installer (the files can be found directly in hd-media or netboot) or the graphical version (look in the respective `gtk` subdirectories).

Then mount the partition (`mount /dev/sdX1 /mnt`) and copy the downloaded files to the root directory of the stick.

Next you should create a text file named `syslinux.cfg` in the root directory of the stick as configuration file for `syslinux`, which at a bare minimum should contain the following line:

```bash
default vmlinuz initrd=initrd.gz
```

Change the name of the kernel binary to "linux" if you used files from `netboot`.

For the graphical installer (from `gtk`) you should add `vga=788` at the end of the line. Other parameters can be appended as desired.

To enable the boot prompt to permit further parameter appending, add a `prompt 1` line.

If you used files from `hd-media`, you should now copy the ISO file of a Debian installation image onto the stick. (For the `netboot` variant this is not needed.)

You can use either a netinst or a full CD/DVD image (see Kohta 4.1). Be sure to select one that fits on your stick. Note that the "netboot mini.iso" image is not usable for this purpose.

When you are done, unmount the USB memory stick (`umount /mnt`).

Note: The text in the document is a translation of a Finnish text. The translations may not be perfect and may contain errors.

Translation:

HUOMAA

Since most USB sticks come pre-configured with a single FAT16 partition, you probably won’t have to repartition or reformat the stick. If you have to do that anyway, use `cfdisk` or any other partitioning tool to create a FAT16 partition now, and then install an MBR using:

```bash
# cat /usr/lib/syslinux/mbr/mbr.bin > /dev/sdX
```

Now create the filesystem using:

```bash
# mkdosfs /dev/sdX1
```

Take care that you use the correct device name for your USB stick. The `mkdosfs` command is contained in the `dosfstools` Debian package.

Don't forget to activate the "bootable" flag.

Having a correctly partitioned USB stick (now), you need to put `syslinux` on the FAT16 partition with:

```bash
# syslinux /dev/sdX1
```

Again, take care that you use the correct device name. The partition must not be mounted when starting `syslinux`. This procedure writes a boot sector to the partition and creates the file `ldlinux.sys` which contains the boot loader code.

4.3.3.2 Adding the installer files

There are two different installation variants to choose here: The hd-media variant needs an installation ISO file on the stick, to load installer modules and the base system from. The netboot installer however will load all that from a Debian mirror.

According to your choice, you have to download some installer files from the hd-media or netboot subdirectory of `debain/dists/bullseye/main/installer-amd64/current/images/` on any Debian mirror:

- `vmlinuz` or `linux` (kernel binary)
- `initrd.gz` (initial ramdisk image)

You can choose between either the text-based version of the installer (the files can be found directly in hd-media or netboot) or the graphical version (look in the respective `gtk` subdirectories).

Then mount the partition (`mount /dev/sdX1 /mnt`) and copy the downloaded files to the root directory of the stick.

Next you should create a text file named `syslinux.cfg` in the root directory of the stick as configuration file for `syslinux`, which at a bare minimum should contain the following line:

```bash
default vmlinuz initrd=initrd.gz
```

Change the name of the kernel binary to "linux" if you used files from `netboot`.

For the graphical installer (from `gtk`) you should add `vga=788` at the end of the line. Other parameters can be appended as desired.

To enable the boot prompt to permit further parameter appending, add a `prompt 1` line.

If you used files from `hd-media`, you should now copy the ISO file of a Debian installation image onto the stick. (For the `netboot` variant this is not needed.)

You can use either a netinst or a full CD/DVD image (see Kohta 4.1). Be sure to select one that fits on your stick. Note that the "netboot mini.iso" image is not usable for this purpose.

When you are done, unmount the USB memory stick (`umount /mnt`).

Note: The text in the document is a translation of a Finnish text. The translations may not be perfect and may contain errors.
4.4 Tiedostojen valmistelu käynnistettäessä kiintolevyltä

The installer may be booted using boot files placed on an existing hard drive partition, either launched from another operating system or by invoking a boot loader directly from the BIOS. On modern UEFI systems, the kernel may be booted directly from the UEFI partition without the need of a boot loader.

A full, "pure network" installation can be achieved using this technique. This avoids all hassles of removable media, like finding and burning CD/DVD images.

4.4.1 Hard disk installer booting from Linux using GRUB

This section explains how to add to or even replace an existing linux installation using GRUB.

At boot time, GRUB supports loading in memory not only the kernel, but also a disk image. This RAM disk can be used as the root file-system by the kernel.

Copy the following files from the Debian archives to a convenient location on your hard drive, for instance to /boot/newinstall/.

- vmlinuz (ytimen ohjelmatiedosto)
- initrd.gz (muistilevyn levyotos)

Jos tarkoitus on käyttää kiintolevylä vain käynnistämiseen ja noutaa sitten kaikki verkosta, olisi noudettava tiedosto netboot/debian-installer/amd64/initrd.gz ja sitä vastaavaa ydin netboot/debian-installer/amd64/linux. Tällöin on mahdollista osioida uudelleen levy josta asennin käynnistetään, vaikkakin tämä olisi tehtävä huolella.

Alternatively, if you intend to keep an existing partition on the hard drive unchanged during the install, you can download the hd-media/initrd.gz file and its kernel hd-media/vmlinuz, as well as copy an installation image to the hard drive (make sure the file is named ending in .iso). The installer can then boot from the hard drive and install from the installation image, without needing the network.

Tee lopuksi käynnistystalataimen asetukset jatkamalla kohtaan Kohta 5.1.5.

4.4.2 Hard disk installer booting from DOS using loadlin

This section explains how to prepare your hard drive for booting the installer from DOS using loadlin.

Copy the following directories from a Debian installation image to c:.

- /install.amd (kernel binary and ramdisk image)
- /tools (loadlin tool)

4.5 Tiedostojen valmistelu verkosta käynnistämiseen TFTP:llä

Jos tietokone on kytketty paikallisverkkoon, se voidaan ehkä käynnistää verkosta toisella koneella olevista tiedostoista TFTP:ää käyttäen. Jos asennusjärjestelmä käynnistetään toiselta koneelta, on käynnistystiedostot tallennettava toisella koneella tiettyihin paikkoihin, ja sen asetukset tehtävä siten, että asennettavan koneen käynnistämistä tuetaan.

On asennettava TFTP-palvelin, ja useille koneille tarvitaan DHCP-palvelin tai BOOTP-palvelin.

Trivial File Transfer Protocol (TFTP) siirtää käynnistyslevyn otoksen asiakaskoneelle. Periaatteessa voidaan käyttää mitä tahansa nämä protokollat toteuttavia palvelintoa millä tahansa laitteustalla. Tämän luvun esimerkkeissä näytetään käyttöjärjestelmiä SunOS 4.x, Solaris 5.x (eli Solaris) ja GNU/Linux käytettävät komennot.

HUOMAA

Debian GNU/Linux-palvelimelle suositellaan sovellusta tftpd-hpa. Siinä on tekijää sama kuin käynnistyslataimella syslinux, joten todennäköisesti yhteistoiminnan kanssa on vähiten vaikeuksia. Hyvä vaihtoehto on atftpd.
4.5.1 DHCP-palvelimen asetukset

Eräs vapaa DHCP-palvelinohjelmisto on ISC dhcpd. Debian GNU/Linuxille suositellaan pakettia isc-dhcp-server. Tässä on esimerkki sen asetustiedostosta (katso /etc/dhcp/dhcpd.conf):

```plaintext
option domain-name "example.com";
option domain-name-servers ns1.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option routers 192.168.1.1;
}

host clientname {
  filename "/tftpboot.img";
  server-name "servername";
  next-server servername;
  hardware ethernet 01:23:45:67:89:AB;
  fixed-address 192.168.1.90;
}
```

Tässä esimerkissä on yksi palvelin, servername, joka tekee kaikki DHCP-palvelimen, TFTP-palvelimen ja verkon yhdistämistä työt. Asetuksen domain-name arvoa joudut lähes varmasti muuttamaan, samoin kuin palvelimen nimen ja asiakaskoneen MAC-osoitteen. Asetuksen filename on oltava TFTP:llä noudettavan tiedoston nimi.

Kun dhcpd:n asetustiedosto on muokattu, käynnistetään se uudestaan komennolla /etc/init.d/isc-dhcp-server restart.

4.5.1.1 PXE-käynnistyksen käyttöönotto DHCP-asetuksissa

Tässä on toinen esimerkki tiedostosta dhcp.conf. Tässä käytetään TFTP:n käynnistystapaa Pre-boot Execution Environment (PXE).

```plaintext
option domain-name "example.com";

default-lease-time 600;
max-lease-time 7200;

allow booting;
allow bootp;

# The next paragraph needs to be modified to fit your case
subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option broadcast-address 192.168.1.255;
  # the gateway address which can be different
  # (access to the internet for instance)
  option routers 192.168.1.1;
  # indicate the dns you want to use
  option domain-name-servers 192.168.1.3;
}

group {
  next-server 192.168.1.3;
  host tftpclient {
    # tftp client hardware address
    hardware ethernet 00:10:DC:27:6C:15;
    filename "pxelinux.0";
  }
}
```
Huomaa, että PXE-käynnistyksessä asiakkaan tiedostonimi pxelinux.0 on käynnistyslaitteen eikä ytimen ohjelmatorstaiden oikea käyttömaa (katso Kohta 4.5.4 tuonnempana). If your machine uses UEFI to boot, you will have to specify a boot loader appropriate for UEFI machines, for example

```plaintext
group {
    next-server 192.168.1.3;
    host tftpclient {
        tftp client hardware address
        hardwire ethernet 00:10:DC:27:6C:15;
nfilename "debian-installer/amd64/bootnetx64.efi";
    }
}
```

4.5.2 BOOTP-palvelimen käyttöönotto

Käyttäessä CMU bootpd:ää, on ensin poistettava kommentimerkki asiaankuuluvalta riviltä (tai lisättävä riivi) tiedostossa /etc/inetd.conf. Debian GNU/Linuxissa tämä voidaan tehdä komennolla update/inetd

```plaintext
--enable bootps
```

Siltä varalta ettei käytettävissä BOO TP-palvelimessa ole Debi ania, rivin pitäisi näyttää tällaiselta:

```plaintext
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Nyt on tehtävä tiedosto /etc/bootptab. Tiedostossa on sama tuttu ja kryptinen muoto kuin vanhassa kunnon BSD:n tiedostoissa printcap, termcap, ja disktab. Katso tiedoston bootptab:man-sivulta lisätietoja. CMU bootpd: tä varten on tiedettävä asiakaskoneen Ethernetosoite (MAC). Tässä on esimerkki tiedostosta /etc/bootptab:

```plaintext
client:\
    hd="/tftpboot:\"
    bf="/tftpboot.img:\"
    ip=192.168.1.90:\
    sm=255.255.255.0:\
    sa=192.168.1.1:\
    ha=0123456789
```

On muutettava ainakin riviä "ha", joka määrittää asiakaskoneen MAC-osoitteen. Rivi "bf" määrittää tiedoston, joka asiakaskoneen on noudettava TFTP:llä; katso tarkemmat tiedokset kohdasta Kohta 4.5.4.

4.5.3 TFTP-palvelimen käyttöönotto

Valmisteltaessa TFTP-palvelimen käyttöönottoa tulisi ensin tarkistaa komennon tftpd olevan käytettävissä.

Palvelua tftpd-hpa voidaan käyttää kaikilla tavalla. Järjestelmän taustaprosessi inetd voi käynnistää sen tarvittaessa tai se voidaan käynnistää omaan taustaprosessinaan. Käyttötapa valitaan pakетin asennettaessa ja sitä voidaan vaihtaa valmennettua tai asennettua pakettia. Tässä on esimerkki käytettävissä TFTP-palvelimessa:

```plaintext

HUOMAA


### 4.5.4 Siirretään TFTP-otokset paikalleen

Seuraavaksi on tarvittava TFTP-käynnistysotos (kohdasta Kohta 4.2.1) tallennettava *tftpd:*n käynnistysotosien hakemistoon. Tuosta tiedostosta on ehkä tehtävä linkki tiedostoon jota *tftpd* käyttää tietyn asiakkaan käynnistämiseen. Harmittavasti tiedoston nimen määrää TFTP-asiakas, eikä nimeämiskäytännöllä ole kunnollisia standardeja.

For PXE booting, everything you should need is set up in the *netboot/netboot.tar.gz* tarball. Simply extract this tarball into the *tftpd* boot image directory. Make sure your dhcp server is configured to pass *pxelinux.0* to *tftpd* as the filename to boot. For UEFI machines, you will need to pass an appropriate EFI boot image name (such as */debian-installer/amd64/bootnetx64.efi*).

### 4.6 Automaattinen asennus

For installing on multiple computers it’s possible to do fully automatic installations. Debian packages intended for this include *fai-quickstart* (which can use an install server) and the Debian Installer itself. Have a look at the [FAI home page](http://fai.osuosl.org/) for detailed information.

#### 4.6.1 Automaattinen asennus Debianin asentimella

Debianin asennin tukee automaattista asennusta valmiiden vastausten tiedostoilla. Valmiiden vastausten tiedosto voidaan ladata verkosta tai vaihdettavalla taltioilla, ja sillä saadaan annettua vastaukset asennusprosessin aikana kysyttiin kysymyksiin.

Kaikki ohjeet valmiista vastauksista mukaan lukien toimiva esimerkki jota voi muokata on Liite B.

### 4.7 Verifying the integrity of installation files

You can verify the integrity of downloaded files against checksums provided in *SHA256SUMS* or *SHA512SUMS* files on Debian mirrors. You can find them in the same places as the installation images itself. Visit the following locations:

- checksum files for CD images,
- checksum files for DVD images,
- checksum files for BD images,
- checksum files for other installation files.

To compute the checksum of a downloaded installation file, use

```
sha256sum filename.iso
```

and then compare the shown checksum against the corresponding one in the *SHA256SUMS* respective *SHA512SUMS* file.

The Debian CD FAQ has more useful information on this topic (such as the script `check_debian_iso`, to semi-automate above procedure), as well as instructions, how to verify the integrity of the above checksum files themselves.
Luku 5

Asennusjärjestelmän käynnistäminen

5.1 Asentimen käynnistäminen suoritinperheellä 64-bit PC

**VAROITUS**

Jos järjestelmässä on mitään muita käyttöjärjestelmiä, jotka halutaan säilyttää (ns. dual boot), varmista, että ne on sammutettu kunnolla *ennen kuin* käynnistät asentimen. Käyttöjärjestelmän asentaminen, kun toinen käyttöjärjestelmä on lepotilassa (keskeytystilassa levyllä), saattaisi aiheuttaa vahinkoa keskeytyn käyttöjärjestelmän tilalle, mistä voisi seurata ongelmia kun se käynnistetään uudelleen.

**HUOMAA**

Ohjeet asentimen graafisen käyttöliittymän käynnistämiseen löytyvät kohdasta Kohta 5.1.8.

5.1.1 Käynnistys USB-muistilta

If your computer will boot from USB, this will probably be the easiest route for installation. Assuming you have prepared everything from Kohta 3.6.2 and Kohta 4.3, just plug your USB stick into some free USB connector and reboot the computer. The system should boot up, and unless you have used the flexible way to build the stick and not enabled it, you should be presented with a graphical boot menu (on hardware that supports it). Here you can select various installer options, or just hit **Enter**.

5.1.2 Booting from optical disc (CD/DVD)

If you have a set of optical discs, and your machine supports booting directly off those, great! Simply configure your system for booting off an optical disc as described in Kohta 3.6.2, insert the disc, reboot, and proceed to the next chapter.

Note that certain optical drives may require special drivers, and thus be inaccessible in the early installation stages. If it turns out the standard way of booting off an optical disc doesn’t work for your hardware, revisit this chapter and read about alternate kernels and installation methods which may work for you.

Even if you cannot boot from optical disc, you can probably install the Debian system components and any packages you want from such disc. Simply boot using a different medium and when it’s time to install the operating system, base system, and any additional packages, point the installation system at the optical drive.

Jos ilmenee pulmia, katso kohtaa Kohta 5.4.
5.1.3 Käynnistäminen Windowsista

To start the installer from Windows, you can either

- obtain installation media as described in Kohta 4.1 or Kohta 4.3 or

If you use optical installation media, a pre-installation program should be launched automatically when you insert the disc. In case Windows does not start it automatically, or if you are using a USB memory stick, you can run it manually by accessing the device and executing setup.exe.

After the program has been started, a few preliminary questions will be asked and the system will be prepared to reboot into the Debian GNU/Linux installer.

5.1.4 Booting from DOS using loadlin

Boot into DOS (not Windows). To do this, you can for instance boot from a recovery or diagnostic disk.

If you can access the installation CD, change the current drive to the CD-ROM drive, e.g.

d:

else make sure you have first prepared your hard disk as explained in Kohta 4.4.2, and change the current drive to it if needed.

Enter the subdirectory for the flavor you chose, e.g.,

```bash
cd \install.amd
```

If you prefer using the graphical installer, enter the gtk sub-directory.

```bash
cd gtk
```

Next, execute install.bat. The kernel will load and launch the installer system.

5.1.5 Booting from Linux using GRUB

Asentimen käynnistämiseksi kiintolevyltä on tarvittava tiedostot ensin noudettava ja tallennettava, kuten neuvotaan kohdasssa Kohta 4.4.

For GRUB2, you will need to configure two essential things in /boot/grub/grub.cfg:

- to load the initrd.gz installer at boot time;
- have the vmlinuz kernel use a RAM disk as its root partition.

An entry for the installer would be for example:

```bash
menuentry 'New Install' {
 insmod part_msdos
 insmod ext2
 set root='(hd0,msdos1)'
 linux /boot/newinstall/vmlinuz
 initrd /boot/newinstall/initrd.gz
}
```

5.1.6 Käynnistys TFTP:llä

Booting from the network requires that you have a network connection and a TFTP network boot server (and probably also a DHCP, RARP, or BOOTP server for automatic network configuration).

The server-side setup to support network booting is described in Kohta 4.5.

For i386:lla on erilaisia tapoja käynnistää TFTP:llä

5.1.6.1 NIC tai emolevy joka tukee PXE:stä

It could be that your Network Interface Card or Motherboard provides PXEboot functionality. This is a Intel™ re-implementation of TFTP boot. If so, you may be able to configure your BIOS/UEFI to boot from the network.
5.1.6.2 NIC jossa on BootROM verkosta käynnistämiseen

Verkkokortti osaa ehkä käynnistyä TFTP:llä. Kerro meille (debian-boot@lists.debian.org) kuinka se onnistui. Viittaa tähän ohjeeseen.

5.1.6.3 Etherboot

etherboot project tarjoaa käynnistyslevykkeitä, ja jopa bootrommeja, jotka osaavat käynnistyä TFTPbootilla.

5.1.7 Käynnistysruutu

When the installer boots, you should be presented with a friendly graphical screen showing the Debian logo and a menu:

Debian GNU/Linux installer boot menu

Graphical install
Install
Advanced options >
Accessible dark contrast installer menu >
Help
Install with speech synthesis

HUOMAA

This graphical screen will look very slightly different depending on how your computer has booted (BIOS or UEFI), but the same options will be shown.

Depending on the installation method you are using, the "Graphical install" option may not be available. Bi-arch images additionally have a 64 bit variant for each install option, right below it, thus almost doubling the number of options.

For a normal installation, select either the "Graphical install" or the "Install" entry — using either the arrow keys on your keyboard or by typing the first (highlighted) letter — and press Enter to boot the installer. The "Graphical install" entry is already selected by default.

Valikon kohdasta "Advanced options" päästään alimenuun josta asennin voidaan käynnistää expert-tilassa, hätä- käynnistyskenä tai automaattisia asennuksia varten.

If you wish or need to add any boot parameters for either the installer or the kernel, press Tab (BIOS boot), or e then down arrow three times then end (UEFI boot). This will bring the boot command for the selected menu entry and allow you to edit it to suit your needs. Note that the keyboard layout at this point is still QWERTY. The help screens (see below) list some common possible options. Press Enter (BIOS boot) or F10 (UEFI boot) to boot the installer with your options; pressing Esc will return you to the boot menu and undo any changes you made.

Choosing the "Help" entry will result in the first help screen being displayed which gives an overview of all available help screens. To return to the boot menu after the help screens have been displayed, type "menu" at the boot prompt and press Enter. All help screens have a boot prompt at which the boot command can be typed:

Press F1 for the help index, or ENTER to boot:

At this boot prompt you can either just press Enter to boot the installer with default options or enter a specific boot command and, optionally, boot parameters. A number of boot parameters which might be useful can be found on the various help screens. If you do add any parameters to the boot command line, be sure to first type the boot method (the default is install) and a space before the first parameter (e.g., install fb=false).
5.1.8 The Graphical Installer

The graphical version of the installer is only available for a limited number of architectures, including 64-bit PC. The functionality of the graphical installer is essentially the same as that of the text-based installer as it basically uses the same programs, but with a different frontend.

Although the functionality is identical, the graphical installer still has a few significant advantages. The main advantage is that it supports more languages, namely those that use a character set that cannot be displayed with the text-based "newt" frontend. It also has a few usability advantages such as the option to use a mouse, and in some cases several questions can be displayed on a single screen.

The graphical installer is available with all CD/DVD images and with the hd-media installation method. To boot the graphical installer simply select the relevant option from the boot menu. Expert and rescue mode for the graphical installer can be selected from the "Advanced options" menu. The previously used boot methods installgui, expertgui and rescuegui can still be used from the boot prompt which is shown after selecting the "Help" option in the boot menu.

There is also a graphical installer image that can be netbooted. And there is a special "mini" ISO image\(^1\), which is mainly useful for testing.

Just as with the text-based installer it is possible to add boot parameters when starting the graphical installer.

\(^1\) The mini ISO image can be downloaded from a Debian mirror as described in Kohta 4.2. Look for netboot/gtk/mini.iso.
5.2 Esteettömyys

Some users may need specific support because of e.g. some visual impairment. USB braille displays are detected automatically (not serial displays connected via a serial-to-USB converter), but most other accessibility features have to be enabled manually. On machines that support it, the boot menu emits beeps when it is ready to receive keystrokes. It beeps once on BIOS systems, and beeps twice on UEFI systems. Some boot parameters can then be appended to enable accessibility features (see also Kohta 5.1.7). Note that on most architectures the boot loader interprets your keyboard as a QWERTY keyboard.

5.2.1 Installer front-end

The Debian installer supports several front-ends for asking questions, with varying convenience for accessibility: notably, text uses plain text while newt uses text-based dialog boxes. The choice can be made at the boot prompt, see the documentation for DEBIAN_FRONTEND in Kohta 5.3.2.

5.2.2 USB pistekirjoitusnäytöt


5.2.3 Sarjaportin pistekirjoitusnäytöt

Serial braille displays cannot safely be automatically detected (since that may damage some of them). You thus need to append the \texttt{brltty=driver, port} boot parameter to tell brltty which driver and port it should use. driver should be replaced by the two-letter driver code for your terminal (see the BRLTTY manual). \texttt{port} should be replaced by the name of the serial port the display is connected to. ttyS0 is the default, ttyUSB0 can be typically used when using a serial-to-USB converter. A third parameter can be provided, to choose the name of the braille table to be used (see the BRLTTY manual); the English table is the default. Note that the table can be changed later by entering the preference menu. A fourth parameter can be provided to pass parameters to the braille driver, such as protocol=foo which is needed for some rare models. Documentation on key bindings for braille devices is available on the brltty website.

5.2.4 Software Speech Synthesis

Support for software speech synthesis is available on all installer images which have the graphical installer, i.e. all netinst, CD and DVD images, and the netboot gtk variant. It can be activated by selecting it in the boot menu by typing s Enter. The textual version of the installer will then be automatically selected, and support for software speech synthesis will be automatically installed on the target system.

If several sound cards are detected, you will be prompted to press Enter when you hear speech from the desired sound card.

The first question (language) is spoken in english, and the remainder of installation is spoken in the selected language (if available in espeak).

The default speech rate is quite slow. To make it faster, press CapsLock-6. To make it slower, press CapsLock-5. The default volume should be medium. To make it louder, press CapsLock-2. To make it quieter, press CapsLock-1. To get more details on the browsing shortcuts, see the Speakup guide. To just accept the default answer for a question, simply press Enter at the prompt. To provide an empty answer for a question, type ! at the prompt. To get back to the previous question, type < at the prompt.

5.2.5 Puhesyntetisaattorilaitteet

Support for hardware speech synthesis devices is available on all installer images which have the graphical installer, i.e. all netinst, CD and DVD images, and the netboot gtk variant. You thus need to select a “Graphical install” entry in the boot menu.

Puhesyntetisaattorilaitteita ei voi automaattisesti tunnistaa. On siis lisättävä käynnistysvalitsin speakup.synth=driver josta speakup tietää mitä ajuria tulee käyttää. driver tulee korvata laitteen ajurikoodillla (katso drive code list). Tällöin automaattisesti valitaan asentimen tekstiversio ja asennetaan kohdejärjestelmään tuki puhesyntetisasattorilaitteelle.
5.2.6 Lisälaittekortit
Jotkin esteettömyyslaitteet ovat lisälaittekortteja jotka asennetaan tietokoneen sisään ja lakevat tekstiä suoraan näytömuistista. Jotta ne toimisivat on tuki ruutupuskurille poistettava käyntiset käynnistsysvalitsimella vga=normal fb=false. Tämä toisalta pienentää käyntiövissä olevien kielten määriä.

Haluttaessa voidaan käynnistyslaitaisten tekstiä aktivoida ennen käynnistystarkentimen lisäämistä kirjoittamalla h Enter.

5.2.7 Suurikonstrastinen teema
For users with low vision, the installer can use a high-contrast color theme that makes it more readable. To enable it, you can use the "Accessible high contrast" entry from the boot screen with the d shortcut, or append the theme=dark boot parameter.

5.2.8 Zoom
For users with low vision, the graphical installer has a very basic zoom support: the Control-+ and Control– shortcuts increase and decrease the font size.

5.2.9 Expert install, rescue mode, automated install
Expert, Rescue, and Automated installation choices are also available with accessibility support. To access them, one has to first enter the "Advanced options" submenu from the boot menu by typing a. When using a BIOS system (the boot menu will have beeped only once), this has to be followed by Enter; for UEFI systems (the boot menu will have beeped twice) that must not be done. Then, to enable speech synthesis, s can optionally be pressed (followed again by Enter on BIOS systems but not on UEFI systems). From there, various shortcuts can be used: x for expert installation, r for rescue mode, or a for automated installation. Again these need to be followed by Enter when using a BIOS system.

The automated install choice allows to install Debian completely automatically by using preseeding, whose source can be entered after accessibility features get started. Preseeding itself is documented in Liite B.

5.2.10 Accessibility of the installed system
Documentation on accessibility of the installed system is available on the Debian Accessibility wiki page.

5.3 Käynnistysparametrit

Jos järjestelmän käynnistämistä yritetään ensimmäistä kertaa, kokeile käynnistysparametreja tai järjestelmä auttaa käynnistämistä. Jos ei toimi, voidaan myöhemmin käynnistää uudestaan ja etsiä erikoisparametreja jotka kertovat järjestelmän oheislaitteesta.

Linux BootPrompt HOWTO:stä löytyy tietoa monista käynnistysparametreista, mukaan lukien vinkkejä epämääristää vastaaville laitteille. Tämä luku on vain luonnoksena käynnistysparametreista. Jotakin yleisiä kompastuskiviä on selitetty kohdassa Kohda 5.4.

5.3.1 Boot console
If you are booting with a serial console, generally the kernel will autodetect this. If you have a videocard (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial console, you may have to pass the console=device argument to the kernel, where device is a serial device of the target, which is usually something like ttyS0.

You may need to specify parameters for the serial port, such as speed and parity, for instance console=ttyS0,9600n8. Other typical speeds may be 57600 or 115200. Be sure to specify this option after "---", so that it is copied into the bootloader configuration for the installed system (if supported by the installer for the bootloader).

In order to ensure the terminal type used by the installer matches your terminal emulator, the parameter TERM=type can be added. Note that the installer only supports the following terminal types: linux, bterm, ansi, vt102 and dumb. The default for serial console in debian-installer is vt102. If you are using an IPMI console, or a
virtualization tool which does not provide conversion into such terminals types itself, e.g. QEMU/KVM, you can start it inside a screen session. That will indeed perform translation into the screen terminal type, which is very close to vt102.

### 5.3.2 Debianin asentimen parametrit

The installation system recognizes a few additional boot parameters² which may be useful.

Useilla parametreilla on ”lyhyt muoto” auttaamaan ytimen komentorivivalitsimien rajoitusten välttämisessä ja helpottamaan parametrien kirjoittamista. Jos parametreilla on lyhyt muoto, se näytetään hakasulkeissa (tavallisen) pitkän muodon jälkeen. Myös tämän ohjeen esimerkeissä käytetään tavallisesti lyhyttä muotoa.

**debconf/priority (priority)** Tämä parametri määrittää, kuinka alhaisen prioriteetin viestit näytetään.

Oletusarvot ovat:
- `priority=high`: Tämä tarkoittaa, että näytetään viestit, joiden prioriteetti on korkea tai kriittinen, mutta prioriteetin keskitasoa ja matala viestit ohitetaan. Jos tulee pulmia, asennin säättää prioriteetia tarpeen mukaan.

**DEBIAN_FRONTEND** This boot parameter controls the type of user interface used for the installer. The current possible parameter settings are:

- `DEBIAN_FRONTEND=noninteractive`
- `DEBIAN_FRONTEND=text`
- `DEBIAN_FRONTEND=newt`
- `DEBIAN_FRONTEND=gtk`

The default frontend is `DEBIAN_FRONTEND=newt`. `DEBIAN_FRONTEND=text` may be preferable for serial console installs. Some specialized types of install media may only offer a limited selection of frontends, but the `newt` and `text` frontends are available on most default install media. On architectures that support it, the graphical installer uses the `gtk` frontend.

**BOOT_DEBUG** Asettamalla tämän käynnistysparametrin arvoksi 2 asentimen käynnistysprosessi tekee yksityiskohtaisen lokin. Arvolla 3 ovat vianmäärityksen tarkoitetut komentotulkit käyttöissä asennusprosessin tärkeissä vaiheissa. (Käynnistystä jatketaan poistumalla komentotulkista.)

- `BOOT_DEBUG=0` Tämä on oletusarvo
- `BOOT_DEBUG=1` Tavallista yksityiskohtaisempi.
- `BOOT_DEBUG=2` Paljon vianmääritystietoa.
- `BOOT_DEBUG=3` Käynnistysprosesseihin valikoiduissa kohdissa käynnistetään komentotulkki. Jatka käynnistystä poistumalla komentotulkista.

**log_host, log_port** Causes the installer to send log messages to a remote syslog on the specified host and port as well as to a local file. If not specified, the port defaults to the standard syslog port 514.

**vähämuisti** Voidaan käyttää pakottamaan asennin käyttämään käsittävissä olevan muistin määrään perustuvaa oletusarvoa suurempaa vähäisen muistin tasoa. Mahdolliset arvot ovat 1 ja 2. Katso myös Kohta 6.3.1.1.

**noshell** Estää asennintä tarjoamasta komentotulkikia konsoleilla tty2 ja tty3. Hyödyllinen automaattisissa asennuksissa kun keskusmuisteista on niukasti.


²With current kernels (2.6.9 or newer) you can use 32 command line options and 32 environment options. If these numbers are exceeded, the kernel will panic. Also there is a limit of 255 characters for the whole kernel command line, everything above this limit may be silently truncated.
debian-installer/theme (theme) A theme determines how the user interface of the installer looks (colors, icons, etc.). Which themes are available may differ per frontend. Currently both the newt and gtk frontend have (apart from the default look) only one additional theme named "dark" theme, which was designed for visually impaired users. Set this theme by booting with theme=dark (there is also the keyboard shortcut d for this in the boot menu).

netcfg/disable_autoconfig By default, the debian-installer automatically probes for network configuration via IPv6 autoconfiguration and DHCP. If the probe succeeds, you won't have a chance to review and change the obtained settings. You can get to the manual network setup only in case the automatic configuration fails. If you have an IPv6 router or a DHCP server on your local network, but want to avoid them because e.g. they give wrong answers, you can use the parameter netcfg/disable_autoconfig=true to prevent any automatic configuration of the network (neither v4 nor v6) and to enter the information manually.

hw-detect/start_pcmcia Mikäli PCMCIA-palvelut aiheuttavat pulmia, aseta tämä arvoon false. Tämä on tunnetusti tarpeen jollakin läppäreillä.

disk-detect/dmraid/enable (dmraid) Aseta arvoksi true ottakaaksi käyttöön tuen SATA RAID -levyllä (kutsutaan myös minnilä ATA RAID, BIOS RAID ja fake RAID) asentimessa. Tuki on tällä hetkellä kokeiluasteella. Lisätietoja löytyy Debian-asennin wikistä.


auto-install/enable (auto) Viivästä kysymyksistä jotka normaalisti kysytään ennen kuin valmiit vastaukset ovat käytettävissä kunnes verkon asetukset on tehty. Katso kohdasta Kohta B.2.3 yksityiskohtaisempia ohjeita tämän hyödyntämisestä asennuksen automatisoinnissa.

finish-install/keep-consoles Sarjapäätteeltä tai hallinnointikonsolista tapahtuvien asennusten aikana tavalliset virtuaalikonsolit (VT1:stä VT6:een) on tavallisesti poistettu käytöstä tiedostossa /etc/inittab. Asetus arvoon true estää tämän.

cdrom-detect/eject By default, before rebooting, debian-installer automatically ejects the optical media used during the installation. This can be unnecessary if the system does not automatically boot off such media. In some cases it may even be undesirable, for example if the optical drive cannot reinsert the media itself and the user is not there to do it manually. Many slot loading, slim-line, and caddy style drives cannot reload media automatically.

Automaattinen levyn poisto asennusta estetään asettamalla arvoksi false, ja huomaa, että joutunut varmistamaan ettei kone käynnisty automaattisesti CD-asemalta asennuksen ensimmäisen vaiheen jälkeen.

base-installer/install-recommends (recommends) Asettamalla tämä valitsin arvoon false, paketinhallintajärjestelmä ei automaattisesti asenna ”Suosittelee”-paketteja, ei asennuksen aikana eikä asennetussa järjestelmäsä. Katso myös Kohta 6.3.5.

Huomaa tällä valitsimella saatavan lainhemman järjestelmän, mutta mahdollisesti myös puuttuvan ominaisuuden joiden voisi olettaa olevan saatavilla. On ehkä vasten asennettava joitakin suositelluista paketeista halutun täyden toiminnallisuuden saavuttamiseksi. Tätä valitsinta tulisi näin ollen vain hyvin kokeneiden käyttäjien käyttää.


rescue/enable Asettamalla arvoksi true käynnistetään pelastustila eikä tarrassa asennus. Katso Kohta 8.6.
5.3.3 Valmiita vastauksia käynnistysparametreilla

Muutamaa poikkeusta lukuunottamatta käynnistysparametreilla voidaan antaa arvo mihin tahansa asennuksen aikana kysyttävään kysymykseen. Tosin tämä on hyödyllistä vain erikoistapauksissa. Yleisä ohjeita tämän tekemisestä löytyy kohdasta Kohta B.2.2. Esimerkkejä joistakin tapauksista on seuraavassa luetellossa.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale) Kienen, maan ja maa-asetuksen määrittämiseen asennuksen ajaksi ja asennetuussa järjestelmässä on kaksi tapaa.


anna/choose_modules (modules) Voidaan käyttää lataamaan automaattisesti asentimen osia joita ei oletusarvoisesti tada. Esimerkkejä mahdollisesti hyödyllisistä valinnaisista osista ovat openssh-client-udeb (jotta scp voidaan käyttää asennuksen aikana) ja ppp-udeb (katso Kohta D.5).

netcfg/disable_autoconfig Set to true if you want to disable IPv6 autoconfiguration and DHCP and instead force static network configuration.


5.3.4 Parametrien välittäminen ytimen moduuleille


Huomaa, että nykyään on harvinaista jos moduuleille on pakko välittää parametreja. Useimmissa tapauksissa ydin osaa tunnistaa järjestelmän laitteiston ja asettaa hyvät oletusarvot. Joissakin tapauksissa saattaa kuitenkin olla välttämätöntä asettaa parametrien arvo itse.

.Moduulien parametrit annetaan tässä muodossa:

```bash
moduulin_nimi.parametrin_nimi=arvo
```

Jos on annettava useita parametreja samalle tai eri moduuleille, toista vaan yllä olevaa. Esimerkiksi vanha 3Comin verkkokortti asetetaan käyttämään BNC-liittäntää (coax) ja keskeyrtystä IRQ 10 seuraavasti:

```bash
3c509.xcvi=3 3c509.irq=10
```

5.3.5 Ytimen moduulien lisääminen kieltolistalle

Joskus saattaa olla tarpeen lisätä moduuli kieltolistalle, jotta ydin ja udev eivät lataa sitä automaattisesti. Yksi mahdollinen syy on, että tiety moduuli aiheuttaa harmia asennettavan koneen laitteistolla. Toisaalta ydin luettelee kaksi eri ajuria samalle laitteelle. Tällöin laite ei ehkä toimi oikein jos ajurit aiheuttavat ristiriidan tai jos väärä ajuri ladataan ensin.


Huomaa, että kieltolistasta huolimatta asennusjärjestelmä saattaa itse ladata moduulin. Tämä voidaan estää suoritamalla asennus expert-tilassa ja poistamalla valinta moduulin kohdalla laitetunnistuksen aikana näkyvästä luettelosta.
5.4 Asennusprosessin vianetsintä

5.4.1 Reliability of optical media

Sometimes, especially with older drives, the installer may fail to boot from an optical disc. The installer may also — even after booting successfully from such disc — fail to recognize the disc or return errors while reading from it during the installation.

Näihin pulmiin on monia mahdollisia syitä. Tässä luetellaan vain joitakin yleisiä tapauksia ja yleisiä toimintaohjeita. Lopusta saat huolehtia itse.

Ensiksi kannattaa kokeilla kahta hyvin yksinkertaa juttua.

• If the disc does not boot, check that it was inserted correctly and that it is not dirty.
• If the installer fails to recognize the disc, try just running the option Detect and mount installation media a second time. Some DMA related issues with very old CD-ROM drives are known to be resolved in this way.

If this does not work, then try the suggestions in the subsections below. Most, but not all, suggestions discussed there are valid for CD-ROM and DVD.

If you cannot get the installation working from optical disc, try one of the other installation methods that are available.

5.4.1.1 Yleisiä pulmia

• Eräät vanhat CD-asemat eivät tue uusilla kirjoittavilla CD-asemilla suurilla nopeuksilla kirjoitettujen levyjen lukemista.
• Some very old CD-ROM drives do not work correctly if ”direct memory access” (DMA) is enabled for them.

5.4.1.2 Miten pulmia tutkitaan ja ehkä selvitetään

If the optical disc fails to boot, try the suggestions listed below.

• Check that your BIOS/UEFI actually supports booting from optical disc (only an issue for very old systems) and that booting from such media is enabled in the BIOS/UEFI.
• If you downloaded an iso image, check that the md5sum of that image matches the one listed for the image in the MD5SUMS file that should be present in the same location as where you downloaded the image from.

```
$ md5sum debian-testing-1386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-1386-netinst.iso
```

Next, check that the md5sum of the burned disc matches as well. The following command should work. It uses the size of the image to read the correct number of bytes from the disc.

```
$ dd if=/dev/cdrom | \
 > head -c 'stat --format=%s debian-testing-1386-netinst.iso' | \
 > md5sum
a20391b12f7ff22ef705cee4059c6b92
 262668+0 records in
 262668+0 records out
 134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
```

If, after the installer has been booted successfully, the disc is not detected, sometimes simply trying again may solve the problem. If you have more than one optical drive, try changing the disc to the other drive. If that does not work or if the disc is recognized but there are errors when reading from it, try the suggestions listed below. Some basic knowledge of Linux is required for this. To execute any of the commands, you should first switch to the second virtual console (VT2) and activate the shell there.

• Vaihtamalla konsoliin VT4 tai lukemalla tiedostoa /var/log/syslog (käyttää komentoa nano teksturina) näkee tarkat virheilmoitukset. Tämän jälkeen katso myös komennon dmesg tuloste.
• Check in the output of dmesg if your optical drive was recognized. You should see something like (the lines do not necessarily have to be consecutive):

```
```

```
5. ASENNUSJÄRJESTELMÄN... 5.4. ASENNUSPROSESSIN VIANETSINTÄ

If you don’t see something like that, chances are the controller your drive is connected to was not recognized or may be not supported at all. If you know what driver is needed for the controller, you can try loading it manually using modprobe.

• Check that there is a device node for your optical drive under /dev/. In the example above, this would be /dev/sr0. There should also be a /dev/cdrom.

• Use the mount command to check if the optical disc is already mounted; if not, try mounting it manually:

```bash
$ mount /dev/hdc /cdrom
```

Check if there are any error messages after that command.

• Check if DMA is currently enabled:

```bash
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```

A ”1” in the first column after using_dma means it is enabled. If it is, try disabling it:

```bash
$ echo -n "using_dma:0" >settings
```

Make sure that you are in the directory for the device that corresponds to your optical drive.

• If there are any problems during the installation, try checking the integrity of the installation media using the option near the bottom of the installer’s main menu. This option can also be used as a general test if the disc can be read reliably.

5.4.2 Käynnistysasetukset

Jos ilmenee pulmia ja ydin jumittuu käynnistyksen aikana, ei tunnista oheislaitteita joita koneessa oikeasti on, tai asemia ei tunnisteta kunnolla, on ensin tarkistettava käynnistysparametrin, kuten kerrotaan kohdassa Kohta 5.3.

In some cases, malfunctions can be caused by missing device firmware (see Kohta 2.2 and Kohta 6.4).

5.4.3 Software Speech Synthesis

If software speech synthesis does not work, there is most probably an issue with your sound board, usually because either the driver for it is not included in the installer, or because it has unusual mixer level names which are set to muted by default. You should thus submit a bug report which includes the output of the following commands, run on the same machine from a Linux system which is known to have sound working (e.g., a live CD).

• dmesg

• lspci

• lsmod

• amixer

5.4.4 Yleisiä suoritinperheen 64-bit PC asennuspulmia

Muutamat yleiset asennuspulmat voidaan selvittää tai välttää antamalla asentimelle sopivia käynnistysparametreja.

Jos näytön kuva on pielessä ytimen käynnistyessä, esimerkiksi kokonaan valkoinen, kokonaan musta tai värimössä, saattaa koneessa olla hankala näytönohjain, joka ei vaihda ruutupuskuroituun tilaan kunnolla. Tällöin voidaan käynnistysparametriillä `fb=false` ottaa ruutupuskuroitu konsoli pois käytöstä. Konsolin ominaisuksien rajoituksen sallivat vain suppean joukon kieliä asennuksen aikana. Katso yksityiskohtia kohdasta Kohta 5.3.
5.4.4 Järjestelmä jumittuu PCMCIA:n asetuksia tehtäessä

Some very old laptop models produced by Dell are known to crash when PCMCIA device detection tries to access some hardware addresses. Other laptops may display similar problems. If you experience such a problem and you don’t need PCMCIA support during the installation, you can disable PCMCIA using the \texttt{hw-detect/start_pcmcia=false} boot parameter. You can then configure PCMCIA after the installation is completed and exclude the resource range causing the problems.

Toinen tapa on käynnistää asennin expert-tilassa. Tällöin kysytään laitteiston tarvitsemia asetuksia osoitteiden arvoalueista. Jos asennettava kone on esimerkiksi yksi yllä mainituista Dellin läppäreistä, pitäisi siihen kirjoittaa \texttt{exclude port 0x800-0x8ff}. Saattavilla on myös luettelo yleisistä osoitteiden arvoalueiden asetuksista ohjeessa System resource settings section of the PCMCIA HOWTO. Huomaa, että pilkut, jos niitä on, jätetään pois kun tätä arvoa kirjoitetaan asentimelle.

5.4.5 Ytimen käynnistysviestien tulkinta

Käynnistyksen aikana saattaa näkyä useita tämästä tapaista viestejä: \texttt{can’t find jotain}, tai \texttt{jotain not present}, \texttt{can’t initialize jotain}, tai jopa \texttt{this driver release depends on jotain}. Useimmat näistä viesteistä ovat harmittomia. Niitä näkyy, koska asennusdyyn on tehty toimimaan useiden erilaisten oheislaitteiden kanssa. Tietenkään missään tietokoneessa ei ole kaikkia mahdollisia oheislaitteita, joten ydin saattaa näyttää muutamaa valitusti auki oheislaitteista, joita kokee ei ole. Järjestelmä saattaa myös seisahtua hetkeksi. Näin tapahtuu kun odotetaan jonkin laitteen vastausta, eikä sitä laitetta ole tietokoneessa. Jos järjestelmän käynnistämisen kestäntä on liian pidennettävä, voit myöhemmin tehdä muokatun ytimen (katso Kohta 8.5).

5.4.6 Asennuspulmista ilmoittaminen

If you get through the initial boot phase but cannot complete the install, the menu option Save debug logs may be helpful. It lets you store system error logs and configuration information from the installer on a storage medium, or download them using a web browser. This information may provide clues as to what went wrong and how to fix it. If you are submitting a bug report, you may want to attach this information to the bug report.

Muut asiaankuuluvat asennusviestit löytyvät asennuksen aikana hakemistosta \texttt{/var/log/}, ja hakemistosta \texttt{/var/log/installer/} kun tietokone on käynnistynyt asennettuun järjestelmään.

5.4.7 Asennusraporttien lähettäminen

Jos pulmia on vieläkin, ole hyvä ja lähettä asennusraportti. Olisi hyvää, että aikaa mahdollisimman paljon tietoa mahdollisimman monista laiteistokokoonpanoista.

Huomaa, että asennusraporttii julkaisetaan Debianin viianjäljitys-järjestelmässä (BTS) ja lähettetään edelleen julkiselle sähköpostilistalle. Varmistu, että käytät sähköpostiosoitetta jonka julkistamista et pane pahaksesi.

If you have a working Debian system, the easiest way to send an installation report is to install the \texttt{installation-reports} and \texttt{reportbug} packages (\texttt{apt install installation-report reportbug}), configure \texttt{reportbug} as explained in Kohta 8.4.2, and run the command \texttt{reportbug installation-reports}.

Alternatively you can use this template when filling out installation reports, and file the report as a bug report against the \texttt{installation-reports} pseudo package, by sending it to \texttt{submit@bugs.debian.org}.

| Package: installation-reports |
| Image version: <Full URL to image you downloaded is best> |
| Date: <Date and time of the install> |
| Machine: <Description of machine (eg, IBM Thinkpad R32)> |
| Processor: |
| Memory: |
| Partitions: <df -T1 will do; the raw partition table is preferred> |
| Output of lspci -kn (or lspci -nn): |
| Base System Installation Checklist: |
| [O] = OK, [E] = Error (please elaborate below), [] = didn’t try it |
| Initial boot: [] |

37
In the bug report, describe what the problem is, including the last visible kernel messages in the event of a kernel hang. Describe the steps that you did which brought the system into the problem state.
Luku 6
Debianin asentimen käyttö

6.1 Asentimen toiminta

For this architecture the debian-installer supports two different user interfaces: a graphical one and a text-based one. The graphical interface is used by default unless you select an ”Install” option in the boot menu. For more information about booting the graphical installer, please refer to Kohta 5.1.8.

Debianin asennin koostuu useista kunkin asennuksen toiminnon suorittavasta osasta. Kukin varta vasten kirjoitettu osa tekee työnsä kysyen käyttäjältä tarvittaessa. Kysymyskohdilla on tärkeysjärjestys, ja asentimen käynnistystä säädetään jätetäänkö vähäpätöisemmät kysymykset kysymättä.

Pulmatilanteessa käyttäjä näkee virheruudun ja mahdollisesti asentimen valikon, josta voidaan valita vaihtoehtoih- nen toiminto. Käyttäjä vastaa jokaisen osan kysymyksiin järjestyksessä, eikä näe valikkoa lainkaan jos pulmatilanteita ei tule. Ilmoitukset vakavista virheistä asetetaan ”kriittiselle” prioriteettile, jotta ne näytettäisiin käyttäjälle aina.

Some of the defaults that the installer uses can be influenced by passing boot arguments when debian-installer is started. If, for example, you wish to force static network configuration (IPv6 autoconfiguration and DHCP are used by default if available), you could add the boot parameter netcfg/disable_autoconfig=true. See Kohta 5.3.2 for available options.

In the text-based environment the use of a mouse is not supported. Here are the keys you can use to navigate within the various dialogs. The Tab or right arrow keys move ”forward”, and the Shift-Tab or left arrow keys move ”backward” between displayed buttons and selections. The up and down arrow keys move different items within a scrollable list, and also scroll the list itself. In addition, in long lists, you can type a letter to cause the list to scroll directly to the section with items starting with the letter you typed and use Pg-Up and Pg-Down to scroll the list in sections. The space bar selects an item such as a checkbox. Use Enter to activate choices.

Joissakin valintaikkunoissa voi olla tarjolla lisäohjeita. Jos ohje on saatavilla, näkyy näytön alimmalla rivillä, että ohjeita saatavilla näppäilemällä F1.

Virheilmoitukset ja lokit ohjataan neljänteen konsoliin. Tähän konsoliin pääsee näppäihdistelmällä Vasen Alt-F4 (Pidä vasenta Alt-näppäintä painettuna samalla kun painat funktiönäppäintä F4); asentimeen palataan painamalla Vasen Alt-F1.

6.1.1 Using the graphical installer

The graphical installer basically works the same as the text-based installer and thus the rest of this manual can be used to guide you through the installation process.
If you prefer using the keyboard over the mouse, there are two things you need to know. To expand a collapsed list (used for example for the selection of countries within continents), you can use the + and - keys. For questions where more than one item can be selected (e.g. task selection), you first need to tab to the Continue button after making your selections; hitting enter will toggle a selection, not activate Continue.

If a dialog offers additional help information, a Help button will be displayed. The help information can be accessed either by activating the button or by pressing the F1 key.

To switch to another console, you will also need to use the Ctrl key, just as with the X Window System. For example, to switch to VT2 (the first debug shell) you would use: Ctrl-Left Alt-F2. The graphical installer itself runs on VT5, so you can use Left Alt-F5 to switch back.

6.2 Osien esittely

Tässä on luettelo asentimen osista ja lyhyt kuvaus kunkin osan tehtävistä. Yksityiskohtaisia tietoja kunkin osan käytöstä on Kohta 6.3.

localechooser Valitaan maa-asetusto asennukselle ja asennettavalle järjestelmälle: kieli, maa ja maa-asetukset. Asennin näyttää viestit valitulla kielellä, paitsi jos käännytöä ei ole tehty kokonaan, jolloin osa viesteistä saatetaan näyttää englanniksi.

console-setup Shows a list of keyboard (layouts), from which the user chooses the one which matches his own model.

hw-detect Tunnistaa automaattisesti suurimman osan tietokoneen laitteistosta, mukaan lukien verkkokortit, kiintolevyt ja PCMCIA.

cdrom-detect Looks for and mounts a Debian installation media.

netcfg Tekee verkkoaosetukset, jotta tietokone pääsee Internettiin.

iso-scan Etsii ISO-otoksia (.iso-tiedostoja) kiintolevyiltä.

choose-mirror Asennuspaketteja valitaan noudettavaksi jostain luetteloon Debianin asennuspalvelimista.

cdrom-checker Checks integrity of installation media. This way, the user may assure him/herself that the installation image was not corrupted.

lowmem Lowmem pyrkii tunnistamaan pienellä keskusmuistiilla varustetun järjestelmän jolloin debian-installer kikkailee tarpeettomia osia pois muistista (jonkin verran toiminnallisuutta menetetään).

anna Anna’s Not Nearly APT. Installs packages which have been retrieved from the chosen mirror or installation media.

user-setup Tehdään pääkäyttäjälle salasana ja tehdään tavallinen käyttäjä.

clock-setup Asettaa järjestelmän kellon oikeaan aikaan ja selvittää onko kello asetettu koordinoituun yleisaikaan.

tzsetup Valitaan aiemmin valitun maan perusteella aikavyöhyke.

partman Järjestelmän kiintolevyille tehdään osioita, luodaan tiedostojärjestelmiä valittuihin osioihin ja liitetään ne liitoskohtiin. Eikä tässä vielä kaikki, mukana on myös kiinnostavia toimintoja kuten automaattinen osiointi ja tuki LVM:lle. Tämä on Debianin suosittelu osiointiohjelma.

partitioner Järjestelmän kiintolevyille tehdään levyosiot. Sopiva osiointisovellus valitaan laitearkkitehtuurin perusteella.

partconf Näyttää osioluetteloon, ja luo tiedostojärjestelmiä valituille osioille käyttäjän komentojen mukaisesti.

partman-lvm Auttaa LVM:n (Logical Volume Manager eli loogisten levyniteiden hallintahjelma) asetusten teossa.
partman-md Tehdään RAID:n (Redundant Array of Inexpensive Disks) asetukset. Tämä ohjelmallisesti toteutettu RAID on tavallisesti parempi kuin halpa IDE (mukamas rautatason) RAID-ohjain uudehkoilla emolevyillä.

base-installer Asennetaan niukin peruskokoopano, jolla Debian GNU/Linux saadaan käyttöön tietokonetta käynnistettäessä.

apt-setup APT:n asetukset tehdään enimmäkseen automaattisesti asennustaittona mukaisesti.

pkgsel Valitaan ja asennetaan lisää ohjelmia ohjelmalla tasksel.

os-prober Tunnistetaan tietokoneeseen asennetut käyttöjärjestelmät ja välitetään tämä tieto bootloader:in asentimelle, joka ehkä tarjoaa niitä lisättäväksi käynnistyslaitaimen valikkoon. Tällä tavalla voidaan helposti tietokonetta käynnistettäessä valita käyttöjärjestelmää.

bootloader-installer The various bootloader installers each install a boot loader program on the hard disk, which is necessary for the computer to start up using Linux without using a USB stick or CD-ROM. Many boot loaders allow the user to choose an alternate operating system each time the computer boots.

komentotulkki Komentotulkki voidaan käynnistää valikosta tai konsoliin numero kaksi.

tallenna lokit Provides a way for the user to record information on a USB stick, network, hard disk, or other media when trouble is encountered, in order to accurately report installer software problems to Debian developers later.

6.3 Yksittäisten osien käyttäminen

6.3.1 Debianin asentimen asetusten teko ja laiteasetukset
Debianin asentimen käynnistyttyä näytetään sen ensimmäinen ruutu. Tässä kohtaa asentimen toiminnot ovat vielä hyvin rajoitetut. Se ei tiedä paljoakaan laitteistosta, käyttäväävästä kielestä eikä siitä mitä sen pitäisi tehdä. Ei huolta, asennin on varsin näppärä ja voi automaattisesti tunnistaa laitteistoa, etsiä muita asentimen osia ja päivittää itsensä monipuoliseksi asennusjärjestelmäksi. Asentimelle on kuitenkin kerrottava joitakin tietoja, joita se ei voi päätellä automaattisesti (kuten haluttu kieli, näppäimistöasettelu ja käytettävä asennuspalvelin).

Asennin tekee laitenumistusta useaan kertaan tässä vaiheessa. Ensimmäisen kerran tarkoituksena on löytää käytettävät laitteistot, jotta asennin saa käyttää asennusjärjestelmää oikein. Tässä kerran kuitenkin kertoo asennus palvelu muistuttamaan käyttäjää seuraavista asennustapauksista:

- **Käytettävissä olevan muistin määrä / niukan muistin tila**

- **Käyttötappiopisissa olevan muistin tila**
 Asentimen ensimmäisiä toimia on käytettävissä olevan muistin määrän selvittäminen. Jos muistin määrä on rajoitettu, tämä osa muuttaa asennustapaa mahdollistamaan Debian GNU/Linux -järjestelmän asentamisen.

- **Käytrettävä osan käyttö**
 Tämä osa käyttää asennustapaa mahdollistamaan Debian GNU/Linux -järjestelmän asentamisen. Tässä kohtaa asentimen asennustapaa mahdollistamaan asennusjärjestelmän käynnistämisen. Tämä seurauksena voidaan sanoa, että asennusjärjestelmän käynnistäminen on mahdollista vaatimattomasti. Jos asennus on mahdollista vaatimattomasti, voidaan sanoa, että asennus on mahdollista vaatimattomasti.

Asentimen voi pakottaa käyttämään oletusarvoa suurempaa supistetun muistin tilaa tai käynnistysvalitsimella "low-mem" kuten kertoo Kohta 5.3.2.

6.3.1.2 Maa-asetuston valinta

Useimmassa tapauksissa ensimmäiset kysymykset koskevat maa-asetuston valintaa sekä asennukselle että asennettavalle järjestelmälle. Maa-asetuston koostuu kielen, sijainnin ja maa-asetusten valinnasta.

Valitun kieltä käytetään tästä lähtien asennustapahtumassa, kunhan valintaikkunoille on käänänsä käytettävissä. Jos käyttöökeloista käänänsä käytetulle kielelle ei ole käytettävissä, asennin käyttää englantia.

Myöhemmin asennustapahtumassa asetetaan aikavyöhykkeen ja Debianin asennuspalvelimen oletusarvot valitun sijainnin (useimmiten maan nimen) mukaisiksi. Kieltä ja maata yhdessä käytetään maa-asetuston oletusarvoihin ja näppäimistöön valinnan apuna.

Jos valittiin kielten ja maan yhdistelmä, jolle ei ole lainkaan määritelty maa-asetustoa ja kiellelle on useita maa-asetustoja, antaa asennin valita mistä noista maa-asetustoista tulee asennetun järjestelmän oletus². Kaikissa muissa tapauksissa maa-asetuston oletus asetetaan valitun kielen ja maan mukaan.

Kaikissa edellisessä kappaleessa käytettyä kavotta vallalla valittujissa maa-asetustoissa on merkistökooodauksena käytössä UTF-8.

Jos asennuksessa prioriteetti on matala, on käytettävissä laajempi joukko maa-asetustoja, muun muassa niin kututut "legacy" maa-asetustot⁵ ovat tuottavissa asennettavalle järjestelmälle. Jos niitä käytetään, kysytään mikä valituista maa-asetustoista on asennetun järjestelmän oletus.

6.3.1.3 Näppäimistöön valinta

6.3.1.4 Etsitään Debianin asentimen ISO-otosta

Kun asennustapa on hd-media on sovitettu sovitellaksi käyttäen kielten merkkiä ja rivien asennuksen tiedostoista. Asetimen osa iso-scan tekee juuri tämän.

¹Täsmällisemmin: jos kymmenen kielelle on mona maa-asetustoa eri maata mukaisen.
²Jos prioriteeti on keskitaso tai matala, voidaan aina valita halutuun maa-asetustoon sujuvasti mennessä olevasta maa-asetuksesta joissakin tapauksissa.
At first, **iso-scan** automatically mounts all block devices (e.g. partitions and logical volumes) which have some known filesystem on them and sequentially searches for filenames ending with `.iso` (or `.ISO` for that matter). Beware that the first attempt scans only files in the root directory and in the first level of subdirectories (i.e. it finds `/whatever.iso`, `/data/whatever.iso`, but not `/data/tmp/whatever.iso`). After an iso image has been found, **iso-scan** checks its content to determine if the image is a valid Debian iso image or not. In the former case we are done, in the latter **iso-scan** seeks for another image.

Jos ensimmäinen yritys löytää iso-otos epäonnistuu, **iso-scan** kysyy suoritetaanku perusteellisempi etsintä. Tällöin ei etsitä vain ensimmäisten tasojen hakemistoista vaan tutkitaan koko tiedostojärjestelmä.

Mikäli **iso-scan** ei löydä asentimen iso-otosta, uudelleenkäynnistä takaisin alkuperäiseen käyttöjärjestelmään. Muiden liitäntöjen asetuksia ei tehdä tämän ilman uudelleenkiinnystä toisella konsoliilla.

Note that the partition (or disk) hosting the ISO image can’t be reused during the installation process as it will be in use by the installer. To work-around this, and provided that you have enough system memory, the installer can copy the ISO image into RAM before mounting it. This is controlled by the low priority `iso-scan/copy_iso_to_ram` debconf question (it is only asked if the memory requirement is met).

6.3.1.5 Verkkoasetusten teko

Jos tähän kohtaan tultaessa asennin havaitsee laitteistossa useamman kuin yhden verkkolaitteen, kysytään mitä laitetta käytetään ensissijaisena verkkoliitäntänä eli mitä liitäntää asennin käyttää. Muiden liitäntöjen asetuksia ei tehdä tässä kohdassa. Muiden liitäntöjen asetuksia voi tehdä kun asennus on valmis; katso interfaces(5) man-sivulta.

6.3.1.5.1 Automatic network configuration

By default, **debian-installer** tries to configure your computer’s network automatically as far as possible. If the automatic configuration fails, that may be caused by many factors ranging from an unplugged network cable to missing infrastructure for automatic configuration. For further explanation in case of errors, check the error messages on the fourth console. In any case, you will be asked if you want to retry, or if you want to perform a manual setup. Sometimes the network services used for autoconfiguration can be slow in their responses, so if you are sure everything is in place, simply start the autoconfiguration attempt again. If autoconfiguration fails repeatedly, you can instead choose the manual network setup.

6.3.1.5.2 Manual network configuration

The manual network setup in turn asks you a number of questions about your network, notably IP address, **Netmask**, **Gateway**, **Name server addresses**, and a **Hostname**. Moreover, if you have a wireless network interface, you will be asked to provide your **Wireless ESSID** (“wireless network name”) and a **WEP key** or **WPA/WPA2 passphrase**. Fill in the answers from Kohta 3.3.

6.3.1.5.3 IPv4 and IPv6

From Debian GNU/Linux 7.0 (“Wheezy”) onwards, **debian-installer** supports IPv6 as well as the “classic” IPv4. All combinations of IPv4 and IPv6 (IPv4-only, IPv6-only and dual-stack configurations) are supported.

Autoconfiguration for IPv4 is done via DHCP (Dynamic Host Configuration Protocol). Autoconfiguration for IPv6 supports stateless autoconfiguration using NDP (Neighbor Discovery Protocol, including recursive DNS server (RDNSS) assignment), stateful autoconfiguration via DHCPv6 and mixed stateless/stateful autoconfiguration (address configuration via NDP, additional parameters via DHCPv6).
6.3.2 Käyttäjät ja salasanat

Just before configuring the clock, the installer will allow you to set up the "root" account and/or an account for the first user. Other user accounts can be created after the installation has been completed.

6.3.2.1 Asetetaan pääkäyttäjän salasana

Pääkäyttäjän tunnus root on superkäyttäjä; root ohittaa kaikki järjestelmän suojaukset. Pääkäyttäjän tunnusta olisi käytettävä vain järjestelmän ylläpitoon, ja vain se on välttämätöntä.

Luotavissa salasanoissa olisi olisi olatteinaan 6 merkkiä ja sekä isoja että pieniä kirjaimia, samoin kuin välimerkkejä. Ole erityisen huolellinen luotaessa salasanaa pääkäyttäjälle, tuolla tunnussa on rajoittamattomat oikeudet. Älä käytä sanakirjasta löytyviä sanoja eikä arvattavissa olevia henkilötietoja.

Vaikka kuka tahansa kysyisi mikä on pääkäyttäjän salasana, on syytä olla erittäin varovainen. Pääkäyttäjän salasanaa ei tavallisesti pitäisi kertoa muille kuin järjestelmän ylläpitäjille.

In case you do not specify a password for the "root" user here, this account will be disabled but the sudo package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the sudo command to become root.

6.3.2.2 Luo tavallisen käyttäjän tunnus

Asennin kysyy halutaanko tässä kohtaa luoda käyttäjätunnus tavallille käyttäjälle. Tunnus on tarkoitettu henkilökohtaiseen käyttöön. Pääkäyttäjän tunnusta ei pidä käyttää tavalliseen käyttöön eikä henkilökohtaisena kirjaumistunnuksena.

Ensimmäiseen kehotteeseen kirjoitetaan käyttäjän koko nimi. Sitten kysytään käyttäjätunnus; useimmiten etunimi tai jotain vastaavaa on ihan hyvä ja etunimi onkin oletusarvo. Lopuksi kirjoitetaan käyttäjälle salasana.

Haluttaessa luoda lisäli käyttäjätunnukseja asennuksen jälkeen käytetään komentoa adduser.

6.3.3 Valitaan aikavyöhyke ja asetetaan kellonaika

Asennin yrittää ensin muodostaa yhteyden Internetin aikapalvelimiin (yhteyskäytäntöön NTP) jotta järjestelmän kellonaikaa saadaan oikeaan. Tunnus on tarkoitetut henkilökohtaiseen käyttöön. Pääkäyttäjän tunnusta ei pidä käyttää tavalliseen käyttöön eikä henkilökohtaisena kirjaumistunnuksena.

Ensimmäiseen kehotteeseen kirjoitetaan käyttäjän koko nimi. Sitten kysytään käyttäjätunnus; useimmiten etunimi tai jotain vastaavaa on ihan hyvä ja etunimi onkin oletusarvo. Lopuksi kirjoitetaan käyttäjälle salasana.

Haluttaessa luoda lisäli käyttäjätunnukseja asennuksen jälkeen käytetään komentoa adduser.

6.3.4 Osioiden teko ja liitoskohtien valinta

Kun laitetunnistus on suoritettu viimeisen kerran pitäisi asentimesi olla tässä kohtaa täysin toiminnallisuus, käyttäjäkohtaiset muutokset ja valmius tositoimiminta. Kuten luvun otsikosta käy ilmi, parin seuraavan osan päättehtävät ovat levyosioiden teko, tiedostojärjestelmien luonti, liitoskohdat ja halutettaan näihin liittyvät jutskat kuten RAID, loogisten levyniteiden hallinta LVM tai salatut laitteet.

Jos osioiden teko kauhistuttaa tai kaivataan tarkempaa tietoa voitetaan lisätä liitteet C.44
Ensimmäinen vaihtoehto on tehdä levyosiot automaattisesti koko levylle tai levyn käyttämättömään osaan. Tätä kutsutaan myös "ohjatuksi" osioinniksi. Jos automaattista osiointia ei haluta, valitaan "Tee levyosiot itse valikosta.

6.3.4.1 Tuotut osioinnin vaihtoehdot

Asennin osaa monenlaiset edistyneemmät osionnit ja ulkoiset muistilaitteet, useissa tapauksissa yhdessä.

- **Loogisten levyniteiden hallintaohjelma (LVM)**
 - **Käyttöjärjestelmän tekemä RAID**
 - Tuettu RAID tasot 0, 1, 4, 5, 6 ja 10.

- **Salaus**

- **Serial ATA RAID** (käytössä dmr raid)
 - Kutsutaan myös termeillä "fake RAID" tai "BIOS RAID". Tuki Serial ATA RAID:ille on tällä hetkellä käytettävissä vain jos se otetaan käyttöön asennetta keskitasossa ja käytettäessä /boot-osioille valitaan ext2.

- **Multipath** (koe käytössä)
 - Katso lisätietoja Wikistämme. Tuki multipathille on tällä hetkellä käytettävissä vain jos se otetaan käyttöön asennetta Keskitasossa ja käytettäessä /boot-osioille valitaan ext2.

Tuettuja ovat seuraavat tiedostojärjestelmät.

- **ext2, ext3, ext4**
 - Vakiotiedostojärjestelmäksi valitaan useimmissa tapauksissa ext4; ohjattua osiointia käytettäessä /boot-osioille valitaan ext2.

- **jfs** (ei ole käytettävissä kaikille suoritinperheille)

- **xfs** (ei ole käytettävissä kaikille suoritinperheille)

- **reiserfs** (valinnainen; ei saatavilla kaikille laitealustoille)
 - Tuki Reiser-tiedostojärjestelmässä ei enää ole käytettävissä vakiona. Käytettäessä asenninta keskitason tai matalalla prioriteetteilla voidaan ottaa käyttöön valitsemalla komponentit partman-reiserfs. Vain tiedostojärjestelmän versio 3 on tuettu.

- **qnx4**
 - Olemassa olevat osiot tunnistetaan ja niille voidaan asettaa liitokset. Ei ole mahdollista luoda uusia qnx4-osioita.

- **FAT16, FAT32**

- **NTFS** (vain luku)
 - Olemassa olevien NTFS-osioiden kokoa voidaan muuttaa ja niille voidaan antaa liitokset. Ei ole mahdollista luoda uusia NTFS-osioita.
6.3.4.2 Ohjattu osiointi

Ohjatussa osiointissa saattaa olla kolmekin vaihtoehtoa: luodaan osiot suoraan kiintolevylle (perinteinen tapa), käytetään logistisen levyniteiden hallintaohjelmaa (LVM) tai käytetään salattua LVM:ää.

HUOMAA

(salattu) LVM ei ehkä ole käytettävissä kaikille suoritinperheille.

HUOMAA

Jos valitit ohjatun osiointin, on joitakin osiotaulun muutoksia kirjoitettava valitulle levylle kun LVM:än asetuksia tehdään. Käytännössä tämä tarkoittaa, että asennin kääntää kaikki tiedot jotka on valitettu kiintolevylle, eikä kyseessä ole mitään muutostaitoksiä. Tästä syystä on tärkeää, että saat säännöllisesti tehdä tietojen viemisen, jotta tiedot eivät menetä.

If you choose guided partitioning (either classic or using (encrypted) LVM) for a whole disk, you will first be asked to select the disk you want to use. Check that all your disks are listed and, if you have several disks, make sure you select the correct one. The order they are listed in may differ from what you are used to. The size of the disks may help to identify them.

Any data on the disk you select will eventually be lost, but you will always be asked to confirm any changes before they are written to the disk. If you have selected the classic method of partitioning, you will be able to undo any changes right until the end; when using (encrypted) LVM this is not possible.

<table>
<thead>
<tr>
<th>Osioinnin mallineet</th>
<th>Vähimmäistila</th>
<th>Tehdyt osiot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaikki tiedostot yhdessä levoysoissa</td>
<td>600 Mt</td>
<td>/, sivutus</td>
</tr>
<tr>
<td>Erillinen /home-osio</td>
<td>500 Mt</td>
<td>/, /home, sivutus</td>
</tr>
<tr>
<td>Erilliset /home-, /var- ja /tmp-osio</td>
<td>1 Gt</td>
<td>/, /home, /var, /tmp, sivutus</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Mallineen valinnan jälkeen seuraava ruutu näyttää uuden osiotaulun, josta ilmenee tehdään osiolle tiedostojärjestelmä ja jos niin millainen, ja niiden liitoskohdat.

Osioiden luetteloon voisi olla vaikka tämän näköinen:

| SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L |
|---|---|---|
| #1 ensisij. | 16.4 MB | B f ext2 | /boot |
| #2 ensisij. | 551.0 MB | swap | swap |

4Asennin salaa LVM-levyniteen 256 bitin AES-avaimella ja käyttää ytäimen "dm-crypt"-tukea.
Esimerkki näyttää kaksi levyä jaettuna useisiin osioihin; ensimmäisellä levyllä on hieman vapaata tilaa. Osion rivillä on osion numero, tyyppi, koko, lisäilmaisimia, tiedostojärjestelmä ja (mahdollinen) liitoskohta. Huomaa: tätä nimenomaista kokoonpanoa ei voi tehdä ohjatulla osioinnilla mutta se on esimerkki itse osiot tekemällä mahdollisista vaihtoehtoista.

6.3.4.3 Tee osiot itse

Yllä näytetyn kaltainen ruutu näytetään jos valitaan osioiden teko itse, paitsi että näytetään käytössä oleva osiotaulu ilman liitoskohtia. Tästä lähtien tämä luku käsittelee osiotaulun tekemistä itse ja osioiden käyttöä asennettavassa Debian-järjestelmässä.

Mikäli valittu levy on käytännön ruutu näyttetään jos valitaan osioiden teko itse, paitsi että näytetään käytössä oleva osiotaulu ilman liitoskohtia. Tästä lähtien tämä luku käsittää osiotaulun tekemistä itse ja osioiden käyttöä asennettavassa Debian-järjestelmässä.

Jos ollaan tarkkoja, MD-laitteen voi luoda myös samalla kiintolevylä olevista osioista, mutta sillä ei saavuteta mitään etua.
MD on periaatteessa joukko eri levyillä olevia osiota jotka yhdistetään

loogiseksi laitteeksi. Tätä laitetta voidaan käyttää kuten tavallista levyosiota (ts. komennolla partman sille voi tehdä tiedostojärjestelmän, määrittää liitoskohdan, jne.).

Saavutettu etu riippuu luotavan MD-laitteen tyypistä. Tällä hetkellä tuettuja ovat:

RAID0 Pääasiossa suorituskykyä parantamaan. RAID0 jakaa kirjoitettavan tiedon raidoksi ja jakaa raidat tasan levypakan levyille. Tämä saattaa nopeuttaa luku- ja kirjoitustoimintoja, mutta yhden levyn hajottessa menetetaan

kaikki tieto (paljoa tiedoista on toimivilla levyllä tai levyllä, puuttuvat palat *olivat* hajonneella levyllä).

Tyypillinen RAID0:n käyttö on videoen muokkaukseen tehty leveys.

RAID1 Sopii luotettavuutta korostaviin sovelluksiin. Se muodostuu useasta (tavallisesti kahdesta) saman kokoisesta osiosta ja jokaisella osiossa on täsmälleen samat tiedot. Tästä seuraa kolme seikka. Ensinnäkin yhden levyn hajottessa tieto on yhä peilattuna muilla levyllä. Toiseksi, käytöksellöistä levytilaa on vain osa levypakan koosta (tarkemmin sanottana pakan pienimmän osion verran). Kolmanneksi, tiedostojen lukutoiminnon tapahtuvat levyltä vuorotellen, mikä saattaa parantaa suorituskykyä palvelimella, esimerkiksi tiedostopalvelimella, jossa lukutoimintoja tapahtuu useammin kuin kirjoituksesta.

Levypakkassa voi olla varalevy joka otetaan käyttöön hajonneen levyn tilalle.

RAID5 Tämä on hyvä kompromissi nopeudesta, luotettavuudesta ja hukkaan menevästä levytilasta. RAID5 jakaa kirjoitettavan tiedon raitoihin ja jakaa raidat tasan yhtä lukuunnottamatta pakan levylle (samaan tapaan kuin RAID0). Toisin kuin RAID0. RAID5 laskee lisäksi *pariteettitietoa*, joka kirjoitetaan omalle levylleen. Pariteettitie on ole koko ajan sama (se olisi RAID4), vaan sitä vaihdetaan säännöllisesti, joten pariteettitietoa kirjoitetaan tasaisesti kaikille levylle. Kun yksi levy hajoaa, tiedon puuttuva osa voidaan laskea jäljelle jääneistä tietoa sisältävistä levyistä ja pariteettitiedosta. Tarvitetaan vähintään kolme käytössä olevaa osiota muodostamaan RAID5. Levypakkassa voi olla varalevy joka otetaan käyttöön hajonneen levyn tilalle. Kuten nähdään, RAID5 on luotettavuudeltaan verrattavissa RAID1:een, mutta levytilaa menee vähemmän hukkaan. Toisaalta se saattaa olla hitaampi kirjoitustoiminnossa, koska pariteetin laskemiseen tarvitaan vähintään kolme käytössä olevaa osiota.

RAID6 Samantapainen kuin RAID5, paitsi että pariteettilevyjä on kaksi eikä yksi.

RAID6-pakka selviää kahden levyyn rikkoutumisesta.

RAID10 käyttämällä voidaan saavuttaa luotettavuus ja viikatesiisuuksu ilman pariteetin laskemista.

Yhteenvetona:

<table>
<thead>
<tr>
<th>Tyypi</th>
<th>Levyjä vähintään</th>
<th>Varalevy</th>
<th>Toipuuko levyrikosta?</th>
<th>Käytettävissä oleva tila</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>ei</td>
<td>ei</td>
<td>Pienimmän osion koko kerta pakan levyjen määrä</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>haluttaessa</td>
<td>kyllä</td>
<td>Pakan pienimmän osion koko</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>haluttaessa</td>
<td>kyllä</td>
<td>Pakan pienimmän osion koko kerta (pakan levyjen määrä vähennettynä yhdellä)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>haluttaessa</td>
<td>kyllä</td>
<td>Pakan pienimmän osion koko kerta (pakan levyjen määrä vähennettynä kahdella)</td>
</tr>
</tbody>
</table>
Tyyppi | Levyjä vähintään | Varalevy | Toipuuko levyrikosta? | Käytettävissä oleva tila
---|---|---|---|---
RAID10 | 2 | haluttaessa | kyllä | Kätkken osioiden määrä jaettuna kimpalekopioiden määrällä (oletusarvo kaikki)

Liisää tietoa ohjelmallisesti toteutetusta RAIDista löytyy ohjeesta Software RAID HOWTO.
RAID-pakkaaan kuuluvat osiot on merkittävä ennen MD-laitteen luomista. (Tämä tehdään komennolla partman valikossa Osion asetukset: jossa olisi valittava Käyttö: → fyysinen aide RAIDia varten.

Huomaa

Make sure that the system can be booted with the partitioning scheme you are planning. In general it will be necessary to create a separate file system for /boot when using RAID for the root (/) file system. Most boot loaders (including grub) do support mirrored (not striped!) RAID1, so using for example RAID5 for / and RAID1 for /boot can be an option.

- **RAID0** on yksinkertainen — asennin näyttää luetteloon käytettävissä olevista RAID-osiosta ja tarvitteet vain valita mistä osiosta muodostetaan MD.
- **RAID1** on hieman mutkikkaampi. Ensinnäksi kysytään MD:hen käytettävien levyjen ja varalevyjen määrät. Seuraavaksi on valittava käytettävissä olevien RAID-osioiden joukosta levyjä ja varalevyin käytettävät. Valittujen osioiden määrän on täsmättää MD:lle ilmoitetuille määriin. Älä huoli vaikka tulee virhe; asennin ei päästä jatkamaan ennen kuin levyjen määrät täsmäävät.
- **RAID5:n käyttöönotto** on samantapaista kuin RAID1:n, paitaisi että on valittava ainakin kolme levyosiota.
- **RAID6:n käyttöönotto** on samantapaista kuin RAID1:n, paitaisi että on valittava ainakin neljä levyosiota.

MD-laitteita voi aivan hyvin olla eri tyyppisiä samalla kertaa. Jos esimerkiksi MD-laitteille on käytettävissä kolme 200 Gt kiintolevylä, joissa jokaisessa on kaksi 100 Gt osiota, voidaan kunkin levyen ensimmäisestä osiosta muodostaa RAID0 (nopea 300 Gt osio videon käsittelyyn) ja käyttää muut kolme osiota (2 käytössä ja yksi varalla) RAID1:een (hyvin luotettava 100 Gt /home-osiin).

Kun MD-laitteiden asetukset ovat valmiit, palataan partman-komentoon valitsemalla Lopeta partman-md:n valikosta. partman tekee uusille MD-laitteille tiedostojärjestelmät ja säätää niiden ominaisuuksia, esimerkiksi liitoskohdat.

6.3.4.5 Logisten levyniteiden hallintaohjelman (LVM) asetukset

Pääkäyttäjänä tai ”edistyneenä” käyttäjänä tietokonetta käyttäneet ovat varmasti nähneet jonkun levyosion (tavallisesti kaikkein tärkeimmän) olevan liian täynnä, jonkin muun osion ollessa samaan aikaan melkein käyttämättä. Tilannetta piti korjailta siirtämällä tiedostojia, symbolisilla linkeillä jne.

Tällaisen tilanteen voi välttää käyttämällä logisten levyniteiden hallintaohjelmaa (LVM). Yksinkertaistettuna LVM osaa yhdistää levysiot (LVM käyttää termiä fysysiset levyniteet) näennäislevyksi (niin sanotuksi levynideryhmäksi, joka voidaan jakaa näennäislevyksi (loogisiksi levyniteiksi). Etuna tässä on, että logisessa levyniteessä (ja tietysti levynideryhmissä joista se muodostuu) voi olla osia jotka ovat eri fysisillä kiintolevyillä.

Työpaine	Järjestelmä			
RAID10	2	haluttaessa	kyllä	Kätkken osioiden määrä jaettuna kimpalekopioiden määrällä (oletusarvo kaikki)
Kun 160 Gt /home-osioon huomataan tarvittavan lisää tilaa, voidaan yksinkertaisesti lisätä tietokoneeseen uusi 300 Gt levy, liitändä se vanhaan levynideryhmään ja muuttaa /home-tiedostojärjestelmän sisältävän loogisen levynitteen kokoa ja hups vaan — käyttäjillä on taas tilaa "uudella"460 Gt osiolla. Tämä esimerkki on tietenkin hieman yksinkertaistettu. Jos LVM HOWTO ei vielä ole luettu siihen kannattaisi tutustua.

Be aware: the new LVM setup will destroy all data on all partitions marked with an LVM type code. So, if you already have an LVM on some of your disks, and want to install Debian additionally to that machine, the old (already existing) LVM will be wiped out! The same counts for partitions, which are (for any reason) misleadingly marked with an LVM type code, but contain something different (like an encrypted volume). You need to remove such disks from the system, before performing a new LVM setup!

Palattaessa komennon partman pääruutuun, nähdään uusi valinta Tee levyniteiden hallintaohjelman asetukset. Kun se on valittu, pyydetään ensin vahvistamaan osiotaulun vireillä olevat muutokset (jos niitä on), jonka jälkeen näytetään LVM:n asetusvalikko. Valikon yläpuolella näkyy yhteenveto LVM:n asetuksista. Itse valikko on yhteysriippuva eli näyttää vain mahdolliset toiminnot. Mahdolliset toiminnot ovat:

• Näytä asetukset yksityiskohtaisesti: näyttää LVM:n rakenteen, loogisten levyniteiden nimet, koot ja muuta
• Luo levynideryhmä
• Luo looginen nide
• Poista levynideryhmä
• Poista looginen nide
• Kasvata levynideryhmää
• Pienennä levynideryhmää
• Lopeta: palaa komennon partman pääruutuun

Tuon valikon toiminnoilla luodaan ensin levynideryhmän ja sitten sen sisään loogisia levyniteitä. Kun on palattu komennon partman pääruutuun, näkyvät luodut loogiset levyniteet samalla tavalla kuin tavalliset osiot (ja niitä olisi samalla tavalla käsiteltävänkin).

6.3.4.6 Salattujen levyniteiden asetukset

The two most important partitions to encrypt are: the home partition, where your private data resides, and the swap partition, where sensitive data might be stored temporarily during operation. Of course, nothing prevents you from encrypting any other partitions that might be of interest. For example /var where database servers, mail servers or print servers store their data, or /tmp which is used by various programs to store potentially interesting temporary files. Some people may even want to encrypt their whole system. Generally the only exception here is the /boot partition which must remain unencrypted, because historically there was no way to load the kernel from an encrypted partition. (GRUB is now able to do that, but debian-installer currently lacks native support for encrypted /boot. The setup is therefore covered in a separate document.)
On syytä huomata salattujen osioiden käsittelyn olevan hitaampaa toistuvien salaus- ja purkutoimien takia. Käsittelynopeuteen vaikuttavat tietokoneen suorituskyky, salausmenetelmä ja avaimen pituus.

The encryption method supported by debian-installer is *dm-crypt* (included in newer Linux kernels, able to host LVM physical volumes).

Let's have a look at the options available when you select encryption via Device-mapper (*dm-crypt*). As always: when in doubt, use the defaults, because they have been carefully chosen with security in mind.

Avaimen koko: 256 Tässä annetaan salausavaimen pituus. Avaimen suurempi pituus yleensä parantaa salamista. Toisaalta, pidempi avain yleensä hidastaa salamista. Salausmenetelmä määriää käytettävissä olevat avaimien pituu-

det.

IV-menetelmä: *xts-plain64* Satunnaissiemen alustusalgoritmia tai IV-menetelmää käytetään salakirjoitukessa varmistamaan että salakirjoitustilan osio on siten toistuvista hahmoista varmistettua, että salakirjoitettua tietoa käytetään siten tietoon, että salausavainta tuottaa aina erilaisen salakirjoitettun tiedon. Tavoitteena on ettei kräkkeri voi päätellä tietoa salatun tiedon toistuvista hahmoista.

Tarjolla olevista vaihtoehdoista on oletuksena oleva *xts-plain64* tällä hetkellä vähiten haavoittuva tietovirheellisille hyökkäyksille. Käytä muita salausmenetelmiä vain kun on varmistettava yhteensopivuus aiemmin asennetun järjestelmän kanssa, jos siinä ei ole käytettävä uudempia salausmenetelmiä.

Salausavain: Tunnuslause Tässä valitaan tälle osiolle käytettävän salausavaimen tyyppi.

Tunnuslause Salausavain muodostetaan myöhemmän asennuksen aikana kysyttävästä tunnuslauseesta.

Satunnaisen avain Uusi salausavain muodostetaan satunnaisesta aineistosta aina kun salattua osiota otetaan käyttöön. Toisin sanoin: Korta joka kerta kun järjestelmä sammutetaan osion tiedot menetetään salausavainen kadotessa muistista. (Avainta voi tietenkin yrittää arvata kokeilemalla kaikki mahdollisuudet, mutta joille salausmenetelmässä ole tuntemattomia mieltä riittää ihmisen ikään.)

Satunnaiset avaimet ovat käteviä sivutusosioille, koska tunnuslauseettua ei tarvitse muistaa eikä luottamukkSELLISTA tietoa tarvitse pyyhkiä sivutusosiolta ennen tietokoneen sammuttamista. Toisaalta *ei ole* mahdollis-

* Tiedot pyyhitään: kyllä Määritetään kirjoitetaanko osion tietojen päille satunnaisesta aineistosta osiossa salaamista ja käyttöönottaa. Tätä suositellaan, koska muuten salausten murtaja voisi huomata osion käytössä ja käyttämättä olevat osat. Lisäksi aikaisemmassa asennuksessa jääneen tiedon palautaminen on vaikeampaa.

Kun salatuille osioille on valittu halutut ominaisuudet, palataan takaisin osioinnin päälle satunnaiselle aineistolla ennen salausten käyttöönottoa. Tätä suositellaan, koska suurten salausten murtaja voisi huomata osion käytössä ja käyttämättä olevat osat. Lisäksi aikaisemmassa asennuksessa jääneen tiedon palautaminen on vaikeampaa.

7Virastoilla joiden lyhenteessä on kolme kirjainta uskotaan olevan välineet tiedon palauttamiseen vaikka magneto-optisen taltion päälle olisi kirjoitettu montakin kertaa.
VAROITUS

Jos salausavainten luomiseen valittiin jokin muu tapa kuin tunnuslause, luodaan salausavaimet nyt. Koska ydin ehkä vielä ole emännännyt kerätää riittävää satunnaisuutta asennuksen ollessa vasta alkuvaiheessa, toiminto voi kestää kauan. Toimintoa voidaan nopeuttaa luomalla satunnaisuutta: esim. painelemalla satunnaisia näppäimiä tai vaihtamalla komentotulkkiiin virtuaalikonsoliilla kaksi ja tekemällä verkkovo- ja levyliikennettä (noudetaan tiedostoja, kopioimalla isoja tiedostoja /dev/null jne.). Tämä toistetaan kaikille salattaville osioille.

After returning to the main partitioning menu, you will see all encrypted volumes as additional partitions which can be configured in the same way as ordinary partitions. The following example shows a volume encrypted via dm-crypt.

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
  #1 115.1 GB F3 ext3
```

Now is the time to assign mount points to the volumes and optionally change the file system types if the defaults do not suit you.

Pay attention to the identifiers in parentheses (sda2_crypt in this case) and the mount points you assigned to each encrypted volume. You will need this information later when booting the new system. The differences between the ordinary boot process and the boot process with encryption involved will be covered later in Kohta 7.2.

6.3.5 Perusjärjestelmän asennus
Vaikkakin tämä vaihe vielä syntyä kauan, koska noudetaan, tarkistetaan ja puretaan koko perusjärjestelmä. Jos tietokone tai nettiyhteys on hidas, tässä saattaa kulua kauan.

Perusjärjestelmän asennuksen aikana ilmoitukset paketten purkimisesta ja asetuksista ohjataan laitteelle tty4. Tähän päätteeseen pääsee painamalla Vasen Alt-F4; takaisin asentimeen päätsee painamalla Vasen Alt-F1.

Myös tämän asennusvälineen ilmoitukset purkimisesta ja asetuksista ohjataan tiedostoon /var/log/syslog. Voit tarkistaa ne sieltä jos asennukseen käytetään sarjapäätäätettä.

Kun paketteja asennetaan paketinhallintajärjestelmää käyttää, se asentaa oletusarvona myös niiden suosittelemat paketit. Valitut sovellukset pystyvät suorittamaan perustoiminnallisuutensa ilminkin suositeltuja paketteja, mutta niillä tehdään sovellusten päivitystä ja ne tulisi päätten ylläpitäjien mielestä tavallisissa tapauksissa asentaa sovelluksen kannalta.

HUOMAA
Teknisistä syystä perusjärjestelmän asennuksen aikana asennetut paketit asennetaan ilman niiden "suosittelemia" paketteja. Edellisessä kappaleessa mainitu sääntö tulee voimaan vasta perusjärjestelmän asentamisen jälkeen.

6.3.6 Asennetaan lisää ohjelmia
Kun perusjärjestelmä on asennettu, on käytössä toimiva mutta rajoitettu järjestelmä. Useimmat haluavat asentaa lisää ohjelmia sovittaakseen järjestelmän omiin tarpeisiinsa, ja asentimessa voidaan tehdä tämänkin. Tämä vaihe saattaa
6.3.6.1 Tehdään apt:n asetukset

One of the tools used to install packages on a Debian GNU/Linux system is the program apt, from the apt package. Other front-ends for package management, like aptitude and synaptic, are also in use. These front-ends are recommended for new users, since they integrate some additional features (package searching and status checks) in a nice user interface.

Asetukset on tehtävä jotta apt tietää mistä paketteja noudetaan. Asetukset tallennetaan tiedostoon /etc/apt/sources.list. Tiedostoa voi tutkia ja muuttaa mieleisekseen kun asennus on valmis.

Oletusprioriteetilla asennettaessa asennin huolehtii asetuksien teosta enimmäkseen automaattisesti, valitun asennustavan perusteella ja mahdollisesti käyttämällä aiemmin asennuksen aikana tehtyjä valintoja. Useimmissa tapauksissa asennin lisää tietoturvapäivitysten asennuspalvelimen automaattisesti, ja "stable-updates"-asennuspalvelimen jos asennetaan vakaata jakelua.

6.3.6.1.1 Installing from more than one CD or DVD image

If you are installing from a CD or DVD image that is part of a larger set, the installer will ask if you want to scan additional installation media. If you have such additional media available, you probably want to do this so the installer can use the packages included on them.

If you do not have any additional media, that is no problem: using them is not required. If you also do not use a network mirror (as explained in the next section), it can mean that not all packages belonging to the tasks you select in the next step of the installation can be installed.

If you do scan multiple installation media, the installer will prompt you to exchange them when it needs packages from one that isn’t currently in the drive. Note that only discs that belong to the same set should be scanned. The order in which they are scanned does not really matter, but scanning them in ascending order will reduce the chance of mistakes.

6.3.6.1.2 Asentaminen verkossa olevalta asennuspalvelimelta

Useimmissa asennuksissa kysytään käytetäänkö verkossa olevaa asennuspalvelinta pakettialähteénä. Useimmien oletuskustannut aivan hyvä, mutta on muutamia poikkeuksia.

If you are not installing from a full CD/DVD image, you really should use a network mirror as otherwise you will end up with only a very minimal system. However, if you have a limited Internet connection it is best not to select the desktop task in the next step of the installation.

If you are installing from a single full CD image, using a network mirror is not required, but is still strongly recommended because a single CD image contains only a fairly limited number of packages. If you have a limited Internet connection it may still be best to not select a network mirror here, but to finish the installation using only

Note that the program which actually installs the packages is called dpkg. However, this program is more of a low-level tool. apt is a higher-level tool, which will invoke dpkg as appropriate. It knows how to retrieve packages from your installation media, the network, or wherever. It is also able to automatically install other packages which are required to make the package you’re trying to install work correctly.
what’s available on the CD image and selectively install additional packages after the installation (i.e. after you have rebooted into the new system).

If you are installing from DVD, any packages needed during the installation should be present on the first DVD image. Use of a network mirror is optional.

One advantage of adding a network mirror is that updates, that have occurred since the CD/DVD images were created and have been included in a point release, will become available for installation, thus extending the life of your CD/DVD set without compromising the security or stability of the installed system.

In summary: selecting a network mirror is generally a good idea, except if you do not have a good Internet connection. If the current version of a package is available from installation media, the installer will always use that. The amount of data that will be downloaded if you do select a mirror thus depends on

1. asennuksen seuraavassa vaiheessa valittavista tehtävistä
2. noiden tehtävien tarvitsemista paketeista
3. which of those packages are present on the installation media you have scanned, and
4. whether any updated versions of packages included on the installation media are available from a mirror (either a regular package mirror, or a mirror for security or stable-updates).

Huomaa viimeisen kohdan tarkoittavan, että vaikka verkossa oleva asennuspalvelin jätetään valitsematta käyttöön, saattaa joitakin paketteja silti noutaa Internetistä jos niille on päivitys tietoturva- tai stable-updates-palvelimella ja nämä päivitykset on otettu käyttöön.

6.3.6.1.3 Choosing a network mirror

Unless you chose not to use a network mirror, you will be presented with a list of network mirrors based upon your country selection earlier in the installation process. Choosing the offered default is usually fine.

The offered default is deb.debian.org, which is not a mirror itself but will redirect to a mirror that should be up-to-date and fast. These mirrors support TLS (https protocol) and IPv6. This service is maintained by the Debian System Administration (DSA) team.

A mirror can also be specified by hand by choosing "enter information manually". You can then specify a mirror host name and an optional port number. This actually has to be a URL base, i.e. when specifying an IPv6 address, one has to add square brackets around it, for instance "[2001:db8::1]".

If your computer is on an IPv6-only network (which is probably not the case for the vast majority of users), using the default mirror for your country might not work. All the mirrors in the list are reachable via IPv4, but only some of them can be used via IPv6. As connectivity of individual mirrors can change over time, this information is not available in the installer. If there is no IPv6 connectivity for the default mirror for your country, you can either try some of the other mirrors offered to you or choose the "enter information manually" option. You can then specify "ftp.ipv6.debian.org" as the mirror name, which is an alias for a mirror available via IPv6, although it will probably not be the fastest possible one.

6.3.6.2 Ohjelmien valinta ja asentaminen

Asennuksen aikana on mahdollista valita asennettavat lisäohjelmat. Jotta väitettäisiin yksittäisten asennuspakkettien valitsemiselta 87573 saatavilla olevan paketin joukosta, tässä asentimen osassa valitaan ja asennetaan ennalta määriteltyjä ohjelmakokoelmia jotta tietokone saadaan nopeasti valmiiksi erilaisiin tehtäviin.

These tasks loosely represent a number of different jobs or things you want to do with your computer, such as "Desktop environment", "Web server", or "SSH server". Kohta D.2 lists the space requirements for the available tasks.

Jotkin tehtävät saattavat olla esivalittuja, tähän vaikuttavat asennettavan tietokoneen ominaisuudet. Valinnat voit poistaa jos niitä ei haluta. Tässä kohtaa voi jopa poistaa valinnan kaikista tehtävistä.

VIHJE

Asentimen merkkipohjaisessa käyttöliittymässä tehtävän valinta merkitään väli- lyöntinäppäimellä.

9You should know that to present this list, the installer is merely invoking the tasksel program. It can be run at any time after installation to install more packages (or remove them), or you can use a more fine-grained tool such as aptitude. If you are looking for a specific single package, after installation is complete, simply run aptitude install package, where package is the name of the package you are looking for.
The "Desktop environment" task will install a graphical desktop environment. By default, `debian-installer` installs the Gnome desktop environment. It is possible to interactively select a different desktop environment during the installation. It is also possible to install multiple desktops, but some combinations of desktop may not be co-installable.

Note that this will only work if the packages needed for the desired desktop environment are actually available. If you are installing using a single full CD image, they will possibly need to be downloaded from a network mirror as they might not be available on the CD image due to its limited amount of space. Installing any of the available desktop environments this way should work fine if you are using a DVD image or any other installation method.

The various server tasks will install software roughly as follows. Web server: `apache2`; SSH server: `openssh`.

Note

The various server tasks will install software roughly as follows. Web server: `apache2`; SSH server: `openssh`.

Tehtävä "Tavallinen järjestelmä" merkitsee asennettavaksi kaikki paketit joiden tärkeys on "perus". Näihin kuuluu lukuisia yleisiä työkaluohjelmia jotka tapaavat olla käytettävissä kaikissa Linux- tai Unix-järjestelmissä. Tämä tehtävä tulisi jättää valitaksi paitsi jos tiedät mitä teet ja haluat todella suppean järjestelmän.

Mikäli asennuskielen valinnan yhteydessä maa-asetustoksi valitisti joku muu kuin "C", `tasksel` tarkistaa onko tuota maa-asetustoa vastaavia tehtäviä ja yrittää automaattisesti asentaa kyseiset maa-asetustopaketti. Nämä ovat esimerkiksi paketit joissa on sanalueteloita tai kielen erikoisfontteja. Jos valittiin työpöytäympäristö, asennetaan myös sitä vastaavat maa-asetustopaketti (jos näitä on saatavilla).

Kun tehtävät on valittu, painetaan Continue. Tässä kohtaa komento `apt` asentaa paketit joista valitut tehtävät muodostuvat. Jos jokin ohjelmasta tarvitsee lisätietoja käyttäjältä, se näyttää kehotteen asennuksen aikana.

Kannattaa huomata erityisesti Työpöytätehtävän olevan hyvin kookas. Erityisesti asennettaessa tavalliselta rompulla noutamalla rompulla puuttuvat paketit asennuspalvelimelta, asennin saattaa haluta noutaa suuren määrän paketteja verkosta. Jos Internet-yhteys on verraten hidaks, tähän voi kulua pitkä aika. Ei ole mahdollisuutta peruuttaa pakettiin asennusta kun se on alkanut.

Vaikka paketit olisivatkin mukana rompulla, asennin saattaa silti noutaa ne asennuspalvelimelta jos palvelimella oleva versio on uudempi kuin rompulla oleva. Asennettaessa vakaata jakelua, näin voi käydä päivitysversion (alkuperäisen vakaan julkaisun päivitys) julkaisun jälkeen; asennettaessa testattavaa jakelua näin käy jos käytetään vanhaa otosta.

6.3.7 Järjestelmä käynnistymään kiintolevyltä

Asennettaessa levytöntä työasemaa ei koneen levytöltä käynnistämien tietenkään ole mielekästä, jolloin tämä vaihe ohitetaan.

6.3.7.1 Etsitään muita käyttöjärjestelmiä

Asennin etsii muita tietokoneelle asennettuja käyttöjärjestelmiä ennen kuin käynnistystuloksina asennetaan. Jos tuettu käyttöjärjestelmä löytyy, tästä kerrotaan käynnistyslaitteena asennettaessa ja asetukset tehdään sallimaan myös tämän käyttöjärjestelmän käynnistämisen Debianin lisäksi.

Huomaa useiden käyttöjärjestelmien käynnistämisen samalla koneella olevan yhä hieman hakkiaula. Muiden käyttöjärjestelmien käynnistämisen ja asetusten tekemisen automaattikirja on erilainen joka laitelaitteessa erilaisella muistikortilla ja jopa arkkitehnikin tai muistikortin ohjaamona. Jos automaattikirja ei toimi olisi käytetyn alkulatausohjelman ohjeista etsittävä lisätietoa.

6.3.7.2 Install the Grub Boot Loader on the drive

The amd64 boot loader is called "grub". Grub is a flexible and robust boot loader and a good default choice for new users and old hands alike.

By default, grub will be installed on the UEFI partition/the Boot Record of the primary drive, where it will take over complete control of the boot process. If you prefer, you can install it elsewhere. See the grub manual for complete information.
Jos grub:ia ei haluta asentaa, palaa painikkeella Go Back takaisin päivalikkoon, ja valitse siellä haluttu käynnistyslatain.

6.3.7.3 Jatketaan ilman käynnistyslatainta

Tällä valinnalla voidaan asennus saattaa loppuun loppuun asentamatta mitään käynnistyslatainta. Näin voidaan tehdä koko koska arkkiitehtuuri/arkkiitehtuurin muunnokselle ei ole käynnistyslatainta tai sitä ei haluta (esiin käytetään jo asennettua käynnistyslatainta).

Tehtäessä käynnistyslataimen asetukset olisi, olisi asennettun ytimen nimi tarkistettava hakemistosta /target/
boot. Hakemistosta olisi myös katsottava onko siellä initrd; jos on, käynnistyslataimelle lienee kerrottava sen käyttämisestä. Muuta tarvittavaa tietoa ovat juuritiedostojärjestelmälle valittu levy ja osio, ja mikäli /boot asennettui erilliselle osioille, myös sen levy ja osio.

6.3.8 Päätetään asennus

6.3.8.1 Tehdään kellon asetukset

Asennin kysyyne onko tietokoneen kello maailmanajassa (UTC). Jos mahdollista tätä ei kysytä vaan asennin yrittää päätellä esimerkiksi muiden asennettujen käyttöjärjestelmien perusteella onko kello maailmanajassa.

Tässä kolmikin debian-installer yrittää myös kellonajan tallentamista järjestelmän laitekelloon. Tallennettava aika on maailmanaika tai paikallinen aika edellä tehdyn valinnan mukaisesti.

6.3.8.2 Järjestelmän uudelleenkäynnistys

You will be prompted to remove the boot media (CD, USB stick, etc) that you used to boot the installer. After that the system will be rebooted into your new Debian system.

6.3.9 Troubleshooting

Tässä luvussa käsiteltäviä asentimen osia ei tavallisesti käytetä, vaan ne ovat käytettävissä jos jotain menee pieleen.

6.3.9.1 Asentimen lokien tallentaminen

Jos asennus onnistuu, asennuksen aikana kertyneet logitiedostot tallennetaan automaattisesti uuden Debian-järjestelmän hakemistoon /var/log/installer/.

Choosing Save debug logs from the main menu allows you to save the log files to a USB stick, network, hard disk, or other media. This can be useful if you encounter fatal problems during the installation and wish to study the logs on another system or attach them to an installation report.

6.3.9.2 Komentotulkin käyttö ja lokien lukeminen

10Eli pidät pohjassa Alt-näppäintä Välilyönnin vasemmalla puolella ja funktionäppäintä F2 samaan aikaan.
Muokkaa ja katsele tiedostoja teksturilla **nano**. Asennusjärjestelmän lokitiedostot löytyvät hakemistosta **/var/log**.

HUOMAA

Vaikkakin voit tehdä komentotulkissa periaatteessa mitä vain käytettävissä olevilla komennolla voi, komentotulkki on varsinaisesti tarkoitettu käytettäväksi jos jokin menee vikaan ja virheenjäljitykseen.

Tämän tekeminen itse komentotulkissa saattaa häiritä asennusta ja johtaa virheisiin tai vaillinaiseen asennukseen. Erityisesti olisi aina annettava asentimen itse ottaa sivutusosio käyttöön eikä tehdä sitä itse komentotulkissa.

6.3.10 Installation over network-console

Yksi asentimen kiinnostava osa on **verkkopäätö.** Sitä käyttäen voidaan iso osa asennuksesta tehdä verkon kautta SSH:lla etäkäyttöön. Verkon käyttö edellyttää asennuksen ensimmäisten vaiheiden suorittamista konsolilta, ainakin verkon asetusten tekemisen asti (Mutta tämän osan voi automatisoida, katso Kohta 4.6.)

This component is not loaded into the main installation menu by default, so you have to explicitly ask for it. If you are installing from optical media, you need to boot with medium priority or otherwise invoke the main installation menu and choose Load installer components from installation media and from the list of additional components select network-console: Continue installation remotely using SSH. Successful load is indicated by a new menu entry called Continue installation remotely using SSH.

Mikäli asennusta halutaan jatkaa paikallisena asennuksena, voidaan milloin tahansa painaa **Enter**, jolla palataan päävalikkoon mistä voidaan valita toinen asentimen osa.

Nyt vaihdetaan verkkokaapelin toiseen päähän. Ennen aloittamista on pääte asetettava käyttämään UTF-8-merkkikoodia, koska sitä asennusjärjestelmä käyttää. Jos näin ei tehdä, etäasennuksen voi silti tehdä mutta ruudulla saattaa olla kummallisia ilmiöitä kuten rikkinäisiä valintaikkunan reunoja tai lukukelvottomia ei-ascii-merkkejä. Yhteys asennettavaan järjestelmään muodostetaan kirjoittamalla:

```
$ ssh -l installer asennettava_kone
```

Yllä `asennettava_kone_host` on joko asennettavan koneen konenimi tai IP-osoite. Ennen varsinaista sisäänkirjautumista näytetään etäkoneen sormenjälki ja käyttäjän on vahvistettava se oikeaksi.

HUOMAA

Yhteyden katkeamiselta voidaan ehkä välttyä lisäämällä valitsin

```
-o ServerAliveInterval=arvo ssh
```

-yhteys käynnistettäessä, tai lisäämällä tuo asetus **ssh**:n asetustiedostoon. Huomaa kuitenkin että joissakin tapauksissa tämän valitsimen lisääminen **aiheuttaa** yhteyden katkeamisen (esimerkiksi jos keep-alive -paketteja lähetetään lyhyen verkkoyhteyden katkoksen aikana, josta **ssh** olisi muuten toipunut). Sitä oli siis käytettävä vain tarvittaessa.
6.4 Puuttuvan laitetiedoston lataaminen

Kuten Kohta 2.2 kertoo, joillekin laitteille on ladattava laiteohjelmisto. Joissakin tapauksissa laite ei toimi lainkaan jos laiteohjelmisto ei ole käytettävissä; joskus puuttuva laiteohjelmisto ei vaikuta perustoimintoihin ja laiteohjelmistoa tarvitaan vain lisäominaisuuksien saamiseen käyttöön.

HUOMAA

Which devices are scanned and which file systems are supported depends on the architecture, the installation method and the stage of the installation. Especially during the early stages of the installation, loading the firmware is most likely to succeed from a FAT-formatted USB stick. On i386 and amd64 firmware can also be loaded from an MMC or SD card.

Huomaa että laiteohjelmiston lataamisen voi ohittaa jos on tiedossa että laite toimii ilmankin tai jos laitetta ei tarvita asennuksen aikana.

debian-installer only prompts for firmware needed by kernel modules loaded during the installation. Not all drivers are included in debian-installer, in particular radeon is not, so this implies that the capabilities of some devices may be no different at the end of the installation from what they were at the beginning. Consequently, some of your hardware may not be being used to its full potential. If you suspect this is the case, or are just curious, it is not a bad idea to check the output of the dmesg command on the newly booted system and search for “firmware”.

6.4.1 Taltion valmistelu

Official installation images do not include non-free firmware. The most common method to load such firmware is from some removable medium such as a USB stick. Alternatively, unofficial installation images containing non-
free firmware can be found at https://cdimage.debian.org/cdimage/unofficial/non-free/cd-including-firmware/. To prepare a USB stick (or other medium like a hard drive partition), the firmware files or packages must be placed in either the root directory or a directory named /firmware of the file system on the medium. The recommended file system to use is FAT as that is most certain to be supported during the early stages of the installation.

Tarballs and zip files containing current packages for the most common firmware are available from:

- https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Just download the tarball or zip file for the correct release and unpack it to the file system on the medium.

Jos tarvittava laiteohjelmisto ei ole mukana tar-tiedostossa, voidaan yksittäisiä laiteohjelmistopaketteja ladata myös Debian-asennuspalvelimen (epävapaasta) osistosta. Seuraavassa katsauksessa pitäisi olla luettelo useimmista saatavilla olevasta laiteohjelmistopaketeista mutta sen kattavuutta ei taata ja luettelossa saattaa olla mukana muitakin kuin laiteohjelmistopaketteja.

- https://packages.debian.org/search?keywords=firmware

On myös mahdollista kopioida yksittäisiä laiteohjelmistotiedostoja taltiolle. Irtotiedostoja saadaan esimerkiksi jo asennetusta järjestelmästä tai laitevalmistajalta.

6.4.2 Laiteohjelmisto ja asennettu järjestelmä

Asennuksen aikana ladatut laiteohjelmistot kopioidaan automaattisesti asennettuun järjestelmään. Useimmissa tapauksissa tämä varmistaa laiteohjelmistoa tarvitsevan laitteen toimivan oikein myös kun on käynnistetty asennettuun järjestelmään. Jos asennettu järjestelmä kuitenkin käyttää eri versiota ytimestä kuin asennin on pieni mahdollisuus ettei laiteohjelmistoa voida ladata versioerojen vuoksi.

Jos laiteohjelmisto ladattiin laiteohjelmistopakettista, debian-installer asentaa asennettuun järjestelmään myös kyseen pakan ja lisää automaattisesti APT:n pakettivaraston osion non-free tiedostoon sources.list. Tästä on se etu, että laiteohjelmiston pitäisi päivityä automaattisesti jos uusi versio julkaistaan.

Jos laiteohjelmiston lataus ohitettiin asennuksen aikana, kyseen laite ei luultavasti toimi asennetussa järjestelmässä ennen kuin laiteohjelmisto (tai laiteohjelmistopaketti) on asennettu käyttäjän toimesta.

HUOMAA

Jos laiteohjelmisto ladattiin irrallisista laiteohjelmistotiedostoista, ei asennettuun järjestelmään kopioitu laiteohjelmisto päivity automaattisesti jos ei vastaavaa laiteohjelmistopakettia (jos sellainen on saatavilla) asenneta asennuksen valmistuttua.

6.4.3 Completing the Installed System

Depending on how the installation was performed, it might be that the need for some firmware was not detected during installation, that the relevant firmware was not available, or that one chose not to install some firmware at that time. In some cases, a successful installation can still end up in a black screen or a garbled display when rebooting into the installed system. When that happens, the following workarounds can be tried:

- Pass the nomodeset option on the kernel command line. This might help boot into a "fallback graphics" mode.
- Use the Ctrl-Alt-F2 key combination to switch to VT2, which might offer a functional login prompt.

Once logged in into the installed system, it is possible to automate the detection of missing firmware, and to perform the required steps to enable them following this procedure:

1. Install the isenkram-cli package.
2. Run the isenkram-autoinstall-firmware command as the "root" user.

Usually, rebooting is the simplest way to make sure all kernel modules are properly initialized; that’s particularly important when one has booted the system with the nomodeset option as an interim measure.
Installing firmware packages is very likely to require enabling the non-free section of the package archive. As of Debian GNU/Linux 11.0, running the `isenkram-autoinstall-firmware` command will do that automatically by creating a dedicated file (`/etc/apt/sources.list.d/isenkram-autoinstall-firmware.list`), pointing at a generic mirror.

6.5 Customization

Using the shell (see Kohta 6.3.9.2), the installation process can be carefully customized, to fit exceptional use cases:

6.5.1 Installing an alternative init system

Debian uses systemd as its default init system. However, other init systems (such as sysvinit and OpenRC) are supported, and the easiest time to select an alternative init system is during the installation process. For detailed instructions on how to do so, please see the [Init page on the Debian wiki](https://wiki.debian.org/).
Luku 7

Asennetun Debian-järjestelmän käynnistäminen

7.1 Totuuden hetki

Sähköinsinöörit tapaavat katsoa järjestelmän ensimmäisellä käynnisykerralla toimiiko se vai ”tulevatko savut ulos”.

If you did a default installation, the first thing you should see when you boot the system is the menu of the grub bootloader. The first choices in the menu will be for your new Debian system. If you had any other operating systems on your computer (like Windows) that were detected by the installation system, those will be listed lower down in the menu.

Ei pidä pelästyä jos järjestelmä ei käynnisty kunnolla. Jos asennus onnistui, todennäköisesti Debianin käynnistymisen estävä vika on sangen pieni. Useimmissa tapauksissa vika on korjattavissa tekemättä asennusta undestaan. Yksi käytettävissä oleva tapa käynnistysväkkojen korjaamiseen on asentimen sisäänrakennettu pelastustila (katso Kohta 8.6).

Jos Debian ja Linux ovat uusia sinulle, saatat tarvita kokeneiden käyttäjien tukea. Suoraan tietoverkosta apua löytyy IRC-kanavilta #debian ja #debian-boot IRC-verkossa OFTC. Toinen tapa on käyttää debian-user-sähköpostilistaa.

Voit myöskin tehdä asennusraportin kuten selitetään kohdassa Kohta 5.4.7. Katso, että kuvaat vian selkeästi ja liitä mukaan virheilmoitukset jotka voivat auttaa muita vian etsinnässä.

Jos tietokoneella oli muita käyttöjärjestelmiä, joita ei havaittu tai ei tunnistettu oikein, ole hyvä ja tee asennusraportti.

7.2 Salattujen levyniteiden liittäminen

Jos asennuksen aikana tehtiin salattuja levyniteitä ja niille annettiin liitoskohdat, pyydettään jokaisen levyniteen tunnuslause käynnistyksen aikana.

Osioille joiden salausmenetelmä on dm-crypt näytetään käynnistyksen aikana seuraava kehote:

```
Starting early crypto disks... part_crypt
(stopping)
Enter LUKS Passphrase:
```

```
part kehotteen ensimmäisellä rivillä on osio, esim. sda2 tai md0. Nyt varmaan mietit minkä levyniteen tunnuslause pitäisi kirjoittaa. Onko kyseessä /home? Vai /var? Jos salattuja osioita on vain yksi, on tämä tietysti helppoa ja kirjoitetaan vain levynidettä tehtäessä asetettu tunnuslause. Jos salattuja osioita tehtiin useampia, on oltava kaikki osioita jakettu kohteeseen. Jos haluaa käyttää salattuja osioita, on asentettava /etc/fstab:
```

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```

Kehotteen ulkonäkö voi olla muuttumaton kun liitetään salattua juuritiedostojärjestelmää, riippuen käynnistyksessä käytetyn initrd:n tekemästä initramfs-generaattorista. Alla oleva esimerkki on initrd:ssä jonka teki initramfs-tools:

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```
7.3 Sisäänkirjautuminen

Jos grafinen työpöytäympäristö on käytössä, voidaan myös käyttää sitä. Käynnistä selainta Sovellustenhallinta-ikkunasta ja kirjoita osoitteeksi /usr/share/doc/.

 Felopp tapa näiden ohjeiden lukemiseen tekstiselaimella on seuraavat komennot:

```bash
$ cd /usr/share/doc/
$ w3m .
```

Piste komennon w3m jäljessä tarkoittaa nykyhakemiston sisällön näyttämistä. Jos graafinen työpöytäympäristö on käytössä, voidaan myös sen selainta käyttää. Käynnistä selain Sovellusvalikosta ja kirjoita /usr/share/doc/.

Kun kaikki tunnuslauseet on kirjoitettu käynnistyksen jälkeen, pitäisi jatkua tavalliseen tapaan.

7.2.1 Vikojen etsintä

Mikäli salattuja levyniteitä jäi liittämättä käynnistyksessä väärän tunnuslauseen takia, on ne liitettävä käynnistyksen jälkeen käsin. Erilaisia tilanteita on useita:

- Juuriosion jääminen liittämättä estää käynnistymisen ja tietokone on käynnistettävä uudelleen jotta päästään yrittämään uudestaan.
- The easiest case is for encrypted volumes holding data like /home or /srv. You can simply mount them manually after the boot.

Jos käytössä on dm-crypt on homma hieman hankalampi. Levyniteet on ensin rekisteröitävä sovelluksella device mapper suorittamalla:

```bash
# /etc/init.d/cryptdisks start
```

Komento tutkii kaikki tiedostossa /etc/crypttab mainitut levyniteet ja luo tarvittavat laitteet hakemistoon /dev kun oikeat tunnuslauseet on kirjoitettu. (Levyniteet jotka jo on rekisteröity ohitetaan, joten komennon voisi houkutella toistaa useita kertoja.) Kun rekisteröinti on onnistunut, levyniteet voidaan liittää tavalliseen tapaan:

```bash
# mount /liitoskohta
```

- If any volume holding noncritical system files could not be mounted (/usr or /var), the system should still boot and you should be able to mount the volumes manually like in the previous case. However, you will also need to (re)start any services usually running in your default runlevel because it is very likely that they were not started. The easiest way is to just reboot the computer.

7.3 Sisäänkirjautuminen

Jos graafinen työpöytäympäristö on käytössä, voidaan myös käyttää sitä. Käynnistä selainta Sovellustenhallinta-ikkunasta ja kirjoita osoitteeksi /usr/share/doc/.

LUKU 7. ASENNETUN DEBIAN-JÄRJESTELMÄN … 7.3. SISÄÄNKRJAUTUMINEN
Luku 8

Mitä seuraavaksi?

8.1 Ajetaan järjestelmä alas

Käynnissä olevaa Debian GNU/Linux-järjestelmää ei saa sammuttaa tietokoneen edessä tai takana olevasta reset-nappulasta tai virtakytkimestä. Debian GNU/Linux olisi ajettava alas siisistä, muuten tiedostoja voi kadota ja/tai tulla levyvirheitä. Jos käytössä on työpöytäympäristö, on sovellusvalikossa tavallisesti tarjolla kohta ”kirjaudu ulos” josta järjestelmä voidaan sammuttaa (tai käynnistää uudelleen).

Alternatively you can press the key combination Ctrl-Alt-Del. If the key combinations do not work, a last option is to log in as root and type the necessary commands. Use reboot to reboot the system. Use halt to halt the system without powering it off¹. To power off the machine, use poweroff or shutdown -h now. The systemd init system provides additional commands that perform the same functions; for example systemctl reboot or systemctl poweroff.

8.2 Asennoidu oikein Debianiin

Debian eroaa jonkin verran muista jakeluista. Myös muita Linux-jakeluita käyttäneiden olisi tiedettävä Debianista muutamia seikkoja jotta järjestelmä pysyisi hyvällä vireessä. Tämän luvun sisältö antaa suuntaviivoja, tarkoitus ei ole opettaa kädestä pitäen Debianin käyttöä, vaan olla hyvin tietoisena tukevasti lukijoille.

8.2.1 Debianin paketointijärjestelmä

Debianin paketointijärjestelmä on tärkein käsitteistä jotka olisi ymmärrettävä. Lyhyesti sanottuna, järjestelmässä on suuria osia joiden hallinnoinnista vastaa paketointijärjestelmä. Näitä osia ovat:

- /usr (paitsi /usr/local)
- /var (hakemisto /var/local voidaan tehdä ja huseerata siellä vapaasti)
- /bin
- /sbin
- /lib

Jos esimerkiksi tiedostoa /usr/bin/perl korvataan, se onnistuu mutta päivitettäessä paketti perl korvatun tiedoston päälle kirjoitetaan. Asiantuntevat käyttäjät voivat kiertää tämän pulman ”jäädyttämällä” paketin komennolla aptitude.

One of the best installation methods is apt. You can use the command line version of apt as well as tools like aptitude or synaptic (which are just graphical frontends for apt). Note that apt will also let you merge main, contrib, and non-free so you can have restricted packages (strictly speaking not belonging to Debian) as well as packages from Debian GNU/Linux at the same time.

¹Under the SysV init system halt had the same effect as poweroff, but with systemd as init system (the default since jessie) their effects are different.
8.2.2 Additional Software Available for Debian

There are official and unofficial software repositories that are not enabled in the default Debian install. These contain software which many find important and expect to have. Information on these additional repositories can be found on the Debian Wiki page titled The Software Available for Debian’s Stable Release.

8.2.3 Vaihtoehtoja sovelluksille

8.2.4 Tehtävien ajastettu suoritus

Kaikkien järjestelmän ylläpitäjän tehtäviin liittyvien tiedostojen tulisi sijaita hakemistossa /etc koska siellä on asetustiedostoa. Päälakkijärjestelmän ajastetut tehtävät päivittäin, viikoittain tai kuukausittain suoritettaviksi olisi tallennettava hakemistoihin /etc/cron.(daily,weekly,monthly). Ne käynnistetään tiedostosta /etc/crontab, ja suoritetaan aakkosjärjestyksessä yksi kerrallaan.

Toisaalta, jos ajastettu tehtävä on (a) suoritettava tietyn käyttäjän oikeuksilla tai (b) suoritettava tietyyn aikaan tai toistettava määrävälillä, käynnistetään joko tiedostoa /etc/crontab tai mieleuummin /etc/cron.d/jotain. Näissä nimennäissä tiedostoissa on myös lisäkenttä, joka määriä minkä käyttäjän oikeuksilla ajastettu tehtävä suoritetaan.

8.3 Lisää lukemista ja lisätietoja

Yleistä tietoa GNU/Linuxista tarjoaa Linux Documentation Project. Saatavilla on HOWTO-ohjeita ja viitteitä muuhun hyvin arvokkaaseen tietoon GNU/Linux-järjestelmän osista.

Linux is an implementation of Unix. The Linux Documentation Project (LDP) collects a number of HOWTOs and online books relating to Linux.

If you are new to Unix, you probably should go out and buy some books and do some reading. This list of Unix FAQs contains a number of UseNet documents which provide a nice historical reference.

8.4 Järjestelmän asetukset sähköpostin käyttöönottoon

Sähköpostin on nykyään monien elämän tärkeä osa. Koska sähköpostin asetukset voidaan tehdä monella tavalla, ja koska oikeat asetukset ovat tärkeitä joillekin Debianin varusohjelmille, pyritään tässä luvussa selviittämään perusasiat.

Sähköpostijärjestelmän muodostuu kolmesta pääosasta. Ensimmäinen on Mail User Agent (MUA), ohjelma jolla käyttäjä kirjoittaa ja lukee sähköposti. Sitten on Mail Transfer Agent (MTA), joka huolehtii sähköpostien kuljettamisesta koneelta toiseen. Viimeisenä on Mail Delivery Agent (MDA) joka huolehtii saapuvien sähköpostien siirtämisestä käyttäjän sähköpostilaatikkoon.

Nämä kolme toimintoa voidaan toteuttaa kolmella erillisellä ohjelmalla, mutta ne voidaan myös yhdistää yhteen tai kahteen ohjelmaan. On myös mahdollista, että eri ohjelmat huolehtivat näistä toiminnoista sähköpostin tyyppin mukaan.

8.4.1 Sähköpostin oletusasetukset

Even if you are planning to use a graphical mail program, it would be useful, to have a traditional MTA/MDA installed and correctly set up on your Debian GNU/Linux system. Reason is that various utilities running on the system\(^2\) can send important notices by e-mail to inform the system administrator of (potential) problems or changes.

For this you can install `exim4` and `mutt` with `apt install exim4 mutt`. `exim4` is a combination MTA/MDA that is relatively small but very flexible. By default it will be configured to only handle e-mail local to the system itself and e-mails addressed to the system administrator (root account) will be delivered to the regular user account created during the installation\(^1\).

Koneen sisäiset sähköpostit toimitetaan lisäämällä ne tiedostoon `/var/mail/` käyttäjätunnus. Sähköpostit voidaan lukea komennolla `mutt`.

8.4.2 Sähköpostien lähetyksen ulkomaailmaan

Kuten aiemmin mainittiin, asennetun Debian-järjestelmän asetukset on tehty käsittelemään vain koneen sisäinen sähköposti, eikä lähettään sähköpostia koneen ulkopuolelle tai vastaanottamaan sähköpostia muualta.

Jos haluat exim4:n käsittelevän muitakin kuin koneen sisäistä sähköpostia, lue seuraavasta luvusta käytettävissä olevista perusasetuksista. Muista kokeilla, että sähköpostin lähetyssä ja vastaanottossa toimii oikein.

Jos aiot käyttää graafista sähköpostiohjelmaa ja käytät Internetpalveluntarjoajan tai yrityksessä sähköpostipalvelinta, ei ole varmasti tarvetta käyttää exim4:n asetuksia siten, että sähköposti muuttaa mutua; kuinka koneen sisäistä sähköpostia. Riittää kun teet mieleniin, että graafinen sähköpostiohjelma huolehtii sähköpostin lähettämiseen ja vastaanottamiseen (tässä ohjeessa ei tee mitään erityistä huomioitavaksi)

Saatat kuitenkin tuossa tapauksessa joutua käyttämään yksittäisten varusohjelmien asetuksia jotta ne toimisivat suoraan SMTP:llä. Yksi yleinen varusohjelma on `reportbug`, jota käyttää yleiset käyttäjät.[2]

8.4.3 Exim4 Mail Transport Agentin asetukset

Jos haluat järjestelmän käsittelevän myös muita kuin koneen sisäistä sähköpostia, on paketin `exim4` asetukset tehtävä uudestaan:\(^4\)

```bash
# dpkg-reconfigure exim4-config
```

Kun tuo komento on suoritettu (roottina), kysytään haluatuksi joukkoon asetukset päivitetään. Jos olet epävarma, valitse oletusarvot.

Seuraavaksi näytetään muutamia tavallisia sähköpostiympäristöjä. Valitse lähinnä tarpeesi vastaava.

Internetiin kytketty kone

Koneessa on nettipalvelut ja sähköpostin lähetyssä ja vastaanottossa on suoraan SMTP:llä. Seuraavissa ruuduissa kysytään muutamia perusvastauksiasi, kuten koneen sähköpostinimi tai luettelo verkkokaapelista joiden posti vastaanottetaan tai välitetään.

lähetyssä smarthostin käyttö

Tässä laitteessa sähköposti välitetään toiselle koneelle, jota sanotaan "smarthost"iksi, joka huolehtii viestien välittämisestä vastaanottajalle. Yleensä smarthost myös tallentaa tietokoneellesi osoitetun sähköpostin, jotta koneesi ei tarvitse olla koko ajan yhteydessä nettiin. Tällöin sähköpostit on noudattava smarthostilla fetchmailin kaltaisella ohjelmalla.

Useissa tapauksissa smarthost on Internetpalveluntarjoajan sähköpostipalvelin, mutta syystä tämä valinta sopii hyvin soittoyhteyden käyttäjille. Se voi olla myös yrityksen sähköpostipalvelin, tai jopa toinen kone omassa verkossasi.

\(^2\) Examples are: `cron`, `quota`, `logcheck`, `aide`, ...

\(^3\) The forwarding of mail for root to the regular user account is configured in `/etc/aliases`. If no regular user account was created, the mail will of course be delivered to the root user account itself.

\(^4\) Tietyistä voit myös poistaa `exim4`-ja korvata sen jollain muulla MTA/MDA-llä.
8. Uuden ytimen käänäminen

Why would someone want to compile a new kernel? It is most probably not necessary since the default kernel shipped with Debian handles almost all configurations.

If you want to compile your own kernel nevertheless, this is of course possible and we recommend the use of the "make deb-pkg" target. For more information read the Debian Linux Kernel Handbook.

8.6 Hajonneen järjestelmän korjaaminen

Joskus jotain menee pieleen ja huolella asennettu järjestelmä ei enää käynnistykään. Ehkä käynnistsylataimen asetukset menivät rikki kokeiltaessa muuttaa jotain, tai ehkä kosmitset setteet osuivat kiintolevyyn ja muuttivat bitin tiedostossa /sbin/init. Oli miten oli, korjaamiseen tarvitaan toimiva järjestelmä ja pelastustila voi olla siihen omaan.

To access rescue mode, select rescue from the boot menu, type rescue at the boot: prompt, or boot with the rescue/enable=true boot parameter. You'll be shown the first few screens of the installer, with a note in the corner of the display to indicate that this is rescue mode, not a full installation. Don't worry, your system is not about to be overwritten! Rescue mode simply takes advantage of the hardware detection facilities available in the installer to ensure that your disks, network devices, and so on are available to you while repairing your system.

Nyt pitäisi näkyviin tulla osiointisovelluksen sijaan luettelo järjestelmän levyosioista, ja kehote valita niistä yksi. Tavallisesti pitää valita osio jossa on korjattava juuritiedostojärjestelmä. Voidaan valita sekä RAID ja LVM-laitteille että suoraan levyille tehtyjä osioita.

Mikäli mahdollista, asennin käynnistää komentotulkin korjattava tiedostojärjestelmä työhakemistona, kehotteeseen kirjoitetaan komennoilla voikorjata tiedostojärjestelmää. Jos esimerkiksi käynnistsylatain GRUB on asennettava uudelleen ensimmäisen kiintolevyn piääkäännystyösköön, voidaan tehdä komennolla grub-install '/hd0'.

Jos asennin ei voi käynnistää käyttökoelosta, voidaan komennolla grub-install korjattava tiedostojärjestelmä työhakemistona, kehotteeseen kirjoitetaan komennoilla korjata tiedostojärjestelmä. Voidaan käynnistää komentotulkin korjattava tiedostojärjestelmä työhakemistona, kehotteeseen kirjoitetaan komennoilla korjata tiedostojärjestelmä. Jos esimerkiksi käynnistyslatain GRUB on asennettava uudelleen ensimmäisen kiintolevyn piääkäännystyösköön, voidaan tehdä komennolla grub-install '/hd0'.

Jos esimerkiksi käynnistää käyttökoelosta korjattava tiedostojärjestelmä työhakemistona, kehotteeseen kirjoitetaan komennoilla korjata tiedostojärjestelmä. Jos esimerkiksi käynnistsylatain GRUB on asennettava uudelleen ensimmäisen kiintolevyn piääkäännystyösköön, voidaan tehdä komennolla grub-install '/hd0'.

Kummassakin tapauksessa järjestelmä käynnistyy uudelleen kun komentotulkin poistutaan.

Lopuksi, huomaa että rikkoontuneen järjestelmän korjaaminen saattaa olla vaikeaa, eikä tämä ohje yritä kerota kaikkia mahdollisia vikoja eikä näiden korjaamista. Jos pulmia ilmenee, pyydä asiantuntija-apua.
Liite A

Asennus-Howto

Tämä ohje kuvaa Debian GNU/Linux version bullseye asennuksen arkkitehtuurilelle 64-bit PC ("amd64") uudella asennimella debian-installer. Asennuksen pikainen läpikäynti antaa riittävästi tietoa useimpiin asennuksiin. Kun lisätieto voi olla hyödyllistä, annetaan viite yksityiskohtaisempiin kuvauksiin tämän ohjeen muissa osissa.

A.1 Valmistelevat toimet

Debianin asennin on yhä testausvaiheessa. Jos löydät vikoja asennuksen aikana, ole hyvä ja tutustu lukuun Kohta 5.4.7 josta löydät ohjeen vioista ilmoittamiseen. Mikäli kysymyksiäsi ei löydy vastausta tästä ohjeesta, kysy sähköpostilistalla debian-boot (debian-boot@lists.debian.org) tai irkissä (kanava #debian-boot IRC-verkossa OFTC).

A.2 Asentimen käynnistys

For some quick links to installation images, check out the debian-installer home page. The debian-cd team provides builds of installation images using debian-installer on the Debian CD/DVD page. For more information on where to get installation images, see Kohta 4.1.

Some installation methods require other images than those for optical media. The debian-installer home page has links to other images. Kohta 4.2.1 explains how to find images on Debian mirrors.

Seuraavat aliluvut kertovat yksityiskohtaisemmin mitä otosta olisi missäkin asennustavassa käytettävä.

A.2.1 Optical disc

The netinst CD image is a popular image which can be used to install bullseye with the debian-installer. This installation method is intended to boot from the image and install additional packages over a network; hence the name "netinst". The image has the software components needed to run the installer and the base packages to provide a minimal bullseye system. If you'd rather, you can get a full size CD/DVD image which will not need the network to install. You only need the first image of such set.

Download whichever type you prefer and burn it to an optical disc. To boot the disc, you may need to change your BIOS/UEFI configuration, as explained in Kohta 3.6.1.

A.2.2 USB-muisti

Asennus on mahdollista myös irrotettavalta USB-muistolaitteelta. Esimerkiksi USB-avaimenperä on kätevä asennus- taltio Debianille, sen voi ottaa mukaansa kaikkialle.

The easiest way to prepare your USB memory stick is to download any Debian CD or DVD image that will fit on it, and write the image directly to the memory stick. Of course this will destroy anything already on the stick. This works because Debian CD/DVD images are "isohybrid" images that can boot both from optical and USB drives.

On muita joustavampia tapoja valmistella USB-muisti debian-asentimen käyttöön. Pienempienkin muistien käyttö on mahdollista. Lisätietoja löytyy luvusta Kohta 4.3.

While booting from USB storage is quite common on UEFI systems, this is somewhat different in the older BIOS world. Some BIOSes can boot USB storage directly, and some cannot. You may need to configure your BIOS/UEFI to enable "USB legacy support" or "Legacy support". The boot device selection menu should show "removable drive" or "USB-HDD" to get it to boot from the USB device. For helpful hints and details, see Kohta 5.1.1.
A.2.3 Verkkokäynnistys

The easiest thing to set up is probably PXE netbooting. Untar the file netboot/pxeboot.tar.gz into /srv/tftp or wherever is appropriate for your tftp server. Set up your DHCP server to pass filename pxelinux.0 to clients, and with luck everything will just work. For detailed instructions, see Kohta 4.5.

A.2.4 Käynnistys kiintolevyltä

It's possible to boot the installer using no removable media, but just an existing hard disk, which can have a different OS on it. Download hd-media/initrd.gz, hd-media/vmlinuz, and a Debian CD/DVD image to the top-level directory of the hard disk. Make sure that the image has a filename ending in .iso. Now it's just a matter of booting linux with the initrd. Kohta 5.1.5 explains one way to do it.

A.3 Asennus

Kun asennin käynnistyy näkyy asentimen aloitusruutu. Käynnistys tapahtuu näppäilemällä Enter. Ohjeista selviävät muut käynnistystavat ja-parametrit (katso Kohta 5.3).

Asennin ehkä kysyy vahvistusta käytettävälle näppäämisasettelulle. Käytä oletusarvoa paitsi jos tiedät paremman vaihtoehton.

Now sit back while debian-installer detects some of your hardware, and loads the rest of the installation image. Seuraavaksi asennin tunnistaa verkkolaitteita ja yrittää tehdä verkkosetukset DHCP:llä. Jos verkkoasettelu itse ole tai jos DHCP:ää ei ole, verkkoasetukset voidaan tehdä itse.

Setting up the network is followed by the creation of user accounts. By default you are asked to provide a password for the "root" (administrator) account and information necessary to create one regular user account. If you do not specify a password for the "root" user, this account will be disabled but the sudo package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the sudo command to become root.

Seuraava askel on kellon ja aikavyöhykkeen asetus. Asennin yrittää ottaa yhteyden Internetissä olevaan aikapalvelimeen oikean kellonajan varmistamiseksi. Aikavyöhyke perustuu aiemmin tunnistamaan verkkoasetuksiin ja asennimyy kysyä aikavyöhykettä vain, jos maassa käytetään useampia verkkosetekteitä.

Nyt tehdään säännöt. Ensinnä on mahdollista tehdä säännöt automaattisesti käytettävän kokonoppaan levyn vapaana tilaa (katso Kohta 6.3.4.2). Tätä suositellaan uusille käyttäjille ja uusiin asentaminen. Jos et halua automaattista osioiden tekoa, valitse ja kontrolloi Osio itse.

Mikäli levyllä on ennestään DOS- tai Windows-osioita jotka halutaan säilyttää on syytä olla varmo, jos osio tehään automaattisesti. Tehtäessä osio sitä voidaan asentimella tehdä levyllä olevien FAT- tai NTFS-osioiden kokoa: valitaan osio ja määritetään sen uusi kokoa.

Nyt debian-installer alustaa osiot ja aloittaa peruskokooponan asennuksen. Tämä saattaa viedä tovin. Sen jälkeen asennetaan ydin.

Aiemmin asennettu peruskokoopon on toimiva mutta hyvin suppea asennus. Seuraavassa vaiheessa asennetaan paketteja lisäämään järjestelmän toiminnallisuutta tehtäviin valitsemalla. Ennen kuin paketteja voidaan asentaa on tehtvä apt:n asetukset, koska ne määrittelevät mistä paketteja noudetaan. Tehtävä ”Tavallinen järjestelmä” on valmiiksi valittuna ja se on tärkeä valinnasta. Valitse ”Työpöytäjärjestelmä” jos haluat asennettavaksi graafisen käyttöliittymän. Katso kohdasta Kohta 6.3.6.2 lisätietoja tätä vaiheesta.

The last step is to install a boot loader. If the installer detects other operating systems on your computer, it will add them to the boot menu and let you know. By default GRUB will be installed to the UEFI partition/boot record of the primary drive, which is generally a good choice. You'll be given the opportunity to override that choice and install it elsewhere.
Lisätietoja asennuksesta löytyy luvusta Luku 6.

A.4 Lähetä asennusraportti

If you successfully managed an installation with debian-installer, please take time to provide us with a report. The simplest way to do so is to install the reportbug package (apt install reportbug), configure reportbug as explained in Kohta 8.4.2, and run reportbug installation-reports.

A.5 Ja lopuksi…

Toivomme Debianin asennuksen sujuvan mukavasti ja Debianin olevan hyödyllinen. Kannattaa lukea Luku 8.
Liite B

Asennuksen automatisointi valmiilla vastauksilla

B.1 Johdanto

Valmiit vastaukset tarkoittaa asennuksen aikana kysyttävien kysymysten vastauksien antamista etukäteen, jolloin asennuksen aikana ei tarvitse istua vastailemassa. Tämä mahdollistaa useimpien asennustapojen täydellisen automatisoinnin.

Valmiit vastaukset eivät ole pakollisia. Jos käytetään tyhjää valmiiden vastausten tiedostoa, asennin toimii kuten normaalisti.

B.1.1 Valmiiden vastausten tallennustapoja

Seuraava taulukko näyttää mitä valmiiden vastausten tallennuspaikkoja voi käyttää minkäkin asennustavojen.

<table>
<thead>
<tr>
<th>Asennustapa</th>
<th>initrd</th>
<th>tiedosto</th>
<th>verkko</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>kyllä</td>
<td>kyllä</td>
<td>kyllä¹</td>
</tr>
<tr>
<td>netboot</td>
<td>kyllä</td>
<td>ei</td>
<td>kyllä</td>
</tr>
<tr>
<td>kiintolevy (myös USB-muisti)</td>
<td>kyllä</td>
<td>kyllä</td>
<td>yes¹</td>
</tr>
</tbody>
</table>

¹mutta vain jos verkkoyhteys toimii ja muuttujalla preseed/url on sopiva arvo

An important difference between the preseeding methods is the point at which the preconfiguration file is loaded and processed. For initrd preseeding this is right at the start of the installation, before the first question is even asked. Preseeding from the kernel command line happens just after. It is thus possible to override configuration set in the initrd by editing the kernel command line (either in the bootloader configuration or manually at boot time for bootloaders that allow it). For file preseeding this is after the installation image has been loaded. For network preseeding it is only after the network has been configured.
B.2. Valmiiden vastausten käyttö

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a usb-stick. If you want to include the file in an installation ISO image, you will have to remaster the image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers’ documentation for debian-installer.

B.2.1 Valmiiden vastausten tiedoston lataaminen

Jos tallennuspaikkana on initrd, riittää varmistaa tiedoston nimeltä preseed.cfg olevan initrd:n juurihakemistossa. Asennin tarkistaa automaattisesti onko tuo tiedosto paikallaan ja lataa sen.

For the other preseeding methods you need to tell the installer what file to use when you boot it. This is normally done by passing the kernel a boot parameter, either manually at boot time or by editing the bootloader configuration file (e.g. syslinux.cfg) and adding the parameter to the end of the append line(s) for the kernel.

If you do specify the preconfiguration file in the bootloader configuration, you might change the configuration so you don’t need to hit enter to boot the installer. For syslinux this means setting the timeout to 1 in syslinux.cfg.

Tiedostolle on mahdollista asettaa tarkistussumma varmistamaan asentimen saavan oikean asetustiedoston. Tällä hetkellä tarkistussumman on oltava md5sum, ja jos se annetaan sen on vastattava valmiit vastaukset sisältävää tiedostoa tai asennin jättää tiedoston käyttämättä.

```
Boot parameters to specify:
- if you’re netbooting:
  preseed/url=http://host/path/to/preseed.cfg
  preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- or
  preseed/url=tftp://host/path/to/preseed.cfg
  preseed/url/checksum=5da499872becccfeda2c4872f9171c3d

- if you’re booting a remastered installation image:
  preseed/file=/cdrom/preseed.cfg
  preseed/file/checksum=5da499872becccfeda2c4872f9171c3d

- if you’re installing from USB media (put the preconfiguration file in the
```
Note that `preseed/url` can be shortened to just `url`, `preseed/file` to just `file` and `preseed/file/checksum` to just `preseed-md5` when they are passed as boot parameters.

B.2.2 Annetaan valmiita vastauksia käynnistysparametreille

B.2.3 Auto mode

There are several features of Debian Installer that combine to allow fairly simple command lines at the boot prompt to result in arbitrarily complex customized automatic installs. This is enabled by using the `Automated install` boot choice, also called `auto` for some architectures or boot methods. In this section, `auto` is thus not a parameter, it means selecting that boot choice, and appending the following boot parameters on the boot prompt. See Kohta 5.1.7 for information on how to add a boot parameter.

HUOMAA

HUOMAA

Voi olla ettei käynnistyskäynnistysparametreille voi aina antaa arvoa jossa on tyhjämerkki, vaikka käytettäisiinkin lainausmerkkejä arvon ympärillä.

7Debconf-muuttujan (tai mallineen) omistaja on tavallisesti sen paketin nimi, johon vastaa debconf-malline kuuluu. Asentimessa itsessään käytettyjen muuttujien omistaja on "d-i". Mallineilla ja muuttujilla voi olla useita omistajia, tästä on apua päätetäessä voidaanko ne poistaa debconf-tietokannasta jos paketti poistetaan.
B.2. VALMIIDEN VASTAUSTEN KÄYTTÖ

auto url=autoserver

Tässä oletetaan käytössä olevan DHCP-palvelin, jonka antamilla asetuksilla asennettava kone saa osoitteet autoserver

Jos ei ole paikallisia DHCP- tai DNS-palvelimia, tai jos et halua käyttää oletuspolkua tiedostoon preseed.cfg, voit silti käyttää eksplisiittistä urlia, ja jos et käytä osaa / , se ankkuroidaan polun alkuisin (ts. URL:n kolmannen kauttavina //). URL:stä puuttuu yhteyskäytäntö, oletetaan http, jos konenimen osuudessa ei ole pisteitä, siihen lisätään DHCP:ltä saatu verkkoalueenimi, ja jos konenimen jälkeen ei tule //, lisätään oletuspolkku.

URLin lisäksi voidaan antaa asetuksia jotka eivät sinänsä vaikuta suoraan debianin asentimen toimintaan, mutta jotka voidaan välittää edelleen ladattua valmiiden vastausten tiedostossa preseed/run -määritteillä annetuillem komentotiedostolle. Tällä hetkellä ainon esimerkki tästä on auto-install/classes, jolla on lyhennysmerkintä classes. Tätä voidaan käyttää nähän:

auto url=http://192.168.1.2/polku/omaan/preseed.tiedostooni

Tämä toimii seuraavasti:

- jos URL:stä puuttuu yhteyskäytäntö, oletetaan http,
- jos konenimen osuudessa ei ole pisteitä, siihen lisätään DHCP:ltä saatu verkkoalueenimi, ja
- jos konenimen jälkeen ei tule //, lisätään oletuspolkku.

Väliin voidaan antaa määritteitä, jotka eivät sinänsä vaikuta suoraan debianin asentimen toimintaan, mutta jotka voidaan välittää edelleen ladattua valmiiden vastausten tiedostossa preseed/run -määritteillä annetuillem komentotiedostolle. Tällä hetkellä ainon esimerkki tästä on auto-install/classes, jolla on kyseessä classes. Tätä voidaan käyttää nähän:

auto url=http://192.168.1.2/polku/omaan/preseed.tiedostooni

Tässä esimerkki on järjestelmään järjestelmän tyyppiä tai käyttävääja kootosta.

Tätä käsiteltä voidaan tietokoneen laajentaa ja jos niin tehdään, on järkevää käyttää siihen auto-installin niemiava.

Lisää kiinnostavia parametreja asennuksen automatisointiin DHCP:iltä käytännöllä: interface=auto netcfg/dhcp_timeout=60, joka saa tietokoneen käyttämään ensimmäistä kelvollista verkkoalueenimen addressing ja antautumaan käytämään DHCP-kyllähän.

Vihje

Laaja esimerkki valmiiden vastausten käytöstä, mukana komentotiedostoja ja luokkia, löytyy kehittäjän verkkosivujalta. Sieltä saatavat esimerkit näyttävät myös muita kivoja toimintoja joita saadaan valmiiden vastausten luovalla käytöllä.
B.2.4 Valmiiden vastausten yhteydessä hyödylliset lyhennysmerkinnät

Seuraavat lyhennysmerkinnät saattavat olla hyödyllisiä käytettäessä (auto mode) valmiita vastauksia. Huomaa näiden olevan vain lyhennysmerkintä kysymyksen nimelle, ja aina on annettava myöskin arvo: esimerkiksi `auto=true` tai `interface=eth0`.

```plaintext
priority | debconf/priority
fb       | debian-installer/framebuffer
language | debian-installer/language
country  | debian-installer/country
locale   | debian-installer/locale
theme    | debian-installer/theme
auto     | auto-install/enable
classes  | auto-install/classes
tiedosto | preseed/file
url      | preseed/url
domain   | netcfg/get_domain
hostname | netcfg/get_hostname
interface| netcfg/choose_interface
protocol | mirror/protocol
suite    | mirror/suite
modules  | anna/choose_modules
recommends | base-installer/install-recommends
tasks    | tasksel:tasksel/first
desktop  | tasksel:tasksel/desktop
dmraid   | disk-detect/dmraid/enable
keymap   | keyboard-configuration/xkb-keymap
preseed-md5 | preseed/file/checksum
```

B.2.5 Examples of boot prompt preseeding

Here are some examples of how the boot prompt might look like (you will need to adapt this to your needs; also see Kohta 5.1.7).

```plaintext
# To set French as language and France as country:
/install. amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=fr "country=FR" "quiet"
# To set English as language and Germany as country, and use a German keyboard:
/install. amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=en "country=DE locale=en_US.UTF-8 keymap=de" "quiet"
# To install the MATE desktop:
/install. amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz desktop=mate- "desktop" "quiet"
# To install the web-server task:
/install. amd/vmlinuz initrd=/install.amd/initrd.gz tasksel:tasksel/first=web- "server"
```

B.2.6 DHCP-palvelin kertomaan mistä valmiiden vastausten tiedosto löytyy

DHCP:täkin voi käyttää kertomaan mistä päin verkkoa valmiit vastaukset sisältävää tiedostoa. DHCP sallii vielä tiedoston nimen välittämisen. Tämä on tavallisesti verkkokäynnistystyksen tiedosto, mutta jos se näyttäisi olevan URL noudattaa palvelun valmiita vastauksia tukeva asennustallio tiedoston URL:n avulla ja käyttää sitä valmiiden vastausten tiedostona. Seuraava esimerkki näyttää miten tämä tehdään ISC DHCP-palvelimen version 3 dhcpcd.conf-tiedostossa (Debianin paketti dhcpcd-server).

```plaintext
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
    filename "http://host/preseed.cfg";
}
```
B.3 Valmiiden vastausten tiedoston tekeminen

Valmiiden vastausten tiedosto on komennon `debconf-set-selections` käyttämällä muodossa:

```bash
<omistaja> <kysymksen nimi> <kysymksen tyyppi> <arvo>
```

The file should start with `#_preseed_V1`

Valmiiden vastausten tiedostoa kirjoittaessasi on pidettävä mielessä muutamia sääntöjä.

- Kirjoita vain yksi välilyönti tai sarkainmerkki tyypin ja arvon välillä: kaikki muut tyhjätilamerkit katsotaan arvoon kuulumiksi.
- Rivi voidaan jakaa usealle riville kirjoittamalla `" ") jatkorivin merkiksi. Hyvä kohta rivin jakamiseen on kysymyksen nimen jälkeen; huono kohta on tyypin ja arvon välissä. Jaetut rivit yhdistetään yhdeksi riviksi tiivistämällä edeltävät ja jälkeen tulevat tyhjätilamerkit yhdeksi välilyönniksi.
- For debconf variables (templates) used only in the installer itself, the owner should be set to "d-i"; to preseed variables used in the installed system, the name of the package that contains the corresponding debconf template should be used. Only variables that have their owner set to something other than "d-i" will be propagated to the debconf database for the installed system.
- Useimpiin kysymyksiin on valmis vastaus annettava englanninkielisenä arvona eikä käännettynä arvona. Joissakin kysymyksissä (esimerkiksi moduulissa `partman`) on kuitenkin käytettävä käännettyjä arvoja.
- Joihinkin kysymyksiin arvo on koodi eikä asennuksen aikana näytettävä teksti.
- Start with `#_preseed_V1`
- A comment consists of a line which starts with a hash character ("#") and extends up to the length of that line.

Valmiiden vastausten tiedosto on helpointa tehdä esimerkkitiedostosta Kohta B.4 ja muokata sitä sopivaksi. Toinen tapa on tehdä asennus tavoitteeseen tapaan ja sitten, uudelleenkäynnistelyn jälkeen, paketin `debconf-utils` komennolla `debconf-get-selections` vedostaa sekä debconf-tietokanta että asentimen debconf-tietokanta yhteen tiedostoon:

```bash
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

Tällä tavalla tehdyissä tiedostossa on kuitenkin muutamia kohtia joihin ei pitäisi antaa valmista vastausta, joten esimerkkitiedoston käyttö pohjana on parempi useimmiten käyttäjille.

HUOMAA

Tämä vedostamistapa toimii, koska asennuksen lopuksi asentimen cdebcconf-tietokanta tallennetaan asennettuun järjestelmään tiedostoon `/var/log/installer/cdebcconf`. Koska tietokanta saattaa sisältää salaspaidettavaa tietoa, on tiedostoon lukuoikeus oletusarvona vain pääkäyttäjällä.

Hakemisto `/var/log/installer` ja kaikki sen tiedostot poistetaan järjestelmästä jos paketti `installation-report` poistetaan valitsimella purge.
Valmiiden vastausten mahdollisia arvoja näkee komennolla `nano` tutkimalla tiedostoaa `/var/lib/cdebconf/asanakseun aikana. Tiedostosta `templates.dat` näkee tyhjät mallineet ja tiedostosta `questions.dat` tärmeet

hetkiset arvot ja muuttujille sijoitetut arvot.

Valmiiden vastausten tiedoston kelvollisuuden voi tarkistaa ennen asennusta komennolla `debconf-set-selections -c preseed.cfg`.

B.4 Valmiiden vastausten tiedoston sisältö (julkaisulle bullseye)

Huomaa tämän esimerkin olevan tarkoitettu Intel x86-arkkitehtuurille tapahtuvaan asennukseen. Jos asennetaan

jollekin muulle arkkitehtuurille, jotkin esimerkkeistä (kuten näppäimistön valinta ja käynnistyslataimen asennus) eivät

ehkä ole mielekkäitä ja ne on korvattava arkkitehtuurikohtaisilla deboconf:in asetuksilla.

Details on how the different Debian Installer components actually work can be found in Kohta 6.3.

B.4.1 Kotoistus

During a normal install the questions about localization are asked first, so these values can only be preseeded via the

initrd or kernel boot parameter methods. Auto mode (Kohta B.2.3) includes the setting of `auto-install/enable=true` (normally via the `auto` preseed alias). This delays the asking of the localisation questions, so that they can be pre-

seeded by any method.

Lokaalin avulla voidaan määrätä sekä kieli että maa, ja parina voi olla mikä tahansa `debian-installer`:n

tukema kieli ja tunnustettu valtio. Jos pari ei muodosta kunnollista lokaalia, asennin valitsee automaattisesti valitun

kielen kanssa kelpaavan lokaalin. Lokaali annetaan käynnistysparametrina kirjoittamalla `locale=fi_FI`.

Tämä tapa on hyvin helppo käyttää, muttei kuitenkaan mahdollista kaikkien kielien, maan ja maa-asetusten³

kombinaatioiden antamista valmiilla vastauksilla. Näinollen valmiit vastaukset voidaan antaa kullekin erikseen. Kieli ja

maa voidaan antaa myös käynnistysvalitsimilla.

```sh
# Preseeding only locale sets language, country and locale.
# Preseed only locale sets language, country and locale.
d-i debian-installer/locale string en_US

# The values can also be preseeded individually for greater flexibility.
# The values can also be preseeded individually for greater flexibility.
d-i debian-installer/language string en
#d-i debian-installer/country string NL
#d-i debian-installer/locale string en_GB.UTF-8
# Optionally specify additional locales to be generated.
# Optionally specify additional locales to be generated.
#d-i localechooser/supported-locales multiselect en_US.UTF-8, nl_NL.UTF-8

Keyboard configuration consists of selecting a keymap and (for non-latin keymaps) a toggle key to switch between

the non-latin keymap and the US keymap. Only basic keymap variants are available during installation. Advanced

variants are available only in the installed system, through `dpkg-reconfigure keyboard-configuration`.

```sh
Nääppäimistön valinta.
Nääppäimistön valinta.
d-i keyboard-configuration/xkb-keymap select fi
d-i keyboard-configuration/toggle select No toggling
```

Näppäimistön asetukset ohitetaan antamalla kysymykseen `keymap valmis vastaus skip-config`. Tällöin yti-

men näppäinasettelu jää käyttöön.

### B.4.2 Verkkoasetukset

Of course, preseeding the network configuration won’t work if you’re loading your preconfiguration file from the

network. But it’s great when you’re booting from optical disc or USB stick. If you are loading preconfiguration files

from the network, you can pass network config parameters by using kernel boot parameters.

Mikäli verkosta käynnistettäessä on valittava tiety verkkoilintäitä ennen valmioiden vastausten tiedoston noutamista

verkosta, käytetään käynnistysparametria kuten `interface=eth1`.

³Valmis vastaus `locale=fi_FI` arvona `en_NL` esimerkiksi johtaisi asennetussa järjestelmissä oletusmaa-asetustoon `en_US.UTF-8`. Mikäli

sen sijaan halutaan esimerkiksi `en_GB.UTF-8`, on arvoille annettava valmis vastaus kullekin erikseen.
Vaikkakaan valmistaa vastaukset verkon asetuksiin ei tavallisesti ole mahdollista noudettaessa valmiiden vastausten tiedostoa (kiäyttääkää"preseed/url"), voidaan seuraavalla kikalla kiertää tämä rajoitus vaikkapa haluttaessa antaa kiinteä osoite verkkoliitännällä. Kikkailu tapahtuu pakottamalla verkon asetuksien tehtäväksi uudelleen kun valmiiden vastausten tiedostoa on ladattu tekemällä "preseed/run"-komentotiedosto jossa on seuraavat komennot:

```
kill-all-dhcp; netcfg
```

Seuraavat debconf-muuttujat vaikuttavat verkon asetuksiin.

```conf
Disable network configuration entirely. This is useful for cdrom
installations on non-networked devices where the network questions,
warning and long timeouts are a nuisance.
#d-1 netcfg/enable boolean false

netcfg will choose an interface that has link if possible. This makes it
skip displaying a list if there is more than one interface.
#d-1 netcfg/choose_interface select auto

To pick a particular interface instead:
#d-1 netcfg/choose_interface select eth1

To set a different link detection timeout (default is 3 seconds).
Values are interpreted as seconds.
#d-1 netcfg/link_wait_timeout string 10

If you have a slow dhcp server and the installer times out waiting for
it, this might be useful.
#d-1 netcfg/dhcp_timeout string 60
#d-1 netcfg/dhcpcv6_timeout string 60

Automatic network configuration is the default.
If you prefer to configure the network manually, uncomment this line and
the static network configuration below.
#d-1 netcfg/disable_autoconfig boolean true

If you want the preconfiguration file to work on systems both with and
without a dhcp server, uncomment these lines and the static network
configuration below.
#d-1 netcfg/dhcp_failed note
#d-1 netcfg/dhcp_options select Configure network manually

Static network configuration.
#
IPv4 example
#d-1 netcfg/get_ipaddress string 192.168.1.42
#d-1 netcfg/get_netmask string 255.255.255.0
#d-1 netcfg/get_gateway string 192.168.1.1
#d-1 netcfg/get_nameservers string 192.168.1.1
#d-1 netcfg/confirm_static boolean true
#
IPv6 example
#d-1 netcfg/get_ipaddress string fc00::2
#d-1 netcfg/get_netmask string ffff:ffff:ffff:ffff::
#d-1 netcfg/get_gateway string fc00::1
#d-1 netcfg/get_nameservers string fc00::1
#d-1 netcfg/confirm_static boolean true

Any hostname and domain names assigned from dhcp take precedence over
values set here. However, setting the values still prevents the questions
from being shown, even if values come from dhcp.
d-1 netcfg/get_hostname string unassigned-hostname
d-1 netcfg/get_domain string unassigned-domain

If you want to force a hostname, regardless of what either the DHCP
```

---

```

```
Huomaa komennon `netcfg` muodostavan verkon peiton automaattisesti jos muuttujalla `netcfg/get_netmask` ei ole valmista vastausta. Tässä tapauksessa muuttujalle on merkittävä seen automaattisissa asennuksissa. Samoin `netcfg` valitsee sopivan osoiteen jos `netcfg/get_gateway` on ilman arvoa. Erikoistapauksena `netcfg/get_gateway` voidaan asettaa arvoon "none" tarkoittamaan ettei reitittä piitä käytettä.

B.4.3 Pääteyhteys verkon kautta

```
Seuraavia asetuksia käytetään haluttaessa etäasennus SSH:n kautta
pääteyhteytedellä. Tämä on järkevää vain jos alikomus on jatkaa
asennuksen loppuun ei-automatillisesti.
#d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password r00tme
#d-i network-console/password-again password r00tme
```

More information related to network-console can be found in Kohta 6.3.10.

B.4.4 Asennuspalvelimen asetukset

Käytettävää asennustavasta riippuen asennuspalvelimelta voidaan noutaa lisää asentimen osia, asentaa peruskokoonpano ja tehdä tiedosto `/etc/apt/sources.list` asennettavaan järjestelmään.

Parametri `mirror/suite` kertoo mitä julkaisua käytetään asennuksissa.

Parametrit `mirror/udeb/suite` kertoo mistä julkaisusta asentimen lisäosat noudetaan. Tästä parametrista on hyötyä vain jos osat tosiaan noudetaan verkosta ja sen on vastattava käytetyn asennustavan initt.n tekemisessä käytettyä julkaisua. Normaalisti asennin käyttää automaattisesti oikeata arvoa eikä pitäisi olla tarvetta asettaa tätä.

```
Mirror protocol:
If you select ftp, the mirror/country string does not need to be set.
Default value for the mirror protocol: http.
#d-i mirror/protocol string ftp
#d-i mirror/country string manual
#d-i mirror/http/hostname string http.us.debian.org
#d-i mirror/http/directory string /debian
#d-i mirror/http/proxy string
```

B.4.5 Käyttäjätunnusten luonti

The password for the root account and name and password for a first regular user’s account can be preseeded. For the passwords you can use either clear text values or crypt(3) `hashes`.  

```
VAROITUS

Be aware that preseeding passwords is not completely secure as everyone with access to the preconfiguration file will have the knowledge of these passwords. Storing hashed passwords is considered secure unless a weak hashing algorithm like DES or MD5 is used which allow for bruteforce attacks. Recommended password hashing algorithms are SHA-256 and SHA512.

```
# Skip creation of a root account (normal user account will be able to
# use sudo).
#d-i passwd/root-login boolean false
# Alternatively, to skip creation of a normal user account.
#d-i passwd/make-user boolean false

# Root password, either in clear text
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
# or encrypted using a crypt(3) hash.
#d-i passwd/root-password-crypted password [crypt(3) hash]

# To create a normal user account.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
# Normal user’s password, either in clear text
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
# or encrypted using a crypt(3) hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
# Create the first user with the specified UID instead of the default.
#d-i passwd/user-uid string 1010

# The user account will be added to some standard initial groups. To
# override that, use this.
#d-i passwd/user-default-groups string audio cdrom video

Muuttujille passwd/root-password-crypted ja passwd/user-password-crypted voidaan antaa valmis vastaus myös ’!’ arvona. Tällöin vastaavan käyttäjätunnuksen käyttö on estetty. Tämä voi olla kätevää päälähteen onnettomuus liehuksella, tietenkin vain jos on tehty muu tapa tehdä päälähteen tehtäviä tai kirjautua päälähteenä (esimerkiksi tunnistautua SSH-arvaimilla tai komentosuod).

The following command (available from the whois package) can be used to generate a SHA-512 based crypt(3) hash for a password:

```
mkpasswd -m sha-512
```

B.4.6 Kellon ja aikavyöhykkeen asetukset

```
Määrätään onko laitekello standardiajassa vai paikallisessa ajassa.
d-i clock-setup/utc boolean true

Tämä voidaan asettaa mihin tahansa kelvolliseen ympäristömuutettuun
$TZ arvoon; kelvolliset arvot löytyvät hakemistosta /usr/share/zoneinfo/.
d-i timezone string Europe/Helsinki
Määrätään käytettävänä NTP:tä kellon asetuksessa asennuksen aikana.
#d-i clock-setup/ntp boolean true
Käytettävän aikapalvelin. Oletus on lähinnä aina sopiva.
#d-i clock-setup/ntp-server string ntp.esimerkki.fi
```
B.4.7 Osiointi

Valmiiden vastausten käyttämistä levy osioinnissa rajoittaa se, mitä partman-auto tukee. Voidaan osioida joko
levyllä jo oleva vapaa tila tai koko levy. Osioiden asetuksi levyllä voidaan määritää valmistumia mallinetta,
muokattua mallinetta mallinetiedostosta tai valmiiden vastausten tiedostoon talenemattua mallinetta. Tällä hetkellä ei
ole mahdollista käyttää valmuita vastauksia useiden levyjen osioimiseen.

Valmiit vastaukset monimutkaisemmillä levyosioimineille, joissa on käytössä RAID, LVM ja salaus, on tuettu,
mutta ei kaikilla ilman valmiita vastauksia tehtävän asennuksen mahdollisuuksilla.

The examples below only provide basic information on the use of recipes. For detailed information see the files
partman-auto-recipe.txt and partman-auto-raid-recipe.txt included in the debian-installer package. Both files are also available from the debian-installer source repository. Note that the supported
functionality may change between releases.

### B.4.7.1 Esimerkki osioinnista

# If the system has free space you can choose to only partition that space.
# This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatic_partition select biggest_free

# Alternatively, you may specify a disk to partition. If the system has only
# one disk the installer will default to using that, but otherwise the device
# name must be in traditional, non-devfs format (so e.g. /dev/sda
# and not e.g. /dev/discs/disc0/disc).
# For example, to use the first SCSI/SATA hard disk:
#d-i partman-auto/disk string /dev/sda
# In addition, you'll need to specify the method to use.
# The presently available methods are:
#  - regular: use the usual partition types for your architecture
#  - lvm: use LVM to partition the disk
#  - crypto: use LVM within an encrypted partition
d-i partman-auto/method string lvm

# You can define the amount of space that will be used for the LVM volume
# group. It can either be a size with its unit (eg. 20 GB), a percentage of
# free space or the 'max' keyword.
d-i partman-auto-lvm/guided_size string max

# If one of the disks that are going to be automatically partitioned
# contains an old LVM configuration, the user will normally receive a
# warning. This can be preseeded away...
d-i partman-lvm/device_remove_lvm boolean true
# The same applies to pre-existing software RAID array:
d-i partman-md/device_remove_md boolean true
# And the same goes for the confirmation to write the lvm partitions.
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true

# You can choose one of the three predefined partitioning recipes:
#  - atomic: all files in one partition
#  - home: separate /home partition
#  - multi: separate /var, and /tmp partitions
d-i partman-auto/choose_recipe select atomic

# Or provide a recipe of your own...
# If you have a way to get a recipe file into the d-i environment, you can
# just point at it.
# d-i partman-auto/expert_recipe_file string /hd-media/recipe

# If not, you can put an entire recipe into the preconfiguration file in one
# (logical) line. This example creates a small /boot partition, suitable
# swap, and uses the rest of the space for the root partition:
# d-i partman-auto/expert_recipe_string
#   boot-root ::
#   \ 40 50 100 ext3
#   \ $primary{ } $bootable{ }
#   \ method{ format } format{ }
#   \ use_filesystem{ } filesystem{ ext3 }
#   \ mountpoint{ /boot }
#   .
#   \ 500 10000 1000000000 ext3
#   \ method{ format } format{ }
#   \ use_filesystem{ } filesystem{ ext3 }
#   \ mountpoint{ / }
#   .
#   \ 64 512 300% linux-swap
#   \ method{ swap } format{ }
#   .

# The full recipe format is documented in the file partman-auto-recipe.txt
# included in the 'debian-installer' package or available from D-I source
# repository. This also documents how to specify settings such as file
# system labels, volume group names and which physical devices to include
# in a volume group.

## Partitioning for EFI
# If your system needs an EFI partition you could add something like
# this to the recipe above, as the first element in the recipe:
#   538 538 1075 free
#   \ $iflabel{ gpt }
#   \ $reusemethod{ }
#   \ method{ efi }
#   \ format{ }
#   .

# The fragment above is for the amd64 architecture; the details may be
# different on other architectures. The ‘partman-auto’ package in the
# D-I source repository may have an example you can follow.

# This makes partman automatically partition without confirmation, provided
# that you told it what to do using one of the methods above.
# d-i partman-partitioning/confirm_write_new_label boolean true
# d-i partman/choose_partition select finish
# d-i partman/confirm boolean true
# d-i partman/confirm_nooverwrite boolean true

# Force UEFI booting ('BIOS compatibility' will be lost). Default: false.
# d-i partman-efi/non_efi_system boolean true
# Ensure the partition table is GPT – this is required for EFI
# d-i partman-partitioning/choose_label string gpt
# d-i partman-partitioning/default_label string gpt

# When disk encryption is enabled, skip wiping the partitions beforehand.
# d-i partman-auto-crypto/erase_disks boolean false
B.4.7.2 Osiointi käyttäen RAIDia

You can also use preseeding to set up partitions on software RAID arrays. Supported are RAID levels 0, 1, 5, 6 and 10, creating degraded arrays and specifying spare devices.

If you are using RAID 1, you can preseed grub to install to all devices used in the array; see Kohta B.4.11.

---

**VAROITUS**


---

```bash
HUOMIO: tämä valinta on laadultaan testiversio ja käytettävä varoen
Mallineeksi olisi valittava "raid".
#d-i partman-auto/method string raid
Määritä osioitavat levyt. Niihin tulee kaikki sama osiointi,
joten tämä toimii vain jos levyt ovat samankokoisia.
#d-i partman-auto/disk string /dev/sda /dev/sdb

Seuraavaksi on määritettävä käytettävä fyysinen osiointi.
#d-i partman-auto/expert_recipe string \
multiraid :: \
1000 5000 4000 raid \
$primary{ } method{ raid } \
. \
64 512 300% raid \
method{ raid } \
. \
500 10000 1000000000 raid \
method{ raid } \
.

Lopuksi on määritettävä kuinka yllä määriteltyjä osioita käytetään
RAID-pakassa. Muista käyttää oikeita osioiden numeroita.logisille
osioille.
Parametrit ovat:
<raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
<devices> <sparedevices>
RAID tasot 0, 1, 5, 6 ja 10 on tuettu; laitteiden erottimena on "#"
#d-i partman-auto/raid/recipe string \
1 2 0 ext3 / \
1 2 0 swap - \
0 2 0 ext3 /home \
0 2 0 ext3 /dev/sda6

Tämä saa partmanin tekemään osiot automaattisesti kysymättä vahvistusta.
#d-i partman-md/confirm boolean true
#d-i partman-partitioning/confirm_write_new_label boolean true
#d-i partman/choose_partition select finish
#d-i partman/confirm boolean true
```

---

82
B.4.7.3 Määritellään miten osiot liitetään

Tavallisesti tiedostojärjestelmät liitetään käyttämällä yksinkäsitteistä tunnistinta (UUID) avaimena; tällöin ne liitetään oikein vaikka laitenimi muuttuisi. UUID:t ovat pitkiä ja vaikealukuisia, joten halultaessa asennin voi liittää tiedosto- järjestelmät käyttäen perinteisiä laitenimiä tai antamiasi nimiöitä. Jos asenninta pyydetään liittämään nimiötä käyttämällä, liitetään kaikki nimiöttömät osiot UUID:n perusteella.

Laitteet joilla on pysyvä nimi, kuten LVM:n logiset niteet, jatkavat perinteisten nimien käyttämistä eivätkä käytä UUID:tä.

VAROITUS

Perinteiset laitenimet voivat muuttua sen mukaan missä järjestyksessä ydin havaitsee laitteet käynnistyksessä, joillain saatetaan liittää väärä tiedostojärjestelmä. Samoan tapaan nimiot saattavat olla samoja kun asennetaan uusi levy tai kytketään USB-levy, ja jos näin käy on järjestelmän toiminta käynnistyksessä satunnaista.

# Vakiona liitetään UUID:n perusteella, mutta perinteiset laitenimet saadaan
# valinnalla "traditional" tai valinnalla "label" ensisijaisesti nimiö ja
# jos nimiöä ei ole niin UUID.
#d-i partman/mount_style select uuid

B.4.8 Perusjärjestelmän asennus

Tässä asennuksen vaiheessa ei oikeastaan ole kovinkaan paljon mahdollista käyttää valmiita vastauksia. Ainoat kysymykset koskevat ytimen asentamista.

# Configure APT to not install recommended packages by default. Use of this
# option can result in an incomplete system and should only be used by very
# experienced users.
#d-i base-installer/install-recommends boolean false

# The kernel image (meta) package to be installed; "none" can be used if no
# kernel is to be installed.
#d-i base-installer/kernel/image string linux-image-686

B.4.9 Apt:n asetukset

Tiedoston /etc/apt/sources.list teko ja perusasetukset on täysin automatisoitu asennustavan ja aiempien kysymysten vastausten perusteella. Muiden (paikallisten) varastoalueiden lisääminen on valinnainen.

# Choose, if you want to scan additional installation media
# (default: false).
d-i apt-setup/cdrom/set-first boolean false
# You can choose to install non-free and contrib software.
d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Uncomment this if you don’t want to use a network mirror.
d-i apt-setup/use_mirror boolean false
# Select which update services to use; define the mirrors to be used.
# Values shown below are the normal defaults.
d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

# Additional repositories, local[0-9] available
#d-i apt-setup/local0/repository string \\
# http://local.server/debian stable main
#d-i apt-setup/local0/comment string local server
B.4. VALMIIDEN VASTAUSTEN TIEDOSTON

# Enable deb-src lines
#d-i apt-setup/local0/source boolean true
# URL to the public key of the local repository; you must provide a key or
# apt will complain about the unauthenticated repository and so the
# sources.list line will be left commented out.
#d-i apt-setup/local0/key string http://local.server/key
# If the provided key file ends in ".asc" the key file needs to be an
# ASCII-armoured PGP key, if it ends in ".gpg" it needs to use the
# "GPG key public keyring" format, the "keybox database" format is
# currently not supported.

# By default the installer requires that repositories be authenticated
# using a known gpg key. This setting can be used to disable that
# authentication. Warning: Insecure, not recommended.
#d-i debian-installer/allow_unauthenticated boolean true

# Uncomment this to add multiarch configuration for i386
#d-i apt-set-up/multiarch string i386

B.4.10 Pakettien valinta

Asennettavaksi voidaan valita mitkä tahansa saatavilla olevista tehtävistä. Tätä kirjoitettaessa saatavilla olevia tehtäviä ovat ainakin:

- **standard** (standard tools)
- **desktop** (graphical desktop)
- **gnome-desktop** (Gnome desktop)
- **xfce-desktop** (XFCE desktop)
- **kde-desktop** (KDE Plasma desktop)
- **cinnamon-desktop** (Cinnamon desktop)
- **mate-desktop** (MATE desktop)
- **lxde-desktop** (LXDE desktop)
- **web-server** (web server)
- **ssh-server** (SSH server)

Voidaan myös jättää kaikki tehtävät valitsematta, ja pakotetaan halutun pakettijoukon asennus muilla tavoin. Suositellaan aina valittavaksi tehtävää **standard**.

Or if you don’t want the tasksel dialog to be shown at all, preseed pkgsel/run_tasksel (no packages are installed via tasksel in that case).

Jos tehtävien asentamien lisäksi halutaan asentaa yksittäisiä paketteja, voidaan käyttää parametria `pkgsel/include`. Tämän parametrin avulla voi olla luetteloa paketteja eroteltuna joko pilkuin tai välilyönnin, joten sitä on helppo käyttää ytimen käynnistysparametrinakin.

```bash
#tasksel tasksel/first multiselect standard, web-server, kde-desktop
Or choose to not get the tasksel dialog displayed at all (and don’t install
any packages):
#d-i pkgsel/run_tasksel boolean false

Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
Whether to upgrade packages after debootstrap.
Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none
```
# You can choose, if your system will report back on what software you have # installed, and what software you use. The default is not to report back, # but sending reports helps the project determine what software is most # popular and should be included on the first CD/DVD. #popularity-contest popularity-contest/participate boolean false

**B.4.11 Käynnistyslataimen asennus**

# Grub is the boot loader (for x86).

# This is fairly safe to set, it makes grub install automatically to the UEFI # partition/boot record if no other operating system is detected on the machine.
#d-i grub-installer/only_debian boolean true

# This one makes grub-installer install to the UEFI partition/boot record, if # it also finds some other OS, which is less safe as it might not be able to # boot that other OS.
#d-i grub-installer/with_other_os boolean true

# Due notably to potential USB sticks, the location of the primary drive can # not be determined safely in general, so this needs to be specified:
#d-i grub-installer/bootdev string /dev/sda
# To install to the primary device (assuming it is not a USB stick):
#d-i grub-installer/bootdev string default

# Alternatively, if you want to install to a location other than the UEFI # partition/boot record, uncomment and edit these lines:
#d-i grub-installer/only_debian boolean false
#d-i grub-installer/with_other_os boolean false
#d-i grub-installer/bootdev string (hd0,1)
# To install grub to multiple disks:
#d-i grub-installer/bootdev string (hd0,1) (hd1,1) (hd2,1)

# Optional password for grub, either in clear text
#d-i grub-installer/password password r00tme
#d-i grub-installer/password-again password r00tme
# or encrypted using an MD5 hash, see grub-md5-crypt(8).
#d-i grub-installer/password-crypted password [MD5 hash]

# Use the following option to add additional boot parameters for the # installed system (if supported by the bootloader installer). # Note: options passed to the installer will be added automatically.
#d-i debian-installer/add-kernel-opts string nouseb

Salasanaalle voidaan tehdä MD5-tiiviste grubia varten komennolla grub-md5-crypt, tai käyttämällä komentoa esimerkiksi Kohta B.4.5.

**B.4.12 Asennuksen lopetus**

# Asennettaessa sarjavyälän konsoliita ovat tavalliset virtuaalikonsolit # (VT1–VT6) poistettu käytöstä tiedostossa /etc/inittab. Poista # kommentti seuraavilla rivillä jos virtuaalikonsolit halutaan käyttöönn. #d-i finish-install/keep-consoles boolean true

# Välitetään viimeinen viesti asennuksen valmistumisesta. #d-i finish-install/reboot_in_progress note

# Tämä estää asenninta poistamasta CD-levyä asemasta käynnistettäessä # järjestelmää uudelleen, mikä on hyödyllistä joissakin tilanteissa. #d-i cdrom-detect/eject boolean false
# Tällä tavalla asennin lopettaa kun on valmista, mutta ei käynnistä
# asennettua järjestelmiä,
# d-i debian-installer/exit/halt boolean true
# Tämän avulla saadaan asennin sammuttamaan virta koneesta asennuksen
# valmistuttua, eikä vain sammuttamaan käyttöjärjestelmiä (halt).
# d-i debian-installer/exit/poweroff boolean true

---

**B.5.1 Mielivaltaisten komentojen käynnistämien asennuksen aikana**

Valmiiden vastausten vallan mahtava ja joustava ominaisuus on komentojen tai komentotiedostojen suorittaminen tietyissä paikoissa asennuksen aikana. 

When the filesystem of the target system is mounted, it is available in `/target`. If an installation CD is used, when it is mounted it is available in `/cdrom`.

```shell
Valmiiden vastausten käyttö ei ole perusturvallista. Asentimessa
ei ole lainkaan tarkistuksia tahallisten puskerien ylivuotojen
tai muiden sen kaltaisten arvojen varalle. Käytä valmiiden
vastausten tiedostoja vain luotettavista lähteistä! Jotta
tämä varmasti tulisi selväksi, ja koska tämä on usein hyödyllistä,
nähän voidaan käynnistää mikä tahansa komentotulkin komento
automaattisesti asentimesta.
Tämä ensimmäinen komento suoritetaan mahdollisimman aikaisin, heti
valmiiden vastausten tiedoston lukemisen jälkeen.
d-i preseed/early_command string ana-install some-udeb
Tämä komento suoritetaan välittömästi ennen levysioinnin käynnistämistä.
Saattaa olla hyödyllistä käyttää mukautuvia levysioinnin valmita
vastauksia jotka ovat riippuvalaisia levyjen tilasta (levyt eivät enää ole
näkyvissä kun preseed/early_command suoritetaan).
d-i partman/early_command
string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
Tämä komento suoritetaan juuri ennen asennuksen päättymistä, mutta
/target hakemiston vielä ollessa kunnossa. /target voidaan käyttää
suoraan juurihakemistona tai käyttämällä komentoja apt-install ja
in-target helposti asentaa paketteja ja suorittaa komentoja
asennettuessa järjestelmässä.
d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

**B.5.2 Oletusarvojen muuttaminen valmiilla vastauksilla**

Oletusarvoa on mahdollista muuttaa valmiilla vastauksilla, siten, että kysymys silti esitetään. Tämä tehdään muuttamalla ilmaisimen *seen* arvoksi "false" sen jälkeen kun vastaus on asetettu.

```shell
d-i foo/bar string value
d-i foo/bar seen false
```
Sama vaikutus *kaikille* kysymyksille saadaan asetuksella `preseed/interactive=true` käynnistyskehoitteessa. Tästä voi olla apua myös testattaessa tai jäljitettäessä vikaa valmiiden vastausten tiedostosta.


Jos valmiita vastauksia annetaan käynnistysparametreilla, saadaan asennuksen aikana esitettävä kysymys, eikä sisäisin ("internal") parametrien.

For more debugging information, use the boot parameter `DEBCONF_DEBUG=5`. This will cause *debconf* to print much more detail about the current settings of each variable and about its progress through each package's installation scripts.

**B.5.3 Valmiiden vastausten tiedostojen lataaminen ketjussa**

Valmiiden vastausten tiedostossa on mahdollista ottaa käyttöön muita tiedostoja. Noiden tiedostojen asetukset korvaavat aikaisemmissa tiedostoissa olleet vastaavat arvot. Tämä mahdollistaa esimerkiksi yleisten paikallisten verkkoasetusten tallentaminen yhteen tiedostoon ja tarkemmat asetukset tiettyihin kokoonpanoihin toisiin tiedostoihin.

```bash
Luettelossa voi olla useita tiedostoja välilyönneillä erotteltuina;
ne kaikki ladataan. Liitetyissä tiedostoissa olla myös omia
preseed/include-määreitä. Huomaa: jos tiedostonimet ovat suhteellisia,
ne etsittävät samasta hakemistosta kuin liittävät valmiiden vastausten
tiedosto.
#d-i preseed/include string x.cfg

Asennin tarkistaa haluttaessa valmiiden vastausten tiedostojen
tarkistussummat ennen tiedostojen käyttöä. Tällä hetkellä vain
md5sum on tuettu, luettele md5sum-arvot samassa järjestyksessä
kuin liitettävien tiedostojen luetteloi.
#d-i preseed/include/checksum string 5da499872beccc6eda2c4872f9171c3d

Joustavampi tapa: ajetaan komento komentotulkissa ja jos se
tulostaa valmiiden vastausten tiedostojen nimia, liitetään ne.
#d-i preseed/include_command
string if ["hostame" = bob]; then echo bob.cfg; fi

Kaikkein joustavin tapa: noudetaan ohjelma ja ajetaan se. Ohjelma
voi käyttää komentoja kuten debconf-set muokatakseen debconf-tietokantaa.
Komentotiedostoa voi olla useita, välilyönnein erotteltuna.
Huomaa, että jos tiedostonimet ovat suhteellisia, ne etsittän samasta
hakemistosta kuin ne käynnistävät valmiiden vastausten tiedosto
#d-i preseed/run string foo.sh
```

Mahdollista on myös antaa verkkoasetusten valmiiden vastausten URL initrd:n tai tiedostojen valmiiden vastausten vaiheessa. Tällöin verkkoasetusten valmiit vastaukset käytetään kun verkko tulee käyttöön. Tätä tehtäessä on oltava varovainen, koska valmiita vastauksia käyttetään kaksi erillistä kertaa, jolloin on esimerkiksi mahdollista suorittaa preseed/early-komento toiseen kertaan heti kun verkko on käytössä.
Liite C

Osiot Debianille

C.1 Debianin osiot ja osioiden koot


Toinen syy on useimmiten tärkeämpä yritteksikytössä, mutta riippuu oikeastaan tietokoneen käyttötarkoituksesta. Esimerkiksi roskapostilla kuormittettu sähköpostipalvelin saattaa helposti täyttää osion. Jos /var/mail on erillinen osio sähköpostipalvelimella, jää vähintään osa järjestelmästä yhä käyttökelpoiseksi vaikka roskapostia tulvisikin.

Useiden osioiden käyttämisen ainoa varsinainen hankaluus on vaikeus tietää, minkä osioita tarvitaan. Jos joku osio on liian pieni, on joko asennettava järjestelmä uudelleen tai jatkuvasti tiedostoja siirtämällä tehtävä tilaa liian pieneen osioon. Toisaalta jos osio on liian iso, tuhotaan levytilaa jota voisi käyttää muuallakin. Levytila on nykyään halpaa, muttei sitä pidä turvattua hukaan.

C.2 Hakemistopuu

Debian GNU/Linux noudattaa Filesystem Hierarchy Standard-julkaisua hakemistojen ja tiedostojen nimeämisessä. Standardi auttaa käyttäjiä ja sovelluksia tietämään tiedostojen ja hakemistojen sijainnin. Juurihakemiston nimenä on yksinkertaisesti /, ja koko Debian-järjestelmässä on juurella nämä hakemistot:

<table>
<thead>
<tr>
<th>Hakemisto</th>
<th>Sisältö</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Välttämättömät komennot</td>
</tr>
<tr>
<td>boot</td>
<td>Käynnistyslataimen pysyvät tiedostot</td>
</tr>
<tr>
<td>dev</td>
<td>Laitetiedostot</td>
</tr>
<tr>
<td>etc</td>
<td>Konekohtaiset järjestelmän asetukset</td>
</tr>
<tr>
<td>home</td>
<td>Käytävien kotihakemistot</td>
</tr>
<tr>
<td>lib</td>
<td>Välttämättömät jaetut kirjastot ja ytimen moduulit</td>
</tr>
<tr>
<td>media</td>
<td>Irrotettavien talltoimien liitoskohtat</td>
</tr>
<tr>
<td>mnt</td>
<td>Liitoskohtaa tiedostojärjestelmien tilapäiseen liittämiseen</td>
</tr>
<tr>
<td>proc</td>
<td>Näennäishakemisto järjestelmätiedoille</td>
</tr>
<tr>
<td>root</td>
<td>Pääkäyttäjän kotihakemisto</td>
</tr>
<tr>
<td>run</td>
<td>Run-time variable data</td>
</tr>
<tr>
<td>sbin</td>
<td>Järjestelmän välttämättömät komennot</td>
</tr>
<tr>
<td>sys</td>
<td>Näennäishakemisto järjestelmätiedoille</td>
</tr>
<tr>
<td>tmp</td>
<td>Tilapäisiä tiedostoja</td>
</tr>
</tbody>
</table>


- **/usr**: sisältää kaikki käyttäjien ohjelmat (/usr/bin), kirjastot (/usr/lib), ohjeet (/usr/share/doc), jne. Tämä on yleensä tiedostojärjestelmän eniten tilaa vievä osa. Levytilaa olisi olisi oltava ainakin 500 Mt, ja 4–6 Gt. It is now recommended to have /usr on the root partition /, otherwise it could cause some trouble at boot time. This means that you should provide at least 600–750MB of disk space for the root partition including /usr, or 5–6GB for a workstation or a server installation.

- **/var**: muuttuvia tiedostoja kuten usenetin artikkeleita, sähköposteja, tietokantoja, paketinhallintajärjestelmän välimuisti, jne. tallennetaan tähän hakemistoon. Järjestelmän käyttötapa vaikuttaa suuresti tämän hakemiston kokoon, mutta useimmilla enemmän määrää paketinhallintajärjestelmän yleisrasite. Jos aiotaan asentaa suunnilleen kaikki mitä Debianissa on tarjolla yhden (eli aseman) palvelut ja apuohjelmat, sitten merkkipohjaiset sovellukset, sitten X, ... riittää 300–500 Mt. Jos levytilaa on niukasti eikä ole aikomus tehdä isoja järjestelmän päivityksiä, voidaan tulla toimeen niinkin vähän kuin 30 tai 40 Mt.


- **/home**: jokainen käyttäjä tallentaa henkilökohtaiset tiedostonsa tämän hakemiston alihakemistoja. Koko on riippuvainen järjestelmän käyttötapasta ja mitä tiedostoja he tallentavat kotihakemistoonsa. Suunnitelusta käyttötavasta riippuen olisi varattava noin 100 Mt käyttäjää kohti, mutta varausta muokataan tarpeen mukaan. Tilaa on varattava huomattavasti enemmän jos tallennetaan paljon multimediatiedostoja (kuvia, MP3, elokuvia) kotihakemistoihin.

### C.3 Osiointisuositus

For new users, personal Debian boxes, home systems, and other single-user setups, a single / partition (plus swap) is probably the easiest, simplest way to go. The recommended partition type is ext4.

Miten käyttäjän järjestelmässä tai jos levytilaa on hyvin paljon on paraasta antaa hakemistoille /var/, /tmp, ja /home kullekin oma osionsa /-osiosta

You might need a separate /usr/local partition if you plan to install many programs that are not part of the Debian distribution. If your machine will be a mail server, you might need to make /var/mail a separate partition. If you are setting up a server with lots of user accounts, it's generally good to have a separate, large /home partition. In general, the partitioning situation varies from computer to computer depending on its uses.

Hyvin mutkikkaiden järjestelmien ylläpitäjän olisi luettava Multi Disk HOWTO. Siinä on yksityiskohtaisia tietoa, enimmäkseen Internetpalvelun tarjoajille ja palvelinkoneiden asentajille.

With respect to the issue of swap partition size, there are many views. One rule of thumb which works well is to use as much swap as you have system memory. It also shouldn’t be smaller than 512MB, in most cases. Of course, there are exceptions to these rules.

As an example, an older home machine might have 512MB of RAM and a 20GB SATA drive on /dev/sda. There might be a 8GB partition for another operating system on /dev/sda1, a 512MB swap partition on /dev/sda3 and about 11.4GB on /dev/sda2 as the Linux partition.

Luku Kohta D.2 antaa käsityksen asennuksen jälkeen asennettavien tehtävien levytilan tarpeesta.
C.4 Laitenimet Linuxissa

Linuxin käyttämät levyjen ja osioiden nimet saattavat erottaa muiden käyttöjärjestelmien laitenimistä. Osoita tehtäessä ja liitettäessä on tiedettävä Linuxin käyttämät nimet. Tässä on nimeämiskäytännön perusteet:

- The first hard disk detected is named /dev/sda.
- The second hard disk detected is named /dev/sdb, and so on.
- Ensimmäinen SCSI CD-ROM on /dev/scd0, voi käyttää myös /dev/sr0.


Huomaa kahden SCSI-ohjaimen (eli SCSI-kanavan) tapauksessa levyjen järjestyksen voivan olla sekava. Tällaisessa tapauksessa on parasta katsoa käynnistyksen aikana näkyvää viestejä, ja vertailla levyjen mallia ja/tai kokoja.

Linux represents the primary partitions as the drive name, plus the numbers 1 through 4. For example, the first primary partition on the first drive is /dev/sda1. The logical partitions are numbered starting at 5, so the first logical partition on that same drive is /dev/sda5. Remember that the extended partition, that is, the primary partition holding the logical partitions, is not usable by itself.

C.5 Debianin osiointisovellukset

Debianin kehittäjät ovat muokanneet useita erilaisia osiointisovelluksia toimimaan erilaisien kiintolevyjen ja laitearkkitehtuurien kanssa. Tämän ohjeen kattaman arkkitehtuurin osiointisovellus tai osiointisovellukset ovat seuraavassa luettelossa:

- **partman** Debianin suositeltu osiointisovellus. Tämä monitoimityökalu osaa myös muuttaa osion kokoa, luoda tie- dostojärjestelmä ("formatoida" Windowsin termeillä) ja liittää ne liitoskohtiin.
- **fdisk** Alkuperäinen Linuxin osiointityökalu, sopii asiantuntijoille.

  Ole varovainen jos koneen levyllä on FreeBSD-osioita. Asennusytimet tukevat niitä, mutta fdisk saattaa nimetää (tai ei nimettä lainkaa) ne muilla laitenimillä. Katso Linux+FreeBSD HOWTO.

- **cfdisk** Helppokäyttöinen merkkipohjainen kokoruudun käyttöliittymä meille tavallisille näppäintäkäyttäjiille.

  Huomaa ettei cfdisk ymmärrä FreeBSD-osioita lainkaan, joten laitenimet voivat taas olla erilaisia.

  Jokin näistä ohjelmista käynnistetään oletusravona kun valitaan Tee levyosiot (tai vastaavaa). Saattaa olla mahdollista käyttää jotain muuta osiointisovellusta käynnistämällä se komentoriviltä virtuaalikonsolilla kaksi, mutta tätä ei suositella.

  Muista merkitä käynnistysosio käynnistyskelloisiksi ("Bootable").

C.5.1 64-bit PC ja osiointi

If you are using a new harddisk (or want to wipe out the whole partition table of your disk), a new partition table needs to be created. The "Guided partitioning" does this automatically, but when partitioning manually, move the selection on the top-level entry of the disk and hit Enter. That will create a new partition table on that disk. In expert mode, you will then be asked for the type of the partition table. Default for UEFI-based systems is "gpt", while for the older BIOS world the default value is "msdos". In a standard priority installation those defaults will be used automatically.

**HUOMAA**

When a partition table with type "gpt" was selected (default for UEFI systems), a free space of 1 MB will automatically get created at the beginning of the disk. This is intended and required to embed the GRUB2 bootloader.

Jos tietokoneessa on ennestään muu käyttöjärjestelmä kuten DOS tai Windows, ja tuo käyttöjärjestelmä halutaan säilyttää kun Debian asennetaan, on tuon muun käyttöjärjestelmän levyosion kokoa ehkä muuttettava, jotta saadaan
vapaata tilaa Debianin asennukselle. Asennin tukee sekä FAT- että NTFS-tiedostojärjestelmien koon muuttamista; asentimen osiointi vaiheessa valitaan Osioi itse ja sitten yksinkertaisesti valitaan levyllä oleva osio ja muutetaan sen kokoa.

While modern UEFI systems don't have such limitations as listed below, the old PC BIOS generally adds additional constraints for disk partitioning. There is a limit to how many "primary" and "logical" partitions a drive can contain. Additionally, with pre 1994–98 BIOSes, there are limits to where on the drive the BIOS can boot from. More information can be found in the Linux Partition HOWTO, but this section will include a brief overview to help you plan most situations.

"Ensisijaiset" osiot ovat PC-levyjen alkuperäinen osiointitapa. Niitä voi kuitenkin olla enintään neljä kappaletta. Tämän rajoituksen ohittamiseksi keksittiin "laajennetut" ja "loogiset" osiot. Muuttamalla yksi ensisijaisista osioista laajennetuksi osiksi, voidaan tuon osion tila jakaa useaan loogiseen osioon. Yhteen laajennettuun osioon voi tehdä jopa 60 loogista osiota; laajennettuja osioita voi kuitenkin olla vain yksi levyä kohti.

Linux rajoittaa osioiden määriän levyä kohti 255 osioon SCSI-levylle (käytettävissä on 3 ensisijaita osiota ja 252 loogista osiota), ja 63 osioon IDE-levylle (käytettävissä on 3 ensisijaista osiota ja 60 loogista osiota). Kuitenkin tavallinen Debian GNU/Linux järjestelmä tekee vain 20 laitetiedostoa osioille, joten enempää osioita ei voi levylle tehdä luomalla ensin itse laitetiedostot ylimääräisille osioille.

Jos tietokoneessa on iso IDE-levy eikä käytetä LBA-osoitusta eikä päälöysajuria (kiintolevyjen valmistajat saattavat toimittaa niitä), on käynnistysosio (osio jossa ytimen suorituskelpoinen tiedosto sijaitsee) sijaittava levyyn 1024 ensimmäisen sylinterin alueella (tavallisesti noin 524 Mt, jos BIOS ei muunna osoitteita).

This restriction doesn’t apply if you have a BIOS newer than around 1995–98 (depending on the manufacturer) that supports the "Enhanced Disk Drive Support Specification". Debian's Lilo alternative mbr must use the BIOS to read the kernel from the disk into RAM. If the BIOS int 0x13 large disk access extensions are found to be present, they will be utilized. Otherwise, the legacy disk access interface is used as a fall-back, and it cannot be used to address any location on the disk higher than the 1023rd cylinder. Once Linux is booted, no matter what BIOS your computer has, these restrictions no longer apply, since Linux does not use the BIOS for disk access.

Jos levy on iso, on ehkä käytettävä sylinteriosoitteen muunnosta. Nämä voidaan valita BIOSin asetuksista, esimerkiksi LBA (Logical Block Addressing) tai CHS translation mode ("Large"). Lisätietoa isojen levyjen käyttämisestä on ohjeessa Large Disk HOWTO. Jos käytetään sylinteriosoitteen muunnosta eikä BIOS tuke liisää on Isojen levyjen käyttöön, on käynnistysosijon sijaittaa muunnettujen 1023 ensimmäisen sylinterin alueella.

Suositeltu tapa tämän tekemiseen on pienen (25–50 Mt pitäisi riittää) osion luominen levyyn alkunakin käytettäväksi käynnistysosiona, ja luoda muut tarvittavat osiot jäljelle jäävään osaan levyä. Tämä käynnistysosio on liitetään kohtaan /boot, koska tuohon hakemistoon tallennetaan Linux-ytimet. Tämä järjestely toimii kaikissa järjestelmissä, eikä ole väliä onko käytössä LBA tai CHS translation mode tai tukeekko BIOS liisää Isojen levyjen käyttöön.
Liite D

Sekalaista

D.1  Linuxin laitetiedostot


Tiedosto	Vihje
sda	Ensimmäinen kiintolevy
sdb	Toinen kiintolevy
sda1	Ensimmäinen osio ensimmäisestä kiiintolevystä
sdb7	Peräkkäinen osio toisesta kiintolevyssä
sr0	Ensimmäinen CD-ROM
sr1	Toinen CD-ROM
ttyS0	Sarjaportti 0, MS-DOS:ssa COM1
ttyS1	Sarjaportti 1, MS-DOS:ssa COM2
psaux	PS/2 hiiriportti
gpmdata	Näennäislaitte, GPM-demonin (hiiri) toistin
cdrom	Symbolinen linkki romppuasemaan
mouse	Symbolinen linkki hiiren laitetiedostoon
null	Täyttää laitteelle kirjoitettu katoaa
zero	Tältä laitteesta voi lukea nollia loputtomasti

D.1.1 Hiiren asetukset


Jotta hiiri toimisi on tiettyjen ytimen moduulien oltava ladattuna. Useimmissa tapauksissa oikeat moduulit tunnistetaan automaattisesti, mutta einä vanhanmallisille sarja- tai väylähiirille, jotka ovat saaneet harvinaisia, niitä on vain hyvin vanhoissa tietokoneissa. Yhteenverta erilaisille hiirille tarvittavista Linuxin ytimen moduuleista:

---

¹Sarjahiirissä on tavallisesti 9-reikäinen D:n muotoinen liitin; väylähiirissä on 8-piikkinen pyöreä liitin, jota ei pidä sekoittaa PS/2-hiiren 6-piikkiseen pyöreään liittimeen tai ADB-hiiren 4-piikkiseen pyöreään liittimeen.
Hiirijurin moduulin lataamisen voidaan käyttää komentoa `modconf` (tulee samannimisessä asennuspakettiessa), katso kohtaa `kernel/drivers/input/mouse`.

### D.2 Tehtävien vaatima levytila

Peruskokoonpanon asennus ja kaikki vakiopaketit amd64-arkkitehtuurilla oletusarvona olevaa ydintä käyttäen vie 971 Mt levytilaa. Suppea perusasennus vie 769 Mt, jos standard-tehtävää ei valita.

**Tärkeää**

Molemmissa tapauksissa tämä on todellinen käytetty levytila asennuksen jälkeen kun tilapäiset tiedostot on poistettu. Myöskään ei oteta huomioon yleissä käyttöön tulevat tiedostot, kuten asennustiedostot ja fastboot-tiedostot. Tämä tarkoittaa, että tarvitaan huomattavasti enemmän levytilaa sekä asennuksen aikana että järjestelmän tavallisessa käytössä.

Seuraavassa taulukossa tietoa antaa aptitudeen ilmoittamat kokotilat, jotka on käytetty asennuksen aikana. Huomaa, että taulukossa lueteltujen kokojen summa voi olla vähemmän kuin niiden kokojen summa.

By default the installer will install the GNOME desktop environment, but alternative desktop environments can be selected either by using one of the special installation images, or by specifying the desired desktop environment during installation (see Kohta 6.3.6.2).

Huomaa, että taulukossa esitettyjen kokojen lisäksi on lisättävä peruskokoonpanon vaatima tila laskettaessa levyosioiden kokoa. Valtaosa sarakkeessa "Koko purettuna" olevasta tilasta kuluu hakemistosta `/usr`; sarakkeessa "Koko pakattuna" mainittu tila tarvitaan (tilapäisesti) hakemistosta `/var`.

<table>
<thead>
<tr>
<th>Tehtävä</th>
<th>Koko purettuna (Mt)</th>
<th>Koko pakattuna (Mt)</th>
<th>Asennuksen aikana tarvittava tila (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Työpöytäympäristö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (oletus)</td>
<td>2790</td>
<td>786</td>
<td>3576</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4122</td>
<td>1212</td>
<td>5334</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2187</td>
<td>621</td>
<td>2808</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2271</td>
<td>653</td>
<td>2924</td>
</tr>
<tr>
<td>• MATE</td>
<td>2574</td>
<td>711</td>
<td>3285</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4197</td>
<td>1251</td>
<td>5448</td>
</tr>
<tr>
<td>Web server</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>SSH server</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Jos asennuskieli on joku muu kuin englanti, tasksel saattaa asentaa automaattisesti kotoistustehtävän, jos sellainen on asennuskielle saatavissa. Tilavaatimus riippuu kielestä; olisi varauduttava 350 Mt kokonaistilaan noudossa ja asennuksessa.

### D.3 Debian GNU/Linuxin asentaminen Unix/Linux-järjestelmästä.

Tämä luku selittää miten Debian GNU/Linux asennetaan koneessa jo olevasta Unix- tai Linux-järjestelmästä käyttämättä valikoppaohjaista asenninta josta muut osat tätä ohjetta kertovat. Tämä ohjettaj ”ristiinasesennuksesta” ovat pyytäneet käyttäjät jotka vaihtavat Debian GNU/Linuxin järjestelmästä Red Hat, Mandriva ja SUSE. Tässä luvussa edellytetään jonkinlaista kokemusta *nix-komennoista ja tiedostojärjestelmässä liikkumisesta. Tässä luvussa $ tarkoittaa komentoa joka kirjoitetaan koneessa jo olevassa käyttöjärjestelmässä, ja # tarkoittaa chroot-eristetyssä Debianissa.
Kun uuden Debian-järjestelmän asetuksen on saatu mieleisiksi, voidaan vanhan järjestelmän käyttäjien tiedot (jos niitä on) siirtää ja jatkaa koneen käyttöä. Kyseessä on siis Debian GNU/Linux asennus "ilman alhaallaoloaikaa". Tämä on myös näppärä keino jos luitteiston kanssa on vaikeuksia käynnistys- ja asennustaittojen kannsa.

HUOMAA


D.3.1 Alkuunpääsy

With your current *nix partitioning tools, repartition the hard drive as needed, creating at least one filesystem plus swap. You need around 769MB of space available for a console only install, or about 2271MB if you plan to install X (more if you intend to install desktop environments like GNOME or KDE Plasma).

Osioille on luotava tiedostojärjestelmät. Esimerkiksi jos tehdään ext3-tiedostojärjestelmä osioon /dev/sda6 (se on esimerkiksi juuriosio):

```
mke2fs -j /dev/sda6
```

Jos halutaankin ext2-tiedostojärjestelmä, jätetään -j pois.

Alustetaan sivutus ja otetaan se käyttöön (korvaa osion numero halutulla Debianin sivutusosiolla):

```
mkswap /dev/sda5
sync
swapon /dev/sda5
```

Yksi osio on liitettävä kohtaan /mnt/debinst (asennus tehdään tähän, siitä tulee uuden järjestelmän juuritiedostojärjestelmä (/)). Liitoskohta voi olla mikä tahansa hakemisto, mutta nimeä käytettään myöhemmin.

```
mkdir /mnt/debinst
mount /dev/sda6 /mnt/debinst
```

HUOMAA

Jos osa tiedostojärjestelmästä (esim. /usr) halutaan omiin levyosioihinsa, on nämä osiot tehtävä ja liitetävä itse ennen kuin jatketaan seuraavaan kohtaan.

D.3.2 Asennetaan debootstrap

Debianin asentimen käyttämä työkaluohjelma on debootstrap. Se on virallinen tapa Debianin peruskokoelman asentamiseen. Se käyttää komentoja wget ja ar, mutta on muuten riippuvainen ainostaan /bin/shista ja Unixin/Linuxin perusohjelmista². Asenna wget ja ar jos niitä ei vielä nykyjärjestelmässä ole, ja nouda ja asenna sitten debootstrap.

Tai voidaan käyttää seuraavaa menettelyä ja asentaa se itse. Tee työhakemisto johon .deb puretaan:

```
mkdir work
cd work
```

²Näitä ovat GNU:n perustyökalut ja komennot kuten sed, grep, tar ja gzip.
Komenton debootstrap suoritettava ohjelmiedostoon on Debianin asennuspalvelimella (muista valita oikea tiedostokoneen suoritinperheelle). Nouda debootstrap .deb varastoalueelta, kopioi paketti työhakemistoon ja pura siitä suorituskepsiöset ohjelmiedostot, joiden asentamiseen tarvitaan pääkäyttäjän oikeuksia.

```
ar -x debootstrap_0.X.X_arch.deb
cd /
zcat /kokonainen-polkunimi/work/data.tar.gz | tar xv
```

D.3.3 Suoritetaan debootstrap


If you have a bullseye Debian GNU/Linux installation image mounted at /cdrom, you could substitute a file URL instead of the http URL:

```
cdrom/debian/
```

Substitute one of the following for ARCH in the debootstrap command: amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x.

```
/usr/sbin/debootstrap --arch ARCH bullseye /mnt/debinst http://ftp.us.debian.org/debian
```

If the target architecture is different than the host, you should add the --foreign option.

D.3.4 Perusjärjestelmän asetukset

Now you’ve got a real Debian system, though rather lean, on disk. chroot into it:

```
LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

If the target architecture is different from the host, you will need to first copy qemu-user-static to the new host:

```
cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

After chrooting you may need to set the terminal definition to be compatible with the Debian base system, for example:

```
export TERM=xterm-color
```

Depending on the value of TERM, you may have to install the ncurses-term package to get support for it.

If the target architecture is different from the host, you need to finish the multi-stage boot strap:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Luo laitetiedostot

Tässä kohtaa hakemistossa /dev/ on vain hyvin peruslaitetiedostoja. Asennuksen seuraavissa vaiheissa saatetaan tarvita lisää laitetiedostoja. Etenemistapoja on erilaisia, ja valittavaa tapaa vaikuttaa isäntäjärjestelmän josta asennusta tehdään, käytetäänkö modulaarista ydintä vai ei, ja käytetäänkö asennettavassa järjestelmässä dynaamisia (t.s. käytössä udev) vai staattisia laitetiedostoja.

Joitakin käytettävissä olevista valitsimista:

- install the makedev package, and create a default set of static device files using (after chrooting)

```
apt install makedev
mount none /proc -t proc
cd /dev
MAKEDEV generic
```

- luo itse vain tietty laitetiedostot komennolla MAKEDEV

- liitä hakemisto /dev isäntäjärjestelmästä kohdejärjestelmän liitoskohtaan /dev; huomaa joidenkin paketien postinst-komentotiedostojen saattavan yrittää laitetiedostojen luomista, joten tätä valitsemaa olisi käytettävä varoen
D.3.4.2 Liitetään osiot

You need to create `/etc/fstab`.

```bash
editor /etc/fstab
```

Here is a sample you can modify to suit:

```bash
#/etc/fstab: static file system information.
#
file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2
```

Use `mount -a` to mount all the file systems you have specified in your `/etc/fstab`, or, to mount file systems individually, use:

```bash
mount /path # e.g.: mount /usr
```

Current Debian systems have mountpoints for removable media under `/media`, but keep compatibility symlinks in `/`. Create these as needed, for example:

```bash
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
```

You can mount the proc file system multiple times and to arbitrary locations, though `/proc` is customary. If you didn’t use `mount -a`, be sure to mount proc before continuing:

```bash
mount -t proc proc /proc
```

Komennon `ls /proc` pitäisi nyt näyttää tiedostoja hakemistossa. Jos tämä ei toimi, proc voidaan ehkä liittää chroot-eristyksen ulkopuolelta:

```bash
mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Aikavyöhyke

Setting the third line of the file `/etc/adjtime` to "UTC" or "LOCAL" determines whether the system will interpret the hardware clock as being set to UTC respective local time. The following command allows you to set that.

```bash
editor /etc/adjtime
```

Here is a sample:

```bash
0.0 0 0.0
0
UTC
```

The following command allows you to choose your timezone.

```bash
dpkg-reconfigure tzdata
```
D.3.4.4 Verkon asetukset

To configure networking, edit `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` and `/etc/hosts`.

```bash
editor /etc/network/interfaces
```

Here are some simple examples from `/usr/share/doc/ifupdown/examples`:

```bash
#!/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
See the interfaces(5) manpage for information on what options are available.
#
The loopback interface isn't really required any longer, but can be used if needed.
#
auto lo
iface lo inet loopback

To use dhcp:
#
auto eth0
iface eth0 inet dhcp

An example static IP setup: (network, broadcast and gateway are optional)
#
auto eth0
iface eth0 inet static
address 192.168.0.42
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1
```

Enter your nameserver(s) and search directives in `/etc/resolv.conf`:

```bash
editor /etc/resolv.conf
```

A simple example `/etc/resolv.conf`:

```bash
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Enter your system's host name (2 to 63 characters):

```bash
echo DebianHostName > /etc/hostname
```

And a basic `/etc/hosts` with IPv6 support:

```bash
127.0.0.1 localhost
127.0.1.1 DebianHostName

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

If you have multiple network cards, you should arrange the names of driver modules in the `/etc/modules` file into the desired order. Then during boot, each card will be associated with the interface name (eth0, eth1, etc.) that you expect.
D.3.4.5 Aptin asetukset

Debootstrap will have created a very basic /etc/apt/sources.list that will allow installing additional packages. However, you may want to add some additional sources, for example for source packages and security updates:

```
deb-src http://ftp.us.debian.org/debian bullseye main
```

```
deb http://security.debian.org/ bullseye-security main
deb-src http://security.debian.org/ bullseye-security main
```

Make sure to run `apt update` after you have made changes to the sources list.

D.3.4.6 Näppäimistön asetukset ja maa-asetusto

To configure your locale settings to use a language other than English, install the locales support package and configure it. Currently the use of UTF-8 locales is recommended.

```
apt install locales
dpkg-reconfigure locales
```

To configure your keyboard (if needed):

```
apt install console-setup
dpkg-reconfigure keyboard-configuration
```

Huomaa ettei näppäimistön asetuksia saa käyttöön kun ollaan chroot-eristettynä, mutta ne tulevat käyttöön seuraavassa käynnistyksessä.

D.3.5 Asennetaan ydin

Jos tämä järjestelmä aiotaan käynnistää, haluutaneen Linux ydin ja käynnistyslatain. Saatavilla olevien ytimien valmiit asennuspakettiitä löytää komennolla:

```
apt search linux-image
```

Then install the kernel package of your choice using its package name.

```
apt install linux-image-arch-etc
```

D.3.6 Käynnistyslataimen asetukset

To make your Debian GNU/Linux system bootable, set up your boot loader to load the installed kernel with your new root partition. Note that debootstrap does not install a boot loader, but you can use `apt` inside your Debian chroot to do so.

Check `info grub` for instructions on setting up the bootloader. If you are keeping the system you used to install Debian, just add an entry for the Debian install to your existing grub2 `grub.cfg`

Installing and setting up grub2 is as easy as:

```
apt install grub-
grub-install /dev/sda
update-grub
```

The second command will install grub2 (in this case in the MBR of sda). The last command will create a sane and working `/boot/grub/grub.cfg`.

Huomaa tässä oletettavan laitettavan laitetiedoston `/dev/sda` olevan luotu. On muitakin tapoja asentaa grub, mutta niiden käsittely ei kuulu tähän liitteeseen.

D.3.7 Remote access: Installing SSH and setting up access

In case you can login to the system via console, you can skip this section. If the system should be accessible via the network later on, you need to install SSH and set up access.

```
apt install ssh
```
Root login with password is disabled by default, so setting up access can be done by setting a password and re-enable root login with password:

```
passwd
editor /etc/ssh/sshd_config
```

This is the option to be enabled:

```
PermitRootLogin yes
```

Access can also be set up by adding an ssh key to the root account:

```
mkdir /root/.ssh
cat << EOF > /root/.ssh/authorized_keys
ssh-rsa
EOF
```

Lastly, access can be set up by adding a non-root user and setting a password:

```
adduser joe
passwd joe
```

### D.3.8 Viimeistely

As mentioned earlier, the installed system will be very basic. If you would like to make the system a bit more mature, there is an easy method to install all packages with "standard" priority:

```
tasksel install standard
```

Of course, you can also just use `apt` to install packages individually.

Asennuksen jälkeen hakemistossa `/var/cache/apt/archives/` on suuri määrä noudettuja asennuspaket-teja. Levytilaa voidaan vapauttaa komennolla:

```
apt clean
```

### D.4 Debian GNU/Linux:in asennus käyttäen Parallel Line IP:tä (PLIP)

Tässä luvussa kerrotaan miten Debian GNU/Linux asennetaan tietokoneelle jossa ei ole Ethernettliitäntää, vain yhdyskäytävänä toimiva etätietokone johon on yhteys nollamodeemikaapelilla (eli nollatulostinkaapelilla). Yhdyskäytäväkoneen olisi oltava verkossa jossa on Debianin asennuspalvelimen kopio (esim. Internetissä).

Tämän liitteen esimerkissä tehdään PLIP-yhteys yhdyskäytäväkoneeseen josta on soittoyhteys Internetiin (ppp0). käytettävät IP-numerot PLIP-liitännöille ovat 192.168.0.1 tälle koneelle (kohdekone) ja 192.168.0.2 yhdyskäytäväkoneelle (on valittava osoitteet jotka eivät kuulu paikallisverkon osoiteavaruuteen).

Asennuksen aikana tehty PLIP-yhteys on käytettävissä myös kun on käynnistetty asennettuun järjestelmään (katso Luku 7).

Ennen asennuksen aloittamista on tarkistettava BIOS:n asetuksista IO base address ja IRQ sekä kohdekoneen että yhdyskäytäväkoneen rinnakkaisportille. Yleisimmät arvot ovat `io=0x378, irq=7`.

#### D.4.1 Vaatimukset

- Kohdekone, käytettäin nimeä `kohde`, johon Debian asennetaan
- Asennustaltio; katso Kohta 2.4.
- Toinen tietokone, käytettäin nimeä `lahde`, joka on kytketty Internettiin ja toimii yhdyskäytävänä.
D.4.2 Lähdekoneen asetukset

Seuraava komentotiedosto on yksinkertainen esimerkki lähdekoneessa tehtävistä asetuksista jotta se toimii yhdyskäyttävänä Internettiin ppp0-portin kautta.

```bash
#!/bin/sh
#
Poistetaan ytimestä käytössä olevat moduulit jottei tule
ristiriitoja ja jotta niiden asetukset saadaan tehtyä uudelleen.
modprobe -r lp parport_pc
modprobe parport_pc io=0x378 irq=7
modprobe plip

Tehdään plip-liitännän asetukset (tässä plip0, katso dmesg | grep plip)
ifconfig plip0 192.168.0.2 pointopoint 192.168.0.1 netmask 255.255.255.255 up

Tehdään yhdyskäytävän asetukset
modprobe iptable_nat
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward
```

D.4.3 Asennetaan kohdekone

Käynnistetään kone asennustaltiolta. Asennus on suoritettava expert-tilassa; kirjoita asentimen kehotteeseen `expert`. Jos ytimien moduuleille on välitettävä parametreja, on tämäkin tehtävä asentimen kehotteessa. Esimerkiksi asennin käynnistetään ja annetaan moduulille parport_pc parametrin “io” ja ”irq”:

```
exper parport_pc.io=0x378 parport_pc.irq=7
```

Asennuksen aikana pitäisi kysyynkiin vastata kuten seuraavassa kerrotaan.

1. Load installer components from installation media
   
   Valitaan luettelosta kohta `plip-modules`; tämän jälkeen PLIP-ajurit ovat käytettävissä asennusjärjestelmässä.

2. Tunnista verkolaitteisto
   
   • Jos kohdekoneessa on verkkoiliitäntä, näytetään luetteloi lähettyjien liitännöjen ajurimoduleista. Mikäli halutaan pakottaa debian-installer käyttämään plip-liitännää eikä näitä, on poistettava valinta kaikista luetteloon ajurimoduleista. Asennin ei tietenkään näytä tätä luetteloa jos kohdekoneessa ei ole verkkoiliitäntää.
   
   • Koska aiemmin ei löytynyt tai ei valittu verkkoiliitäntää, pyytää asennin valitsemaan verkkoajurin luettelosta. Valitaan moduuli `plip`.

3. Tee verkkosaasetukset
   
   • Haetaanko verkkosaasetukset automaattisesti DHCP:llä?
   
   • IP-osoite: `192.168.0.1`
   
   • kaksipisteosoite: `192.168.0.2`
   
   • Nimipalvelinten osoitteet: voidaan käyttää samoja kuin yhdyskäyttävökone (katso tiedostosta `/etc/resolv.conf`)

D.5 Debian GNU/Linux:in asennus käyttäen PPP over Ethernet:tiä (PPPoE)

Joissakin maissa PPP over Ethernet (PPPoE) on yleinen yhteyskäytäntö laajakaistayhteyksille (ADSL tai kaapeli) Internetpalveluntarjoajaan. Verkkoyhteyden asetusten teko PPPoE:lle ei ole oletusarvona tuettu asentimessa, mutta saadaan toimimaan hyvin helposti. Tämä luku selittää miten.

Asennuksen aikana tehty PPPoE-yhteys on käytettävissä myös kun on käynnistetty asennettuun järjestelmään (katso Luku 7).
To have the option of setting up and using PPPoE during the installation, you will need to install using one of the CD-ROM/DVD images that are available. It is not supported for other installation methods (e.g. netboot).

Asentaminen PPPoE:n kautta on enimmäkseen samanlaista kuin muutkin asennukset. Seuraavat kohdat selittävät eroavuudet.

- Tee asennuksen tavalliset ensimmäiset vaiheet (kielen, maan ja näppäinasettelun valinta; lisäosien lataus⁴).
- Seuraava vaihe on verkkosovittimien tunnistus, jotta laitteessa olevat Ethernet-kortit löytyvät.
- Tämän jälkeen aloitetaan varsinainen PPPoE:n asetusten teko. Asemin tutkii kaikista kaikista tämän Ethernet-liittännöistä onko siellä PPPoE konsentraattorin (palvelin joka huolehtii PPPoE-yhteyksistä).
  
  Konsentraattorin käyttö on ainoa käytettävä asennuksen tunnistus. Tämä tekee tunnistuksen hitaisemmaksi ja helpomman käyttöä.
- Tämän jälkeen aloitetaan varsinainen asennus PPPoE:n asetusten teko. Asemin tutkii kaikista Ethernet-liittännöistä onko siellä PPPoE konsentraattorin (palvelin joka huolehtii PPPoE-yhteyksistä).

  Konsentraattorin käyttö on ainoa käytettävä asennuksen tunnistus. Tämä tekee tunnistuksen hitaisemmaksi ja helpomman käyttöä.
  
- Tässä kohtaa asennin käyttää annettuja tietoja ja muodostaa PPPoE-yhteyden. Jos tiedot olivat oikein, PPPoE-yhteyden asetuksien pitää olla tehty ja asentimen pitää pystyä muodostamaan yhteys Internetiin sen kautta ja noutamaan (jos tarvitaan) paketteja. Jos sisäänkirjautumisen tiedot olivat väärin tai tapahtuu jokin virhe, asennin pysähtyy, mutta asetukset voidaan tehdä uudelleen valitsemalla valikosta `Tee PPPoE:n asetukset ja käynnistä yhteys`.

³Katso kohdasta Kohta 5.1.7 käynnistysvalitseminen lisäämisestä.
⁴ppp-udeb:n lataus lisäämään tapahtuu tässä vaiheessa. Jos haluat asentaa erityisesti keskitaso tai matala (expert-tilassa), voit myös itse valita paketin ppp-udeb jolloin ei kirjoiteta "modules"-käynnistysparametria.

101
Liite E

Hallinnolliset tiedot

E.1 Tietoa tästä ohjeesta

This manual was created for Sarge’s debian-installer, based on the Woody installation manual for boot-floppies, which

was based on earlier Debian installation manuals, and on the Progeny distribution manual which was released under

GPL in 2003.

Tämä ohje on kirjoitettu DocBook XML -kuvauskielellä. Tulostusmuodot tuotetaan ohjelmallisesti paketteja
docbook-xml ja docbook-xsl käyttäen.

Tämän ohjeen ylliäpidettävyyttä parannetaan hyödyntämällä lukuisia XML:n ominaisuuksia, esimerkiksi entiteet-

tejä ja profiloinnin attribuuteja. Niitä käytetään kuten ohjelmointikielten muuttujia ja ehtorakenteita. Tämän ohjeen

XML-lähdekoodissa on tietoa kaikista eri arkkitehtuurien virheet — profiloinnin attribuuteilla erotetaan arkkitehtuuririp-puvat osat.

Tämän version suomentaja on Tapio Lehtonen tale@debian.org ja Esko Arajärvi edu@iki.fi. Aikaisempia Debia-

nin asennusohjeita ovat suomentaneet myös Panu Hällfors, Tommi Vainikainen ja Antti-Juhani Kajianaho. Tarkis-

tusluvusta kiitos localisointi.org:n postituslistalle laatua.

E.2 Ohjetalkoisiin osallistuminen

Vikailmoituksia ja parannusehdotuksia tälle ohjeelle lienee kätevintä lähettää vikailmoituksena paketille

installation-guide:

Tutustu pakettiin reportbug tai lue Debianin viianseurantajärjestelmän ohjeet. Olisi mukavaa jos tarkistaisit on-

ko viasta jo mainittu asennusohjeen aktivisten vikojen luettelossa. Tunnettuun vikaan voi lähettää vahvistuksen tai

lisätietoa sähköpostilla osoitteeseen xxxx@bugs.debian.org, missä xxxx on vian numero.

Vieläkin parempi olisi toimittaa korjaustiedosto noudamalla tämän ohjeen installation-guide project on salsa. Aut-
taa voi vaikkei DocBook olisikaan tuttu, sillä alkuun pääsee ohjeen hakemistossa olevalla lunttilapulla (cheatsheet.

xml). DocBook on HTML:n kultaista, mutta tarkoitettu tekstin merkityksen ilmaisemiseen eikä ulkoasun muokka-

miseen. Korjaustiedostot ovat tervetulleita sähköpostilistalle debian-boot (katso jäljempää). Lähdekoodien nouta-

minen SVN:n avulla neuvottaa README -tiedostossa lähdekoodihakemiston juuressa.

Toivomme ettei tämän ohjeen tekijöihin oteta yhteyttä suoraan. Keskustelua muun muassa tästä ohjeesta käydään
debian-installer -postituslistalla, listan osoite on debian-boot@lists.debian.org. Ohjeet listalle liittymiseen

löytyvät sivulta Postilistoille liityminen, tai Debianin sähköpostilistojen arkistoja voi selata netistä.

E.3 Tärkeimmät avustajat

This document was originally written by Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy, and Adam Di

Carlo. Sebastian Ley wrote the Installation Howto.

Miroslav Kuře has documented a lot of the new functionality in Sarge’s debian-installer. Frans Pop was the main

editor and release manager during the Etch, Lenny and Squeeze releases.

Many, many Debian users and developers contributed to this document. Particular note must be made of Michael

Schmitz (m68k support), Frank Neumann (original author of the Amiga install manual), Arto Astala, Eric Delau-

nay/Ben Collins (SPARC information), Tapio Lehtonen, and Stéphane Bortzmeyer for numerous edits and text. We

have to thank Pascal Le Bail for useful information about booting from USB memory sticks.

Erittäin hyödyllistä tekstiä ja tietoa löytyi Jim Minthan ohjeesta Howto for network booting (URL ei saatavilla),

Debianin VUKK:stä, Linux/m68k FAQ:stä, Linux for SPARC Prosessors FAQ:stä, Linux/Alpha FAQ:stä muiden

102
puussa. Näiden vapaasti saatavilla olevien ja täynnä tietoa olevien lähteiden ylläpitäjille on annettava tunnustusta.

Tämän ohjeen chrooted-asennuksia käsittelevä osuus Kohta D.3 on osittain lainattu dokumenteista joiden tekijänoikeuden omistaa Karsten M. Self.

PLIP:tä käyttävää asennuksia käsittelevä osuus (Kohta D.4 pohjautuu Gilles Lamiralin ohjeeseen PLIP Install Howto.

### E.4 Tavaramerkit

Kaikki tavaramerkit ovat omistajiensa omistamia.
Liite F

GNU yleinen lisenssi (GPL lisenssi)

**HUOMAA**

This is an unofficial translation of the GNU General Public License into finnish. It was not published by the Free Software Foundation, and does not legally state the distribution terms for software that uses the GNU GPL — only the original English text of the GNU GPL does that. However, we hope that this translation will help finnish speakers to better understand the GNU GPL.

Tämä on GPL lisenssin epävirallinen käännös suomeksi. Tätä käänöstä ei ole julkaissut Free Software Foundation eikä se määritä oikeudellisesti sitovasti GPL lisenssiä käyttävien ohjelmien levitysehtoja -- vain alkuperäinen englanninkielen GPL lisenssin teksti on oikeudellisesti sitova. Toivomme kuitenkin, että tämä käännös auttaa suomenkielisiä ymmärtämään GPL lisenssiä paremmin.

Versio 2, kesäkuu 1991

51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Käännöksen versio 1.0, heinäkuu 2001

Käännös ja sovittaminen Suomen oikeusjärjestelmään:
Mikko Välimäki, Berkeley, CA

Käännöksen uusin versio ja lisätietoja on saatavilla osoitteesta:
http://www.turre.com/
email: gpl@turre.com

Alkuperäinen englanninkielen versio on osoitteessa:
http://www.gnu.org/

Tämän lisenssisopimuksen kirjaamellinen kopioiminen ja levittäminen on sallittu, mutta muuttaminen on kielletty.

F.1 Johdanto

Yleensä tietokoneohjelmien lisenssisopimukset on suunniteltu siten, että ne estävät ohjelmien vapaan jakamisen ja muuttamisen. Sen sijaan GPL lisenssi on suunniteltu takaamaan käyttäjän vapaan ja muuttavan ohjelmaa — lisenssi varmistaa, että ohjelma on vapaan kaikille käyttäjille. GPL lisenssi soveltuu päälleen Free Software Foundationin ohjelmia ja mihin tahansa muuhun ohjelmaan, jonka tekijät ja oikeudenomistajat sitoutuvat sen käyttöön. (Johtakin Free Software Foundationin ohjelmia sovelletaan GPL lisenssin sijasta LGPL lisenssiä [GNU kirjastolisenssi]). Kuka tahansa voi käyttää GPL lisenssiä.
Kun tässä Lisenssissä puhutaan vapaasta ohjelmasta, silloin ei tarkoita hintaa. GPL lisenssi on nimittäin suunniteltu siten, että käyttäjälle taataan vapaus levittää kopioita vapaista ohjelmista (ja pyytää halutessaan maksua tästä palvelusta). GPL lisenssi takaa myös sen, että käyttäjä saa halutessaan ohjelman lähdekoodin, että hän voi muuttaa ohjelmaa tai käyttää osia siitä omissa vapaissa ohjelmissaan, ja että kaikkien näiden toimien tiedetään olevan sallittuja.

Jotta käyttäjän oikeudet turvattaisiin, lisenssillä asetetaan rajoituksia, jotka estävät ketä tahansa kieltämistä näitä oikeuksia tai vaatimista niiden luovuttamista. Nämä rajoitukset merkitsevät tiettyjä velvoitteita jokaiselle käyttäjälle, joka levittää ohjelmapaikkoita tai muuttaa ohjelmaa.

Jokaisen jokaisen esimerkiksi levittää kopiointia GPL lisenssin alaisesta ohjelmasta, ilmaiseksi tai maksusta, on annettava käyttäjille kaikki oikeudet, jotka hänellä on. Jokaisella käyttäjällä on oltava varmasti mahdollisuus saada ohjelman lähdekoodi. Ohjelman käyttäjille on myöskin esitetävät tämän lisenssisopimuksen ehdot, jotta he tietävät oikeutensa.

Jokaisen oikeudet turvataan kahdella toimenpiteellä: (1) ohjelma suojataan tekijänoikeudella, ja (2) käyttäjille tarjotaan tämä lisenssi, joka antaa lainsäädännön, levittää ja muuttaa ohjelmaa. Edelleen, jokaisen tekijän ja Free Software Foundationin suojaimiseksi on varmistettava, että jokainen ymmärtää, että vapaalla ohjelmalla ei ole takuuta. Ohjelman ajamisen antamisesta on varmistettava, että ohjelma on oikeussuojattu.

Jokainen oikeus levittää ohjelmaa ilman maksua. On olemassa vaara, että vapaiden ohjelmien levittäjät patentoi ohjelmia niillä seurauksella, että heillä on ohjelmien omistusoikeus. Tämän välttämiseksi jokainen patentti on joko lisensoitava ilmaiseksi kaikille käyttäjille tai jätetään kokonaan lisenssin muotoilua vasten.

Seuraa tarkat ehdot vapaiden ohjelmien kopiointiselle, levittämiselle ja muuttamiselle.

F.2 GNU yleinen lisenssi (GPL lisenssi)

Ehdot kopiointiselle, levittämiselle ja muuttamiselle

0. Tätä Lisenssiä sovelletaan kaikkiin ohjelmiin tai muihin teoksiin, jotka sisältävät tekijänoikeuden haltijan ilmoituksen, että teoksen levittäminen tapahtuu GPL lisenssin ehtojen mukaan. "Ohjelma" viittaa kaikkiin tällaisiin tietokoneohjelmiin ja muihin teoksiin. "Ohjelmaan perustuva teos" tarkoittaa joko Ohjelmaa tai mitä tahansa tekijänoikeudellista mukaista jälkiperäistä teosta: toisin sanoen, joka sisältää Ohjelman tai osan siitä, kirjaimellisesti tai muistuttuna, tai toiselle kielelle käännettyä. (Tästä eteenpäin käännytänsä lisäksi käsitteeseen "muutos"). "Lisenssin saaja" on se, jolle ohjelma lisensoidaan.

Tämä lisenssi ei kata muita toimenpiteitä kuin kopiointiselle, levittämiselle ja muuttamiselle. Ohjelman ajaminen ei ole kiellettyä. Ohjelman tuloste on tämän Lisenssin alainen vain silloin, kun se muodostaa Ohjelmaan perustuvan teoksen. (riippumatta siitä ajetaanko Ohjelmaa vai ei). Milloin tuloste on Lisenssin alainen riippuu siitä, mitä Ohjelma tekee.

1. Lisenssin saajalla on oikeus kopioida ja levittää sanatarkkoja kopiointia Ohjelmaan lähdekoodistoa sellaisena kuin se on saatu. millä tahansa laitteella. Ehtona on, että asiannukaisesti jokaisesta kopiosta ilmenee kenellä on siihen tekijänoikeus ja että Ohjelmaa ei ole takaanka. edelleen, jokaisen viitauksien tai ohjelmien vastaanottajalle on annettava tämä Lisenssin alkuperäisen tekijän maineeseen.

Lisenssin saaja voi pyytää maksun Ohjelman kopiointisesta ja vaihtoehtoisesti myydä Ohjelmaa takuun.

2. Ohjelmapaikon kopioiden tai minkä tahansa osan muuttaminen on sallittua. Kun ohjelmaa muuttaelee, muodostuu Ohjelmaan perustuvaa teos. Lisenssin saajalla on lupataan kopioida ja levittää näitä muttuksia ja Ohjelman perustuvaa teosta ehdolla, että ensimmäinen Kodehan 1 edellytykset täytetään ja lisäksi vielä seuraavat:

   a. Muuttetuksen tiedostojen on sisältävä selkeä merkintä, josta ilmenee, kuka tiedostot on muuttanut ja päiväys, jolloin muutot ovat tehty.

   b. Jokainen teos, jonka Lisenssin saaja julkaisee tai levittää edelleen, ja joka kokonaan tai osittain perustuu tai sisältää osia Ohjelmasta, on lisensoitava kokonaisuudessaan ilman maksua kaikille kolmansille osapuolille tämän Lisenssin ehtojen mukaisesti.

   c. Jos muutettu ohjelma lukee ajettessaan interaktiivisesti komentoja, Lisensin saajan on ohjelma käynnistetyssä normaaliniin ja ohjelmointihistorialle ohjelman ja ohjelmista tulostettavaksi ilmoitus, josta selviää asiannukaisesti, että ohjelman kopiointi ja muutos, ettei Ohjelmalla ole tarkoitukset asiannukaisesti, että ohjelman saa muuttaa Ohjelmaan perustuvaa teosta ehdolla, että ensimmäiset Kodehan 1 edellytykset täytetään ja lisääviä vielä seuraavat:

   a) Muuttetuksen tiedostojen on sisältävä selkeä merkintä, josta ilmenee, kuka tiedostot on muuttanut ja päiväys, jolloin muutot ovat tehty.

   b) Jokainen teos, jonka Lisenssin saaja julkaisee tai levittää edelleen, ja joka kokonaan tai osittain perustuu tai sisältää osia Ohjelmasta, on lisensoitava kokonaisuudessaan ilman maksua kaikille kolmansille osapuolille tämän Lisenssin ehtojen mukaisesti.
Nämä ehdot koskevat muuteltua teosta kokonaisuudessaan. Jos yksilöitävät osat tästä teoksesta eivät ole johdettuja Ohjelmasta ja ne voidaan perustellusti katsoa itsenäisiksi ja erillisiksi teoksiksi, silloin tämä Lisenssi ja sen ehdot eivät koske näitä osia, kun niitä levitetään erillisinä teoksina. Mutta jos samoja osia levitetään osana kokonaisuutta, joka on Ohjelmaan perustuva teos, tämän kokonaisuuden levittäminen on tapahduttava tämän Lisenssin ehtojen mukaan, jolloin tämän lisenssin ehdot laajenevat kokonaisuuteen ja täten sen jokaiseen osaan riippumatta siitä, kuka ne on tehnyt ja millä lisenssiähdöillä.

Eli tämän Kohdan tarkoitus ei ole saada oikeuksia tai ottaa pois Lisenssin saajan oikeuksia teokseen, jonka hän on kokonaan kirjoittanut; pikemminkin tarkoitus on käyttää oikeutta kontrolloida Ohjelmaan perustuvien jälkiperäistoten tai kollektiivisten teosten levittämistä.

Liisäksi pelkää toisen teoksen, joka ei perustu Ohjelmaan, liäittäminen Ohjelman ( tai Ohjelmaan perustuvan teoksen) kanssa samalle tallennus- tai johdoksesta ei merkitse sitä, että toinen teos tulisi tämän Lisenssin sitomaksi.

3. Lisenssin saajalla on oikeus kopioida ja levittää Ohjelmaa ( tai siihen perustuvaa teosta, Kohdant mainitakse- ti) objektiivisena tai ajettavassa muodossa yllä esitetysten Kohtien 1 ja 2 mukaisesti edellä esitettyä lisäksi, että yksi seuraavista ehtoista on täytetty:

   a) Ohjelman mukaan liitetään täydellinen koneella luettava lähdekoodi, joka on levitettävä yllä mainituksien Kohtien 1 ja 2 ehtojen mukaisesti välineellä, jota käytetään yleisesti ohjelmistojen jakehulu;
   b) Ohjelman mukaan liitetään vähintään kolme vuotta voimassa oleva kirjallinen tarjous luovuttaa kahden jokaiselle kolmannelle osapuolelle, enintään lähdekoodin fyysisen levittämisen hinnalla, täydellinen koneella luettava lähdekoodi, joka on levitettävä yllä mainituksien Kohtien 1 ja 2 ehtojen mukaisesti välineellä, jota käytetään yleisesti ohjelmistojen jakehulu;
   c) Ohjelman mukaan liitetään Lisenssin saajan tieto tarjouksesta, joka koskee lähdekoodin levittämistä. (Tämä vaihtoehto on sallittu vain ei-kaupalliseen levittämiseen ja sillä ehdolla, että ohjelma on saatu objektiivisena tai ajettavassa muodossa yllä mainitun alakohdan b mukaisesti)

Teoksen lähdekoodi tarkoittaa sen suositeltavaa muotoa muutosten tekemistä varten. Ajettavan teoksen täydellinen lähdekoodi tarkoittaa kaikkea lähdekoodia kaikkiin teoksen sisältämiin moduleihin ja lisäksi kaikkiin sen mukaan saarauviin käytöllisyysmääritysoihin sekä scriptteihin, joilla hallitaan ajettavan teoksen asennustaa ja käyttämistä. Kuitenkin erityisesti poikkeuksena levitetyn lähdekooden lähdelevytänen lähdekoodi ei tarvitse sisältää mitään sellaista, mikä yleensä levitetään (joko lähdekoodi- tai binäärimuodossa) käyttöjärjestelmän pääkomponenttien (käyttäjä, järjestelmä, jne.) mukaan, joiden päällä teosta ajetaan, ellei täällä olevat ehdot mukaan. Jos ajettavan tai objektiivisena levittäminen tehdään asioimalla paikoilla päätös tai siihen liittyvät aikselaitteet, että ohjelma on saatu objektiivisena tai ajettavassa muodossa yllä mainitun alakohdan b mukaisesti)

4. Ohjelman kopiointi, muuttaminen, lisenssintö edelleen tai Ohjelman levittäminen muuten kuin tämän Lisenssin ehtojen mukaisesti on kielletty. Kaikki yritykset muulla tavoin kopioida, muuttaa, lisenssintö edelleen tai levittää Ohjelmaa ovat päätettävällä ja johtavat automaattisesti tämän Lisenssin mukaisten oikeuksien päättymiseen. Sen sijaan ne, jotka ovat saaneet kopioita tai oikeuksia Lisenssin saajalta tämän Lisenssin ehtojen mukaisesti, eivät menettä sen lisenssijärjestelmän oikeuksia niin kauan kuin he noudattavat näitä ehtoja.


6. Aina kun Ohjelman (tai Ohjelman perustuvaa teosta) levitetään, vastaanottaja saa automaattisesti alkuperäiseltä tekijältä lisenssin oikeuksia, levittää ja muuttaa Ohjelman näiden ehtojen ja edellytysten sitomin. Vastaanottaja- ja ohjelmistoteosten levittäminen, tämän Lisenssin saajalla ei ole vastuuta valvoa noudattavaksi kolmannet osapuolet tätä Lisenssin.

7. Jos ohjelman päätös tai väite patenttiin luokkauksesta tai jokin muu syy (rajoittumatta patenttityyppisiin) asettaa Lisenssin saajalle ehtoja (olipa niiden alkupeen sitten tuomio, sopimus tai jokin muu) jotka ovat vastoin näitä lisenssi-ehtoja, ne eivät anna ohjelman poiketa tästä Lisenssinä. Jos ohjelman levittäminen ei ole mahdollista siten, että samanai- kaisesti toimitaan sekä tämän Lisenssin että joidenkin muiden rajoittavien velvoitteiden mukaisesti, tällöin Ohjelman ei saa lainkaan levitetä. Jos esimerkiksi jokin patenttilisenssin ehto saattaa sitä, että patentti vähintään päättyy, tämän Lisenssin saajalle koko luonnostamakseen, että lisenssin ehtojen mukaista levitetään. Lisenssin saajalle ei ole vastuuta valvoa noudattavan kolmannet osapuolet tätä Lisenssin.

Jos ohjelman päätös tai väite patenttiin luokkauksesta tai jokin muu syy (rajoittumatta patenttityyppisiin) asettaa Lisenssin saajalle ehtoja (olipa niiden alkupeen sitten tuomio, sopimus tai jokin muu) jotka ovat vastoin näitä lisenssi-ehtoja, ne eivät anna ohjelman poiketa tästä Lisenssinä. Jos ohjelman levittäminen ei ole mahdollista siten, että samanai- kaisesti toimitaan sekä tämän Lisenssin että joidenkin muiden rajoittavien velvoitteiden mukaisesti, tällöin Ohjelman ei saa lainkaan levitetä. Jos esimerkiksi jokin patenttilisenssin ehto saattaa sitä, että patentti vähintään päättyy, tämän Lisenssin saajalle koko luonnostamakseen, että lisenssin ehtojen mukaista levitetään. Lisenssin saajalle ei ole vastuuta valvoa noudattavan kolmannet osapuolet tätä Lisenssin.

Tämän Kohdan tarkoitus ei ole johtaa siihen, että Lisenssin saaja rikkoisi mitään patenttia tai muuta varallisuus- oikeutta tai välttää mitään näiden oikeuksien pätevydestä; tämän kohdan ainoana tarkoituksena on suojava vapaaiden
ohjelmien levyysjärjestelmän yhtenäisyyksys, joka on luotu käyttämällä yleisiä lisenssejä. Monet ovat antaneet arvokkaan
panoksensa mitä erilaisimpini ohjelmiin, joita levitetään tässä järjestelmässä luottaaen sen soveltamisen pysyyvyyteen;
on jokaisen tekijän ja laajohdattajan päättävässä haluaako hän levittää ohjelmaa jossakin muussa järjestelmässä ja
Lisenssin saaja ei voi vaikuttaa tähän valintaan.

Tämän kohdan tarkoituksena on tehdä täysin selväksi se, mikä on tämän Lisenssin muiden osien seurauks.

8. Jos patentit tai tekijänoikeudella suojuat käyttöoikeytät rajoittavat Ohjelman levittämistä tai käyttöä joissakin
valtioissa, Ohjelman alkuperäinen tekijä, joka lisensiointi ohjelmaansa tällä Lisenssinällä, voi asettaa nimenomaisia maantie-teellisiä levyasjaotuksia, jolloin levyiäminen on sallittu joko mukaan- tai poisulkien näitä valtio.

versioiden henki on yhtenevä nykyisen version kanssa, mutta ne saattavat eroa yksityiskohdissa ottaen huomioon uusia
ongelmia ja huolenaiheita. Jokaiselleversiolle annetaan ne muista erottavat versionumero. Jos Ohjelma käyttää tämän
Lisenssin tiettyä versiota tai ”mitä tahansa myöhemmää versiota”, Lisenssin saaja saa valita, käyttöäksiksi sitä tai jotakin
Free Software Foundationin julkaismesta myöhemmää versiota Lisensseistä. Jos Ohjelma ei mainitse mitä versiota tästä
Lisenssistä se käyttää, on sallittua valita mikä tahansa versio, jonka Free Software Foundation on koskaan julkaissut.

10. Jos Lisenssin saaja haluaa ottaa osia Ohjelmasta mukaan muihin vapaisiin ohjelmiin, joiden levysehdot ovat erilaiset,
hänen tulee kirjoittaa tekijälle ja kysyä lupaa. Jos ohjelman tekijänoikeuden omistaa Free Software Foundation,
kirjoitettava neelle, he tekevät joskus poikkeuksia. Free Software Foundationin päätösten ohjennuorana on
kaksi päätäärään: suljettia käyttää kaikista heidän vapaisista ohjelmista johdetutjen ohjelmien vapaa asema ja yleisesti kannustaa
ohjelmien jakamiseen ja uudelleen käyttöön.

Etku takuuta

11. Koska tämä Ohjelma on lisenssoitu ilmaiseksi, tälle Ohjelmalle ei myönnetä takuuta lain sallimissa rajoissa.

Ellei laista tai kirjallista hyväksynnästä muuta johdu, tekijänoikeuden haltija kirjallisesti muuta osoita, Ohjelma on tarjolla sellaisena kuin se on ilman minäkaanlaista
takutta, ilmaista tai hiljaista, sisältäen, muttei tyhjentävästi, hiljan takuun kaupallisesti hyväksyttävästä luottaudusta
ja soveltuvuudesta tiettyyn tarkoitukseen. Lisenssin saajalla on kaikki riski Ohjelman laadusta ja suorituskysvystä. Jos
ohjelma osoittautuu virheelliseksi, Lisenssin saajan vastuulla ovat kaikki huoltolu ja korjauksustunnukset.

12. Ellei laista tai kirjallisesta hyväksymästä muuta johdu, tekijänoikeuden haltija ja kuka tahansa kolmas osapuoli,
joka voi muuttaa tai levittää ohjelmaa kuten edellä on sallittu, eivät ole missään tilanteessa vastuussa Lisenssin
saajalle yleisistä, erityisistä, satunnaisista tai seurauksellisista vahingoista (sisältäen, muttei tyhjentävästi, tiedon
kaatumisen, tiedon vääritymisen, Lisenssin saajan tai kolmansien osapuolten menetykset ja ohjelman puutteen toimia
minkä tahansa toisen ohjelman kanssa), jotka aiheutuvat ohjelman käytöstä tai siitä, että ohjelmaa ei voi käyttää,
siinäkin tapauksessa, että tekijänoikeuden haltija tai kolmas osapuoli olisi maininnut kyseisten vahinkojen mahdollisuudesta.

Ehtojen loppu

F.3 Miten näitä ehtoja voi soveltaa uusuihin ohjelmiin?

Jos uuden ohjelman kehitittäjä haluaa, että yleisö saa siitä suurimman mahdollisen hyödyn, silloin paras keino päästä
ähän asemanan käyttöön ja levittää ohjelmaa edelleen. Tämän mahdollistamiseksi ohjelmaan tulee lisätä seuraavat ilmoitukset. On turvallisinta liittää ne jokaisen lähdekooditetidostoon alla, jotta takuun puuttasen myöhemmin versiossa. Lisenssin
saajan valinnan,

**Fifth**

Yksi rivi, josta ilmenee ohjelman nimi ja mitä se tekee.

Tekijänoikeus (C) yyyy tekijän nimi

Tämä ohjelma on vapaa; tätä ohjelmaa on sallittu levittää edelleen ja muuttaa GNU →
yleisen lisenssin (GPL lisenssin) ehtojen mukaan sellaisina kuin Free →
Software Foundation on ne julkaissut; joko Lisenssin version 2, tai (valinnan →
mukaan) minkä tahansa myöhemmän version mukaisesti.

Tätä ohjelmaa levitetään siinä toivossa, että se olisi hyödyllinen, mutta ilman →
mitään takuuta; ilman edes hiljaista takuuta kaupallisesti hyväksyttävästä →
laadusta tai soveltuvuudesta tiettyyn tarkoitukseen. Katso GPL lisenssit →
lisää yksityiskohtia.

Tämä ohjelman mukana pitäisi tulla kopia GPL lisenssit; jos näin ei ole, →
kirjoita osoitteeseen Free Software Foundation Inc., 51 Franklin Street, →
Fifth Floor, Boston, MA 02110-1301, USA.

107
Lopuksi lisäys, miten tekijään saa yhteyden sähkö- ja paperipostilla.
Jos ohjelma on interaktiivinen, siihen tulee lisätä esimerkiksi seuraavanlainen lyhyt ilmoitus, joka tulostuu kun se käynnistyy interaktiiviseen tilaan:

Gnomovision versio 69, Tekijänomeus (C) vuosi tekijän nimi.
Gnomovisionilla ei ole mitään takuuta; nähdäksesi yksityiskohdat kirjoita näytä t ←
. Tämä on vapaa ohjelma ja sen levittäminen edelleen on sallittu tietyin ←
ehdoin; nähdäksesi yksityiskohdat kirjoita näytä c.

Mielikuvitukseellisten komentojen ”näytä t” ja ”näytä c” tulee näyttää asiaankuuluvat GPL lisenssistä. Luonnollisesti käytetyt komennot voivat olla jotakin muuta kuin ”näytä t” tai ”näytä c”; ne voivat olla jopa hiirellä painettavia tai valikkotoimintoja — mikä sitten sopii kaan ohjelmaan.
Tekijän tulee saada työnantajalta (jos hän työskentelee ohjelmoijana) tai koulultaan, jos sellainen on, allekirjoitus otsikolla ”tekijänomeuden luovutus” ohjelmaan, jos se on tarpeellinen. Tässä on esimerkki, jota voi käyttää nimet muuttamalla:

Täten Yoyodine, Inc. luovuttaa kaikki tekijänomeudet James Hackerin ←
kirjoittamaan ohjelmaan Gnomovision (joka tekee ohituksia kääntäjiin).

t Ty Coonin allekirjoitus, 1.4.1989
Ty Coon, Vicen pääjohtaja

Tämä GPL lisenssi ei salli ohjelman ottamista osaksi yksinoikeudella omistettuja ohjelmia. Jos ohjelma on aloihjelmakirjasto, voi olla käytännöllisempää, että yksinoikeudella omistetut ohjelmat saavat linkittää kirjastoon. Jos tämä halutaan sallia, sillöin tulee käyttää GNU kirjastolisenssia (LGPL) tämän lisenssin sijasta. Address: Turre Legal Oy Aleksanterinkatu 17, 6th floor FI-00100 Helsinki, Finland Email: office@turre.com Tel: +358 50 5980498 Direct: see personnel