1. Üdvözl a Debianban

1.1. Mi a Debian? ... 1
1.2. Mi a GNU/Linux? .. 1
1.3. Mi a Debian GNU/Linux? .. 2
1.4. Mi az a Debian GNU/kFreeBSD? 3
1.5. Mi az a Debian GNU/Hurd? ... 3
1.6. Mi a Debian Telepítő? .. 3
1.7. A Debian beszerzése .. 3
1.8. E dokumentum legújabb változata 3
1.9. E dokumentum felépítése .. 3
1.10. Dokumentációs segítséged köszönjük! 4
1.11. A Szerzői jogról és a Szoftver licencekről 4

2. Rendszerkövetelmények ... 6

2.1. Támogatott hardver .. 6
 2.1.1. Támogatott architektúrák 6
 2.1.2. CPU támogatás .. 6
 2.1.3. Laptops .. 7
 2.1.4. Többszörös processzorok 7
 2.1.5. Graphics Hardware Support 7
 2.1.6. Hálózati csatoló hardverek 7
 2.1.6.1. Drótmenő hálózati kártyák 7
 2.1.7. Braille kijelzők ... 7
 2.1.8. Hardveres Beszédszintézis 8
 2.1.9. Perifériák és más hardverek 8
 2.2. Firmware-t igénylő eszközök 8
 2.3. GNU/Linux szempontok hardver vásárlásakor 8
 2.3.1. Mellőzd a tulajdonkorlátos vagy zárt hardvereket 8
 2.4. Telepítő média ... 9
 2.4.1. CD-ROM/DVD-ROM/BD-ROM 9
 2.4.2. USB háttértároló .. 9
 2.4.3. Hálózat ... 9
 2.4.4. Merevlemez .. 9
 2.4.5. Un*x vagy GNU rendszer 10
 2.4.6. Támogatott tárolók .. 10
 2.5. Memória és lemezterület szükséglet 10

3. A Debian GNU/Linux telepítése előtt 11

3.1. A telepítő folyamat áttekintése 11
3.2. Mentsd el a meglévő adataidat! 12
3.3. A szükséges információk .. 12
 3.3.1. Dokumentáció .. 12
 3.3.1.1. Telepítő kézikönyv 12
 3.3.1.2. Hardver leírás ... 12
 3.3.2. Hardver-adatok forrásai 12
 3.3.3. Hardver kompatibilitás 13
 3.3.3.1. Hardver kompatibilitás ellenőrzése Live-System esetén 14
 3.3.3.1.1. Hardver kompatibilitás ellenőrzése Live-System esetén 14
 3.3.4. Hálózati beállítások ... 14
3.4. Szükséges minimum hardverkövetelmények 14
3.5. Több-rendszeres gép elő-particionálása 15
3.6. Telepítés-előtti hardver és operációs rendszer beállítás 16
 3.6.1. Invoking the BIOS/UEFI Set-Up Menu 16
 3.6.2. Indító eszköz választás 16
 3.6.3. Systems with UEFI firmware 16
5. A telepítő rendszer indítása 18
4.1. Official Debian GNU/Linux installation images 18
4.2. Fájlok letöltése a Debian Tükrőkről 18
4.2.1. Where to Find Installation Files 18
4.3. Fájlok előkészítése USB tároló indításhoz 18
4.3.1. Preparing a USB stick using a hybrid CD/DVD image 19
4.3.2. Manually copying files to the USB stick 19
4.3.3. Manually copying files to the USB stick — the flexible way
4.3.3.1. Partitioning the USB stick 20
4.3.3.2. Adding the installer image 20
4.4. Fájlok előkészítése merevlemez indításhoz
4.4.1. Hard disk installer booting from Linux using GRUB 21
4.4.2. Hard disk installer booting from DOS using loadlin 21
4.5. Fájlok előkészítése TFTP hálózati indításhoz
4.5.1. Egy DHCP kiszolgáló beállítása
4.5.1.1. PXE indítás bekapcsolása a DHCP beállításban
4.5.1.2. BOOTP kiszolgáló beállítása
4.5.1.3. TFTP kiszolgáló bekapcsolása
4.5.4. TFTP képek helyükre tétele
4.5.2. BOOTP kiszolgáló beállítása 23
4.5.3. TFTP kiszolgáló bekapcsolása 23
4.5.4. TFTP képek helyükre tétele 24
4.6. Automata telepítés
4.6.1. Automata telepítés a Debian Telepítő használatával 24
4.6.2. Verifying the integrity of installation files 24

5. A telepítő rendszer indítása 25
5.1. A telepítő indítása 64-bit PC architektúrán
5.1.1. Indítás USB tárról 25
5.1.2. Booting from optical disc (CD/DVD) 25
5.1.3. Booting from Windows 26
5.1.4. Booting from DOS using loadlin 26
5.1.5. Booting from Linux using GRUB 26
5.1.6. Indítás TFTP segítségével
5.1.6.1. PXE-támogató hálózati kártya vagy alaplap 26
5.1.6.2. NIC hálózati indító ROM-mal 27
5.1.6.3. Etherboot 27
5.1.7. The Boot Screen 27
5.1.8. The Graphical Installer 28
5.2. Accessibility
5.2.1. Installer front-end 29
5.2.2. USB Braille Displays 29
5.2.3. Serial Braille Displays 29
5.2.4. Software Speech Synthesis 29
5.2.5. Hardware Speech Synthesis 29
5.2.6. Board Devices 30
5.2.7. High-Contrast Theme 30
5.2.8. Zoom 30
5.2.9. Expert install, rescue mode, automated install 30
5.2.10. Accessibility of the installed system 30
5.3. Indító paraméterek
5.3.1. Boot console 30
5.3.2. Debian Telepítő paraméterek 31
5.3.3. Indító paraméterek használata kérdések megválaszolására 32
5.3.4. Paraméterek átadása kernel moduloknak 33
5.3.5. Kernel modulok feketelistája 33
5.4. Hibák elhárítása a telepítő folyamat során
5.4.1. Reliability of optical media 33
<table>
<thead>
<tr>
<th>6.1.</th>
<th>Hogyan működik a telepítő</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1.</td>
<td>Using the graphical installer</td>
<td>38</td>
</tr>
<tr>
<td>6.1.2.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.1.2.1.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.1.2.2.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.2.</td>
<td>Összetevők bemutatása</td>
<td>39</td>
</tr>
<tr>
<td>6.3.</td>
<td>A Debian Telepítő használata</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.1.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.2.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.3.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.4.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.5.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.5.1.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.5.2.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.1.5.3.</td>
<td>A Debian Telepítő és a hardver konfiguráció beállítása</td>
<td>40</td>
</tr>
<tr>
<td>6.3.2.</td>
<td>Felhasználók és jelszavak felvitele</td>
<td>43</td>
</tr>
<tr>
<td>6.3.2.1.</td>
<td>Felhasználók és jelszavak felvitele</td>
<td>43</td>
</tr>
<tr>
<td>6.3.2.2.</td>
<td>Felhasználók és jelszavak felvitele</td>
<td>43</td>
</tr>
<tr>
<td>6.3.3.</td>
<td>Óra és Időzóna beállítása</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.1.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.2.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.3.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.4.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.5.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4.6.</td>
<td>Paricionálás és csatolási pont választás</td>
<td>43</td>
</tr>
<tr>
<td>6.3.5.</td>
<td>Az alaprendszer telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.1.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.1.1.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.1.2.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.1.3.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.2.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.2.1.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.2.2.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.6.2.3.</td>
<td>További szoftverek telepítése</td>
<td>51</td>
</tr>
<tr>
<td>6.3.7.</td>
<td>A rendszerek befejezése</td>
<td>53</td>
</tr>
<tr>
<td>6.3.7.1.</td>
<td>A rendszerek befejezése</td>
<td>53</td>
</tr>
<tr>
<td>6.3.7.2.</td>
<td>A rendszerek befejezése</td>
<td>53</td>
</tr>
<tr>
<td>6.3.7.3.</td>
<td>A rendszerek befejezése</td>
<td>53</td>
</tr>
<tr>
<td>6.3.8.</td>
<td>A telepítés befejezése</td>
<td>55</td>
</tr>
<tr>
<td>6.3.8.1.</td>
<td>A telepítés befejezése</td>
<td>55</td>
</tr>
<tr>
<td>6.3.8.2.</td>
<td>A telepítés befejezése</td>
<td>55</td>
</tr>
<tr>
<td>6.3.9.</td>
<td>Hibaellátás</td>
<td>55</td>
</tr>
<tr>
<td>6.3.9.1.</td>
<td>Hibaellátás</td>
<td>55</td>
</tr>
<tr>
<td>6.3.9.2.</td>
<td>Hibaellátás</td>
<td>55</td>
</tr>
<tr>
<td>6.3.10.</td>
<td>Hibaellátás</td>
<td>56</td>
</tr>
<tr>
<td>6.4.</td>
<td>Hiányzó firmware betöltése</td>
<td>57</td>
</tr>
<tr>
<td>6.4.1.</td>
<td>Hiányzó firmware betöltése</td>
<td>57</td>
</tr>
<tr>
<td>6.4.2.</td>
<td>Hiányzó firmware betöltése</td>
<td>57</td>
</tr>
</tbody>
</table>
7. Az új Debian rendszer indítása 59
 7.1. Az igazság pillanata ... 59
 7.2. Titkosított kötetek csatolása 59
 7.2.1. Hibák orvosolása ... 60
 7.3. Bejelentkezés .. 60

 8.1. A rendszer leállítása ... 61
 8.2. Hangolódj a Debian rendszerre 61
 8.2.1. A Debian csomagkezelő rendszer 61
 8.2.2. További elérhető szoftverek a Debian számára 62
 8.2.3. Alkalmazás verzió kezelés 62
 8.2.4. Cron feladatok kezelése 62
 8.3. További olvasnivalók és információk 62
 8.4. Az email beállítása ... 62
 8.4.1. Alap email beállítás 63
 8.4.2. Email küldése kifelé 63
 8.4.3. Exim4 MTA beállítása 63
 8.5. Új rendszermag (kernel) fordítása 64
 8.6. Egy sérült rendszer helyreállítása 64

A. Telepítő Hogyan 65
 A.1. Elöljáróban ... 65
 A.2. A telepítő indítása ... 65
 A.2.1. Optical disc .. 65
 A.2.2. Pendrive .. 65
 A.2.3. Indítás hálózatról .. 66
 A.2.4. Indítás merevlemezről 66
 A.3. Telepítés ... 66
 A.4. Küldj nekünk telepítési beszámolót 67
 A.5. És végül... 67

B. Automata telepítés előírással 68
 B.1. Bemutatás .. 68
 B.1.1. Előíró módok .. 68
 B.1.2. Korlátok ... 69
 B.2. Előírás használata .. 69
 B.2.1. Az elő-beállító fájl betöltése 69
 B.2.2. Indító paraméterek használata kérdések előírt válaszvára 70
 B.2.3. Automata mód .. 70
 B.2.4. Az előírásnál használható álnévek 71
 B.2.5. Examples of boot prompt preseeding 72
 B.2.6. Egy DHCP kiszolgáló használata elő-beállító fájlok megadására .. 72
 B.3. Elő-beállító fájl létrehozása 72
 B.4. Contents of the preconfiguration file (for bullseye) 73
 B.4.1. Honosítás .. 74
 B.4.2. Hálózat beállítás .. 74
 B.4.3. Network console ... 75
 B.4.4. Tükör beállítások .. 76
 B.4.5. Fiók beállítások ... 76
 B.4.6. Óra és időzóna beállítás 77
 B.4.7. Particionálás .. 77
 B.4.7.1. Partitioning example 77
 B.4.7.2. Particionálás RAID használatával 79
 B.4.7.3. Controlling how partitions are mounted 80
 B.4.8. Az Alaprendszer telepítése 80
 B.4.9. Az APT beállítása .. 81
 B.4.10. Csomag választás .. 81
 B.4.11. Boot betöltő telepítés 82
Táblázatok jegyzéke

3.1. Egy telepítéshez szükséges hardver adatok .. 13
3.2. Ajánlott legkisebb hardverkövetelmények .. 15
Kivonat

E dokumentum tartalmazza a telepítő leírást a Debian GNU/Linux 11 rendszerhez (kódnév: „bullseye”) 64-bit PC („amd64”) architektúrára. További leírásokra is mutat és szól egy új Debian telepítés leghasznosabb beállítási lehetőségeiről is.

FIGYELEM

This translation of the installation guide is not up-to-date and currently there is no-one actively working on updating it. Keep this in mind when reading it; it may contain outdated or wrong information. Read or double-check the English variant, if in doubt. If you can help us with updating the translation, please contact debian-boot@lists.debian.org or the debian-l10n-xxx mailinglist for this language. Many thanks.

A Debian GNU/Linux 11 telepítése
amd64-felépítésű gépre

Örülünk annak, hogy úgy döntöttél, kipróbálod a Debian-t, és biztosak vagyunk benne, hogy a Debian alkotta GNU/-
Linux terjesztést egyedülállónak fogod találni. A Debian GNU/Linux összehozza a világ legjobb szabad szoftvereit,
egy egységes egészbe fogja őket. Így az eredmény sokkal több, mint az egyes részek összege.

Nyilvánvaló, hogy a legtöbb ember a Debian-t minél előbb telepíteni akarja e kézikönyv elolvasása nélkül, a De-
bian telepítőt ezért úgy terveztük, hogy ezt lehetővé is teszi. Ezzel együtt, ha nincs időd elolvasni az egész Telepítő
Útmutatót most azonnal, akkor ajánljuk, olvasd el a Telepítő Hogyan-t, mely leírja az alap telepítő folyamatot és
hivatkozik a kézikönyv haladó témáira vagy az esetleges hibákra. A Telepítő Hogyan itt található: A. függelék.

Ezzel együtt reméljük, van időd átfutni ezt a kézikönyvet, ez mélyebb tudást nyújt, és ezáltal a telepítés jóval
nagyobb sikerélményét adhatja.
1. fejezet

Üdvözlet a Debianban

E fejezet bemutatja a Debian projektet és a Debian GNU/Linux rendszert magát. Ha már ismered a Debian projekt történetét és a Debian GNU/Linux terjesztést, a következő fejezetre ugorhatsz.

1.1. Mi a Debian?

A Debian egy önkéntesekből álló szervezet, mely szabad szoftvereket fejleszt és támogatja az FSF (Szabad Szoftver Alapítvány) céljait. A Debian projekt 1993-ban indult, mikor Ian Murdock szoftverfejlesztőket hívott egy teljes és egységes szoftver-terjesztés létrehozására, mely akkor a viszonylag új Linux kernelre épült. Egy pár elkötelezett önkéntesből a Free Software Foundation berkeiből, akik a GNU eszméjét követték évek alatt egy több, mint 1000 Debian Fejlesztő által alkotott szervezet lett.

A Debian Fejlesztők különböző tevékenységeket végeznek a Web és FTP karbantartástól a grafikai tervezésen, szoftver licenciek jogi elemzésén, dokumentáció írásán át természetesen a szoftvercsomagok karbantartásáig.

Eszmémünk hirdetése és a Debian alapelveiben hívő fejlesztők bevonása érdekében a Debian projekt számos dokumentumot adott ki, mely bemutatja értékeinket és azt, mit jelent Debian Fejlesztőnek lenni:

- A Debian Társadalmi Szerződés a Debian kötelezettséggyállalásai a Szabad Szoftver Közösségnek. Bármiként kitart a Társadalmi Szerződés elvei mellett karbantartó lehet. Egy karbantartó új szoftvert adhat a Debian rendszerhez — amely szoftver megfelel a szabad szoftverekre vonatkozó elvárásainknak és a csomag megfelel minőségi szabványainknak.
- A Debian szabad szoftver irányelvek - DFSG a Debian szabad szoftverekre vonatkozó tiszta és rövid nyilatkozata. A DFSG egy rendkívül erős hatássú dokumentum a Szabad Szoftver Mozgalomban és alapja a nyílt forrású mozgalom által alkotott Open Source Definition dokumentumnak.
- A Debian vezérelvek kézikönyve a Debian projekt minőségi szabványainak egy átfogó meghatározása.

A Debian fejlesztők számos más projektben is részt vesznek; egyesek Debian-specifikusak, mások több vagy minden Linux közösséget érintenek. Pár példa ezekre:

- A Fájlrendszer Hierarchia Szabvány (FHS) célja a Linux fájlrendszer-felépítés szabványosítása. Az FHS megadja a szükséges alapokat a fejlesztők számára, hogy a program tervezésére összpontosíthassanak anélkül, hogy gondolniuk kéne annak módjára, hogy hogyan települ majd a csomag a különböző GNU/Linux terjesztéseken.
- A Debian Jr. egy belső projekt, mely biztosítja, hogy a Debian a legfiatalabb felhasználóinkat is szolgálja.

A Debian rendszerről további információkat a Debian GYIK oldalon találj.

1.2. Mi a GNU/Linux?

A GNU/Linux egy operációs rendszer: egy olyan program-készlet, mely biztosítja a számítógéppel való kapcsolattartást és más programok futtatását.

Egy operációs rendszer azon alapvető programokból áll, amelyek segítségével a számítógép társalog a felhasználókkal és parancsokat kap tőlük; adatokat olvastat és írat a háttértárolókkal és más eszközökkel; ügyel a memória használatára és más programokat futtat. Egy operációs rendszer legfontosabb része a rendszermag, vagyis kernel. A GNU/Linux rendszerben a Linux a kernel. A rendszer többi része más programokból áll, a legtöbbet a GNU projekt
készítette. Mivel a Linux kernel egyedül nem tud egy működő operációs rendszert alkotni, ezért pontatlanság nélkül a „GNU/Linux” néven tudsz hivatkozni ama rendszerekre, melyeket mind sokan csak „Linux”-ként emlegetnek.

A GNU/Linux tervezése a Unix operációs rendszer alapján történt. Kezdetttől több-feladatos, több-felhasználós rendszer. Ez már eleve jól megkülönböztetti sok ismert operációs rendszerétől. Ennek ellenére a GNU/Linux sokkal több mindenről szól, mint képzelnédl. Más operációs rendszerekkel szemben a GNU/Linux felett senkinek nincs tulajdonjoga. Fejlesztése nagyobb részét önkéntesek végzik.

Mindannak a fejlesztése, melyből később a GNU/Linux kiteljesedt 1984-ben kezdődött, a Free Software Foundation ekkor kezdte meg egy szabad operációs rendszer fejlesztését, melynek a GNU nevet adta.

A GNU Project projekt létrehozott egy átfogó szabad szoftver eszköztárat, mely minden Unix™ és hasonló operációs rendszer környezetében használható, például Linux-alapú rendszeren is. Ezek lehetővé teszik a különböző feladatok elvégzését a hétköznapiaktól kezdve (mint például fájlok másolása vagy törlése) a bűvökig (mint például programok írása és fordítása vagy számos dokumentum-formátum kiőrlések szerkezetének)

Bár nagyon sok csoport és magánszemély támogatja a Linuxot, a legnagyobb támogató a Szabad Szoftver Alapítvány, mely nem csak a legtöbb Linuxban használható eszköz alkotója, de mind a filozófiai alapot és közösséget megteremtette, amely a GNU/Linux létrejöttéhez vezetett.

Linus Torvalds continues to coordinate the work of several hundred developers with the help of a number of subsystem maintainers. There is an official website for the Linux kernel. Information about the Linux-kernel mailing list can be found on the linux-kernel mailing list FAQ.

A GNU és Linux-felhasználók tudnak legjobban változatni a szoftverek között. Például rengeteg paranccsorsoros hálózati közép és számos grafikus munkakörnyezet közül válogathatunk. Ez az írósási választék gyakran lenyűgöző és más operációs rendszer felhasználóit, akik mindezekre nem is gondoltak volna úgy, mint amelyek tetszés szerint kiválaszthatók.

A GNU/Linux kevésbé hajlamos az összeomlásra, jobban kezeli az egyszerre futó programokat és biztonságosabb sok operációs rendszeren. Emiatt a GNU/Linux a legsebesebben terjedő operációs rendszer a kiszolgálók között. Ma pedig már az otthoni és üzleti felhasználók között is egyre népszerűbb.

1.3. Mi a Debian GNU/Linux?

A Debian elvei és módszerei és a GNU eszközök, illetve a Linux kernel és más fontos szoftverek alkotják a Debian GNU/Linux egyedülálló szoftver terjesztését. Ezt a terjesztést sok szoftver csomagja rendezte. E terjesztés egyes csoportok utasítását tartalmazza, és minden egyikhez tartozik egy barabantárt, aki a csomagok telepítését és májusát követi.

A Debian megőrzi vezető szerepet a GNU/Linux rendszerek fejlesztésében. A fejlesztési folyamat példa arra, hogy milyen hatékonyan tudunk működni a nyílt fejlesztési modell — még az olyan összetett feladatoknál is, mint egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszere különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.

A Debian legjobban a csomagkezelő rendszerre különbözteti meg a többi Linux disztribútciótól. Ez egy Debian rendszergazdájának teljes felügyeletet biztosít a rendszerre telepített csoportok felett alegyen csoportok csoportokból összekapcsolódóak, és egy teljes operációs rendszer építése és karbantartása.
1.4. Mi az a Debian GNU/kFreeBSD?

A Debian GNU/kFreeBSD egy Debian GNU rendszer, kFreeBDS rendszermaggal.

Ennek a portnak a fejlesztése jelenleg csak i386 és amd64 architektúrára folyik, de más architektúrákra való portolásra is van lehetőség.

Jó tudni, hogy a Debian GNU/kFreeBSD nem Linux rendszer, így lehet, hogy a Linux rendszerekre vonatkozó információk némelyike nem érvényes rá.

További adatokért lásd a Debian GNU/kFreeBSD oldalt és a debian-bsd@lists.debian.org listát.

1.5. Mi az a Debian GNU/Hurd?

A Debian GNU/Hurd egy Debian GNU rendszer, melyben a monolitikus Linux kernelt a GNU Hurd — egy a GNU Mach mikrokernel felett kiszolgáló-készlet váltja.

A Hurd még nincs kész, ezért nem való napi használatra, de töretlenül fejlődik. A Hurd fejlesztése jelenleg csak i386 architektúrán folyik, de a rendszer stabilí válásával más architektúrákon is elérhető lesz.

Jó tudni, hogy a Debian GNU/Hurd nem Linux rendszer, így lehet, hogy a Linux rendszerekre vonatkozó információk némelyike nem érvényes rá.

További adatokért lásd a Debian GNU/Hurd oldalt és a debian-hurd@lists.debian.org listát.

1.6. Mi a Debian Telepítő?

Debian Installer, also known as „d-i“, is the software system to install a basic working Debian system. A wide range of hardware such as embedded devices, laptops, desktops and server machines is supported and a large set of free software for many purposes is offered.

The installation is conducted by answering a basic set of questions. Also available are an expert mode that allows to control every aspect of the installation and an advanced feature to perform automated installations. The installed system can be used as is or further customized. The installation can be performed from a multitude of sources: USB, CD/DVD/Blu-Ray or the network. The installer supports localized installations in more than 80 languages.

The installer has its origin in the boot-floppies project, and it was first mentioned by Joey Hess in 2000. Since then the installation system has been continuously developed by volunteers improving and adding more features.

More information can be found on the Debian Installer page, on the Wiki and on the debian-boot mailing list.

1.7. A Debian beszerzése

For information on how to download Debian GNU/Linux from the Internet or from whom official Debian installation media can be purchased, see the distribution web page. The list of Debian mirrors contains a full set of official Debian mirrors, so you can easily find the nearest one.

A Debian a telepítés után könnyen frissíthető. A telepítő folyamat segít úgy beállítani a rendszert, hogy szükség esetén a telepítés végeztével a frissítések elvégezhetőek legyenek.

1.8. E dokumentum legújabb változata

E dokumentum folyamatosan frissül. Ellenőrizd a Debian 11 oldalt a Debian GNU/Linux 11 kiadás legutóbbi adatáért. E telepítő kézikönyv frissített változatai a hivatalos Telepítő Kézikönyv oldalak címen vannak.

1.9. E dokumentum felépítése

E dokumentum elsősorban a kezdő Debian felhasználóknak szól. Megpróbál igazodni egy kezdő lehetséges hozzáértési szintjeihez. Ezzel együtt feltételezünk annak alapvető megértését, hogygy mőködnek a hardver összetevők a számítógépben.
FEJEZET 1. ÜDVÖZLET A DEBIANBAN

1.10. DOKUMENTÁCIÓS SEGÍTSÉGED KÖSZÖNJÜK!

A haladó felhasználók is hasznos adatokat lelnek e dokumentumban, például a legkisebb telepítési méreteket, a Debian telepítő rendszer által támogatott hardvereket és így tovább. Nékik is javasoljuk, hogy szemézgessenek a dokumentumból.

Általában e kézikönyv sorban halad, végigvezet a telepítés folyamán indításától a befejezéségig. Az alábbiak a Debian GNU/Linux telepítés lépései, melyeket az egyes fejezetek rendre követnek:

1. Ellenőrizzük, hogy a hardver megfelel-e a telepítő rendszer követelményeinek, melyek itt találhatóak: 2. fejezet.

2. Mentük a korábbi rendszert, és végezzük el a szükséges tervezést és hardver konfigurációt a Debian telepítése előtt, ez a 3. fejezet. Ha több indítható rendszert tervezel, biztosítsani kell azt, hogy legyen particionálható hely a merevlemezen a Debian használatához.

3. A következő, 4. fejezet során érjük el a különböző telepítési módokhoz szükséges telepítő fájlokat.

4. The next 5. fejezet describes booting into the installation system. This chapter also discusses troubleshooting procedures in case you have problems with this step.

5. Perform the actual installation according to 6. fejezet. This involves choosing your language, configuring peripheral driver modules, configuring your network connection, so that remaining installation files can be obtained directly from a Debian server (if you are not installing from a set of CD/DVD installation images), partitioning your hard drives and installation of a base system, then selection and installation of tasks. (Some background about setting up the partitions for your Debian system is explained in C. függelék.)

6. Az újonnan telepített alaprendszer indítását a 7. fejezet írja le.

A telepítés megtörténétté válásaként lehet a 8. fejezet. Ez további hivatkozásokat ad a Debian rendszerről, a Unixról, illetve arról, hogyan vált kormányt.

Végül pedig az E. függelék fejezetben e dokumentumról talál számos információkat, valamint arról, hogyan járulhatsz hozzá.

1.10. DOKUMENTÁCIÓS SEGÍTSÉGED KÖSZÖNJÜK!

A forrás szintén elérhető; lázd az E. függelék fejezetet a lehetséges hozzájárulásról. Örülünk minden javaslatnak, megjegyzésnek, foltnak és hibajegyenek (használd az installation-guide csomagot a hibákhoz, de ellenőrizd, hogy a hiba még nincs bejelentve).

1.11. A Szerzői jogról és a Szoftver licencekről

Biztos olvastál már licenceket, melyek egyes kereskedelmi szoftverekkel érkeztek — ezek általában azt mondják, hogy a szoftver csak 1 példányát hasznáthatod 1 gépen. Ennek a rendszernek a licence nem ilyen. Sőt, bátorítsunk, hogy telepítsd minden gépre az iskoládban vagy üzleti céljaidra. Adj barátaidnak is a telepítőből és támogasd, hogy ők is telepítsék fel! Akár ezerszámmra is másolhatod, sőt akár el is adhatod — pár szabályt betartva. A rendszer telepítéséhez és használatához fűződő ezen szabadságszabályokat közvetlenül a Debian adja Neked, mivel ez egy szabad szoftver alapú rendszer.

Calling software free doesn't mean that the software isn't copyrighted, and it doesn't mean that installation media containing that software must be distributed at no charge. Free software, in part, means that the licenses of individual programs do not require you to pay for the privilege of distributing or using those programs. Free software also means that not only may anyone extend, adapt, and modify the software, but that they may distribute the results of their work as well.
MEGJEGYZÉS

A Debian projekt, a felhasználóival szembeni gyakorlatias engedményként, elérhetővé tud tenni néhány olyan csomagot is, melyek nem felelnek meg a szabad szoftverekkel szemben támasztott szigorú elvárásainknak. E csomagok nem részét a hivatalos terjesztésnek, és csak a Debian tükrök contrib vagy non-free területeiről, vagy 3. fél által készített CD/DVD lemezekről érhetők el; az archívumok elrendezéséről és tartalmáról lásd a Debian GYIK „A Debian FTP archívumok” részét.

Rengeteg program a rendszerben a GNU General Public License nevű licenc alatt áll, melyre sokan sokszor csak „a GPL” néven hivatkoznak. A GPL megköveteli a programok bináris változatainak alapját képező forráskód elérhetővé tétele; ez biztosítja azt, hogy bármely felhasználó módosíthatja a szoftvert. E feltétel miatt a forráskód¹ az összes ilyen programhoz elérhető a Debian rendszerben.

A Debian rendszerben található programok többféle szerzői jogi formával is licencelőként. A telepített csomagok szerzői jogi bejegyzéseit és licenceit a /usr/share/doc/csomag-név/copyright fájiban találd.

A további adatokat a licencekről és arról, ahogy a Debian meghatározza, hogy egy szoftver elég szabad-e ahhoz, hogy bekerüljön a fő terjesztésbe, a Debian szabad szoftver irányelvek - DFSG dokumentumban leled.

A licencekben található jogi részek közti bejegyzések közül a legfontosabb, hogy e szoftverre nincs szavatosság. A programozók a közösség hasznára készítették. Nincs rá garancia, hogy a szoftver megfelel bizonyos célú felhasználásra. Fontos úgy megállapítani, hogy mivel a szoftver szabad, módosíthatod azt igényeid szerint — és magad is élvezed annak hasznát, hogy mások már tovább is fejlesztették a szoftvert ilyen módon.

¹A Debian forráscsomagok eléréséről, kicsomagolásáról és belöltük binárisok építéséről lásd a Debian GYIK oldalt, a „Debian csomagkezelő rendszer alapjai” részét.
2. fejezet

Rendszerkövetelmények

E fejezet leírja a Debian használatához szükséges hardvert. A GNU és Linux által támogatott hardverekről szóló további információkra utaló hivatkozásokat is ad.

2.1. Támogatott hardver

A Debian nem igényel más hardvert, mint amit a Linux vagy kFreeBSD rendszermag és a GNU eszközészletek megkövetelnek. Ezért minden gépen, melyen a Linux vagy kFreeBSD kernel, a libc, a gcc és a többi fut, és melyre a Debian portolva van, futatható a Debian. Lásd a Debian portok oldalát a https://www.debian.org/ports/amd64/ címen a jelen 64-bit PC architektúra rendszerekről, melyek teszteltek a Debian GNU/Linux rendszerrel.

A jelen, 64-bit PC architektúra által támogatott összes különböző hardver konfiguráció leírásának megkísérelése helyett, e fejezet általánosadatokat és még részletesebb adatokra való hivatkozásokat ad.

2.1.1. Támogatott architektúrák

A Debian GNU/Linux 11 9 fő architektúrát támogat, és minden architektúra számos változatát, melyeket „kivitelek” (flavors) néven említünk.

<table>
<thead>
<tr>
<th>Architektúra</th>
<th>Debian megnevezés</th>
<th>Al-architektúra</th>
<th>Kivitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td>default x86 machines</td>
<td>default</td>
</tr>
<tr>
<td>Intel x86-alapú</td>
<td>i386</td>
<td>Xen PV domains only</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>Marvell Kirkwood and Orion</td>
<td>marvell</td>
</tr>
<tr>
<td>ARM hardver FPU-val (Lebegőpontos Egység)</td>
<td>armhf</td>
<td>multiplatform</td>
<td>armmp</td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bit MIPS (little-endian)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS (little-endian)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8 or newer machines</td>
<td></td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td>IPL from VM-reader és DASD</td>
<td>generic</td>
</tr>
</tbody>
</table>

E dokumentum leírja a Debian 64-bit PC architektúrára telepítését Linux rendszermag használatával. Ha más, Debian által támogatott architektúra érdekel, nézd meg a Debian portok oldalt.

2.1.2. CPU támogatás

Az AMD64 és Intel 64 processzorok is támogatottak.
2.1.3. Laptopok

Technológiai szemponttól a laptopok is rendes számítógépek, tehát minden PC-re vonatkozó információ a laptopokra is vonatkozik. Manapság a laptopra telepítés azonnal működik, olyan funkciókat is beleértve, mint a rendszer automatikus felfüggesztése a laptop fedél lezárásakor, és a laptop-specifikus hardver gombok, mint amik a wiifit kapcsolják ki („repülőgép mód”). Ennek ellenére néha a hardver gyártók specializált, vagy saját hardvert használnak bizonyos laptop-specifikus funkciókra, ami esetleg nem támogatott. Annak ellenőrzéséért, hogy a laptopod jól működik-e GNU/Linuxszal, lásd pl. a Linux Laptop oldalakat

2.1.4. Többszörös processzorok

A több-processzoros támogatás — melyre az angol „symmetric multiprocessing” vagy SMP néven is hivatkoznak — szintén elérhető ezen architektúrához. Az alap Debian 11 kernel-kép SMP támogatással került lefordításra. Ez azt jelenti, hogy a kernel érzékelői a processzorok (illetve processzor magok) számát és automatikusan kikapcsolja az SMP-t az 1-processzoros rendszereken.

Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so called „multi-core” processors. These contain two or more processor units, called „cores”, in one physical chip.

2.1.5. Graphics Hardware Support

Debian's support for graphical interfaces is determined by the underlying support found in X.Org's X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional „firmware” images (see 2.2. szakasz).

On modern PCs, having a graphical display usually works out of the box. In very few cases there have been reports about hardware on which installation of additional graphics card firmware was required even for basic graphics support, but these have been rare exceptions. For quite a lot of hardware, 3D acceleration also works well out of the box, but there is still some hardware that needs binary blobs to work well.

Details on supported graphics hardware and pointing devices can be found at https://wiki.freedesktop.org/xorg/. Debian 11 ships with X.Org version 7.7.

2.1.6. Hálózati csatoló hardverek

Majdnem minden Linux kernel által támogatott hálózati csatolót a telepítő rendszer is támogat; a moduláris meghajtók általában önműködően betöltődnek. Ez a legtöbb PCI/PCI-Express és laptopos PCMCIA/Express kártyára áll.

Az ISDN támogatott, de nem a telepítés alatt.

2.1.6.1. Drótnélküli hálózati kártyák

A drótnélküli csatolás általánosságban szintén támogatott, és egyre több drótnélküli csatolót támogat a hivatalos Linux, bár sokok firmware betöltését igénylők.

Ha firmware szükséges, a telepítő fel fog szólítani ennek betöltésére. Részletes leírást firmware betöltéséről a telepítés során itt találhatsz: 6.4. szakasz.

Azon drótnélküli hálózati csatolók, amiket a hivatalos Linux rendszer meg nem támogat, általában elindíthatók Debian GNU/Linux alatt, de a telepítőben nem támogatottak.

Ha a drótnélküli csatolóval probléma van, és nincs más hálózati csatoló amit a telepítés alatt használhatnánk, a Debian GNU/Linux telepítése még mindig lehetséges teljes CD-ROM vagy DVD kép használatával. Válassz azt az opciót, hogy nem állíts be hálózatot, és csak azokat a csomagokat telepítsd, amik a CD/DVD-ről elérhetők. A telepítés végzésétől (újraindítás után) telepítheted a szükséges meghajtó és firmware-t, valamint beállítheted a hálózatot kézzel.

Pár esetben a szükséges meghajtó nem érhető el Debian csomagként. Ekkor utána kell nézni, van-e forráskód az interneten és le kell fordítani. Ennek módja túlhangyan a kézikönyv célján. Ha nincs elérhető Linux meghajtó, az utolsó esély az ndiswrapper csomag használata, mely lehetővé teszi egy Windows meghajtó használatát.

2.1.7. Braille kijelzők

A braille kijelzők támogatását a brltyt-ben található támogatás határozza meg. A legtöbb kijelző működik brltyivel, melyeket soros porton, USB-n, vagy bluetooth segítségével kell csatlakoztatni. A támogatott braille kijelzőkről részleteket a brltyt website linken találhatsz. A Debian GNU/Linux 11 6.3 verziójú brltyt-vel érkezik.
2.1.8. Hardveres Beszédszintézis

A hardveres beszédszintézis eszközök támogatását a speakup-ban található támogatás határozza meg. A speakup csak integrált lapokat és soros porthoz csatlakozó külső eszközöket támogat (nem támogatja az USB-t, sorosról USB-re, vagy PCI illesztőt). A hardveres beszédszintézishez támogatott hardver eszközökkel részleteket a speakup website linken találhatsz. A Debian GNU/Linux 11 3.1.6 verziójú speakup-pal érkezik.

2.1.9. Perifériák és más hardverek

Linux supports a large variety of hardware devices such as mice, printers, scanners, PCMCIA/CardBus/ExpressCard and USB devices. However, most of these devices are not required while installing the system.

Az USB eszközök általában tökéletesen működnek. Néhány nagyon öreg gépnél egyes USB billentyűzetekhez szükség lehet egyéni beállításra (lásd a 3.6.6. szakasz részt). Modern gépeknel az USB billentyűzetek és egerek különleges beállítások nélkül is működnek.

2.2. Firmware-t igénylő eszközök

Eszköz meghajtón kívül némely hardver úgynevezett firmware vagy microcode betöltését is igényli az eszköze mielőtt használhatóvá váljak. Ez leggyakrabban hálózati csatolókat érint (különösen drótjelű hálózati csatolókat), de pl. néhány USB eszköz, sőt, merevlemez vezérlőhöz is szükséges firmware. Számos grafikus kártyánál az alap funkcióainak elérhető további firmware nélkül, azonban a haladóbb funkciókhoz megfelelő firmware állományt kell telepíteni a rendszerre.

Számos régebbi eszköz, amely a működéséhez firmware-t igényl, ezt a firmware állományt a gyártó magán az eszközön helyezte el, egy EEPROM/Flash chipen. Manapság az új eszközök már nem tartalmazzák a firmware-t illy módon, ezért a firmware állományt az operációs rendszeren minden rendszer indulásnál kell továbbítani az eszközre.

A legtöbb esetben a firmware nem ingyenes a Debian GNU/Linux projekt által használt kritériumok szerint, ezért nem foglalható bele a fő terjesztésbe, vagy a telepítő rendszerbe. Amennyiben az eszköz meghajtó bekerült a telepítésbe, és a Debian GNU/Linux jog szerint terjesztheti a firmware-t, ez általában külön csomagban található, ami az archív nem-ingyenes szekciójából érhető el.

Azonban ez nem azt jelenti, hogy ilyen hardvert ne lehetne használni a telepítés során. A Debian GNU/Linux 5.0-től kezdve a debian-installer támogatja firmware állományok vagy firmware-t tartalmazó csomagok betöltését külső adathordozóról, mint pl. USB stick. Bővebb információt arról, hogy hogyan tölts be firmware állományokat vagy csomagokat a telepítés során, a 6.4. szakasza található.

Ha debian-installer felszólít firmware állomány betöltésére, de nincs ilyen firmware-ed, vagy nem akarsz nem ingyenes firmware-t telepíteni a rendszeredre, megróbálhatod firmware betöltése nélkül folytatni. Nemegyszer előfordul, hogy a meghajtó azért kér további firmware-t, mert bizonyos körülmények között szüksége lehet rá, de enélkül is jól működik az eszköz a legtöbb rendszeren (ez a helyzet pl. bizonyos hálózati kártyáknál, amik tg3 meghajtót használnak).

2.3. GNU/Linux szempontok hardver vásárlásakor

Az eladók egy köre a rendszereket Debian vagy más GNU/Linux terjesztéssel elő-telepítve szállítja. Ezért valamivel többet kell fizetni, de így biztos lehetsz benne, hogy a GNU/Linux által kiválóan támogatott hardveret kapsz.

A Debian GNU/Linux 5.0-tól kezdve a debian-installer támogatja firmware állományok vagy firmware-t tartalmazó csomagok betöltését külső adathordozóról, mint pl. USB stick. Bővebb információt arról, hogy hogyan tölts be firmware állományokat vagy csomagokat a telepítés során, a 6.4. szakasza található.

A Debian GNU/Linux 5.0-tól kezdve a debian-installer támogatja firmware állományok vagy firmware-t tartalmazó csomagok betöltését külső adathordozóról, mint pl. USB stick. Bővebb információt arról, hogy hogyan tölts be firmware állományokat vagy csomagokat a telepítés során, a 6.4. szakasza található.

2.3.1. Mellőzd a tulajdonkorlátos vagy zárt hardvereket

Egyes hardver-gyártók egyszerűen titkolják, hogyan lehet meghajtót írni eszközökeikhez. Mások a dokumentációt titok-tartási megegyezéshez kötik, mely tölthet a meghajtó forrásának közvetetetlét, noha ez az egyik fő szempontja a szabad szoftvernek. Amelyik eszközök esetében nem kaptunk hozzáférést használható dokumentumokhoz, azok egyszerűen nem fognak működni Linux alatt.
Számos esetben léteznek sztenderdek (vagy legalábbis pár de-facto sztenderd), ami leírja, hogyan kommunikál egy operációs rendszer és eszköz meghajtója az eszközök egy bizonyos csoportjával. Minden olyan eszköz, ami megfelel egy ilyen (de-facto-)sztendernek, egy egyszerű általános eszköz meghajtóval használható, nincs szükség speciális meghajtóra. Néhány hardver típus esetén (pl. USB „Human Interface Device”, mint a billentyűzetek, egerek, stb., illetve USB táraknál, mint USB flash lemezek és memóriaárnyék-olvasók) ez remekül működik, és gyakorlatilag minden eszköz ami kapható, megfelel a sztenderdeknak.

Egyéb területen, többek között pl. nyomtatók esetében sajnos nem ez a helyzet. Számos nyomtató megközelhető (de-facto)sztenderdeknél utána vezérlő nyelvek kis halmazával, és így probléma nélkül működésre bírhatók bármilyen operációs rendszer alatt. Azonban igen sok olyan modell is van, ami csak saját vezérlő utasításokat fogad el, amelyhez nem érhető el használható dokumentáció, ezért vagy egyáltalán nem használhatók szabad operációs rendszerekben, vagy csak a gyártó által adott zárt forrású meghajtóval.

Még ha létezik is a gyártó által adott zárt forrású meghajtó az ilyen hardverekhez az eszköz megvetokekor, az eszköz praktikus élettartamát bekorlátozza a meghajtó elérhetősége. Manapság a termék ciklusok röviden, és nem ritka, hogy nem sokkal a fogyasztói eszköz gyártásának befejezése után a meghajtó frissítések közzétételét is abbahegyi a gyártó.

Ezen a helyzeten úgy tudsz segíteni, hogy arra biztatod a zárt hardver gyártókat, hogy tegyék elérhetővé a dokumentációt és más erőforrásokat, ami ahhoz szükséges, hogy nyíljon meghajtókat adhassunk a hardverükhöz.

2.4. Telepítő média

E szakasz leírja, milyen média típusokat használhatunk a Debian telepítésére. Van egy egész, médiára szánt fejezet, a 4. fejezet, mely leírja minden média típus előnyét és hátrányát. Amennyiben odaugrasz, vissza is térhetsz majd ide.

2.4.1. CD-ROM/DVD-ROM/BD-ROM

Installation from optical disc is supported for most architectures.

On PCs SATA, IDE/ATAPI, USB and SCSI optical drives are supported, as are FireWire devices that are supported by the ohci1394 and sbp2 drivers.

2.4.2. USB háttértároló

USB flash disks a.k.a. USB memory sticks have become a commonly used and cheap storage device. Most modern computer systems also allow booting the debian-installer from such a stick. Many modern computer systems, in particular netbooks and thin laptops, do not have an optical drive anymore at all and booting from USB media is the standard way of installing a new operating system on them.

2.4.3. Hálózat

A hálózat használható a telepítés alatt az ahhoz szükséges fájlok letöltésére. Hogy használt-e vagy nem, a választott telepítő módját és egyes feltétel kérésekre adott válaszoktól függ. A telepítő rendszer a legtöbb hálózati kapcsolat típust támogatja (benne a PPPoE, de az ISDN és PPP nem) HTTP vagy FTP átvitellel. A telepítés után az ISDN és PPP is beállítható.

You can also boot the installation system over the network without needing any local media like CDs/DVDs or USB sticks. If you already have a netboot-infrastructure available (i.e. you are already running DHCP and TFTP services in your network), this allows an easy and fast deployment of a large number of machines. Setting up the necessary infrastructure requires a certain level of technical experience, so this is not recommended for novice users.

A lemez-nélküli telepítés helyi hálózatról indítással és az összes helyi fájlrendszer NFS-csatolásával egy másik lehetőség.

2.4.4. Merevlemez

A telepítő rendszer közvetlen merevlemezeiről indítása egy újabb lehetőség számos architektúrában. Ez egy másik operációs rendszert igényel a telepítő merevlemezeire töltéséhez. Ez a módszer csak speciális esetekben ajánlott, amikor semmilyen más telepítési módszer nem lehetséges.
2.4.5. **Un*x vagy GNU rendszer**

Ha más Unix-szerű rendszer futtatsz, hasznáthatod a Debian GNU/Linux telepítésére a **debian-installer** nélkül e kézikönyvben is leírt módon. Ez hasznos a másképp nem-támogatott hardvert használóknak vagy ha a gépen a telepítéskor nem lehet üzemszünet. E technikáról lásd a D.3. szakasz részt. Ez a telepítési módszer csak tapasztalt felhasználóknak ajánlott, amikor semmilyen más telepítési módszer nem lehetséges.

2.4.6. **Támogatott tárolók**

A Debian telepítő tartalmaz egy olyan rendszermagot, aminek az a célja, hogy maximalizálja azoknak a rendszereknek a számát, amin fut.

Általánosságban a Debian telepítő rendszer támogatja az IDE (más néven PATA) meghajtókat, SATA és SCSI vezérlőket és meghajtókat, USB-t és FireWire-t. A támogatott fájlrendszerek a FAT, Win-32 FAT bővítés (VFAT) és NTFS.

2.5. **Memória és lemezterület szükséglet**

Legalább 780MB memória és 920MB merevlemez hely kell a telepítéshez. Ezek tényleg elég minimum számok. Élethűbb adatok itt: 3.4. szakasz.

The installer normally automatically enables memory-saving tricks to be able to run on such low-memory system, but on architectures that are less tested it may miss doing so. It can however be enabled manually by appending the `lowmem=1` or even `lowmem=2` boot parameter (see also 6.3.1.1. szakasz and 5.3.2. szakasz).

Installation on systems with less memory¹ or disk space available may be possible but is only advised for experienced users.

¹Installation images that support the graphical installer require more memory than images that support only the textual installer and should not be used on systems with less than 780MB of memory. If there is a choice between booting the text-based and the graphical installer, the former should be selected on such systems.
3. fejezet

A Debian GNU/Linux telepítése előtt

E fejezet a Debian telepítés előkészületeit tárgyalja a telepítő indítása előtt. Szól az adatok mentéséről, a hardver adatainak begyűjtéséről, és bármilyen szükséges információ helyének meghatározásáról.

3.1. A telepítő folyamat áttekintése

Először csak egy megjegyzés az újratelepítésről. A Debian esetében az olyan körülmény, mely újratelepítést igényelne rendkívül ritka; talán a merevlemez mechanikai hibája a leggyakrabban.

Nagyon sok általános operációs rendszer teljes újratelepítést igényel számos kritikus hiba esetén vagy új verzióra való áttérsékor. Ezeknél a rendszerekknél, még ha a teljes újratelepítés el is kerülhet, nagyon sokszor a programokat újra kell telepíteni, hogy működjenek az új rendszer alatt.

A Debian GNU/Linux esetében a rendszer szinte mindig javítható, ha valami tönkrejegye. A frissítések sohasem igényelnek teljes újratelepítést. A programok szinte mindig kompatibilisek a rendszer új kiadásaival. Ha egy program új változata újabb támogató szoftveret igényel, a Debian csomagoló rendszer biztosítja az összes szükséges szoftver azonosítását és telepítését. A fő cél az újratelepítés elkerülése, ezért erre mindig végző lehetőségként gondolj. A telepítőnek nem célja egy létező rendszerre való újratelepítés.

Ez itt a telepítő lépéseinek útiterve.

1. Mentsd el a létező adatokat vagy dokumentumokat a merevlemez azon részéről, melyre telepítesz.
2. Gyűjts össze a gép adatait és ha kell, a szükséges leírásokat a telepítés megkezdése előtt.
3. Keresd meg, és/vagy tölted le a telepítő szoftvert és ha kell, a gép által igényelt kiegészítő fájlokat.
4. Állítsd be az indító adathordozót, mint például CD/DVD/pendrive, vagy ha a gép hálózati kapcsolatot igényel, a Debian csomagoló rendszer biztosítja az összes szükséges szoftver azonosítását és telepítését. A fő cél az újratelepítés elkerülése, ezért erre mindig végző lehetőségként gondolj. A telepítőnek nem célja egy létező rendszerre való újratelepítés.
5. Indítsd el a telepítő rendszert.
6. Válaszd ki a telepítés nyelvét.
7. Aktiváld az ethernet hálózati kapcsolatot, ha elérhető.
8. Ha szükséges, mértezd át a meglévő partíciókat a cél merevlemezen, hogy elég hely legyen a telepítésnek.
9. Hozd létre és csatold a partíciókat, melyre a Debian rendszert telepíteni akarod.
11. Select and install additional software.
12. Telepíts egy boot betöltő programot, mely képes indítani a Debian GNU/Linux rendszert és/vagy a gépen már meglévő más rendszer.
13. Töltsd be az újonnan telepített rendszert az első alkalommal.
FEJEZET 3. A DEBIAN GNU/LINUX TELEPÍTÉSE

3.2. MENTSD EL A MEGLÉVŐ ADATAIDAT!

A jelen 64-bit PC architektúrához lehetőség van a telepítő egy grafikus változatának használatára. Több adatért a grafikus telepítőről lásd a 5.1.8. szakasz részét.

Ha gondok adódnak a telepítés során, jól, ha tudjuk, mely csomag mely lépésben szerepel. A fő szoftverek a telepítéskor:

E kézikönyv fő tárgya a telepítő szoftver, a debian-installer. Érzékelni a hardvert és betölti a szükséges meghajtókat, a dhcp-client segítségével beállítja a hálózati kapcsolatot, a debootstrap programmal telepíti az alaprendszer csomagjait és futtatja a tasksel programot lehetővé téve egyes további szoftverek telepítését. Több program szerepet játszik e folyamat kis részeiben, de a debian-installer elvégezte teendőit az új rendszer 1. betöltésével.

A rendszer hangolásához a tasksel lehetővé teszi előre megadott szoftver-kötegek telepítését, mint például Web kiszolgáló vagy Asztali környezet.

Az egyik fontos döntés a telepítés során, hogy telepítünk-e grafikus asztali környezet vagy sem, mely az X Window ablakozó rendszerből és valamely grafikus asztali környezetből áll. Ha nem választod ki az „Asztali környezet” feladatot, csak egy alap, parancssor-vezérelt rendszert kapsz. Az Asztali környezet feladat telepítése opcionális, mert sok helyet foglal és mert sok Debian GNU/Linux rendszer alapvetően kiszolgáló, melynek nincs szüksége grafikus felhasználói felületre.

Tehát ne feledd el: az X Window ablakozó rendszer teljesen elkülönül a debian-installer működésétől és egy sokkal összetettebb dolog. Az X Window ablakozó rendszer hibajavításának leírása nem célja e kézikönyvnek.

3.2. Mentsd el a meglévő adataidat!

Before you start, make sure to back up every file that is now on your system. If this is the first time a non-native operating system is going to be installed on your computer, it is quite likely you will need to re-partition your disk to make room for Debian GNU/Linux. Anytime you partition your disk, you run a risk of losing everything on the disk, no matter what program you use to do it. The programs used in the installation of Debian GNU/Linux are quite reliable and most have seen years of use; but they are also quite powerful and a false move can cost you. Even after backing up, be careful and think about your answers and actions. Two minutes of thinking can save hours of unnecessary work.

Ha több-rendszeres telepítést készítesz, legyen kéznél bármelyik másik operációs rendszerhez a terjesztési adathordozó. Bár ez általában nem szükséges, előfordulhatnak olyan esetek, amikor szükség lehet az operációs rendszered boot betöltőjének újratelepítésére az indításhoz, vagy legrosszabb esetben újra kell telepítened a teljes operációs rendszeredet, és visszaállítanod a korábban készített mentést.

3.3. A szükséges információk

3.3.1. Dokumentáció

3.3.1.1. Telepítő kézikönyv

E dokumentum, mely a Debian következő kiadásához tartozó Telepítő Útmutató fejlesztői változata különböző formátumok és fordítások hivatkozásain mindig elérhető.

3.3.1.2. Hardver leírás

Hasznos adatokat tartalmaz az adott hardver beállításáról vagy használatakról.

- A Debian Wiki hardver oldal

3.3.2. Hardver-adatok forrásai

Általában a telepítő automatikusan felismeri a hardvert. De hogy felkészült legyél, ajánljuk a hardverrel való megismerkedést a telepítés előtt.

A hardver-adatok beszerzési helyei:

- Az egyes hardverekkel adott kézikönyvek.

- The BIOS/UEFI setup screens of your computer. You can view these screens when you start your computer by pressing a combination of keys. Check your manual for the combination. Often, it is the Delete or the F2 key, but some manufacturers use other keys or key combinations. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.
Az egyes hardverek csomagolásai és dobozai.

A rendszer ablak az esetleges Windows vezérlőpultban.

Egy már használt operációs rendszer rendszer-parancsai és eszközei ideértve a fájlkezelő programok által írtakat. Ez különösen jó a RAM és merevlemez adatokhoz.

A rendszergazda vagy Internet szolgáltató. Ezek megadják a szükséges hálózati és email beállításokat.

3. táblázat

<table>
<thead>
<tr>
<th>Hardver</th>
<th>A sokszor szükséges adatok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merevlemezek</td>
<td>Sorrendjük a rendszeren. IDE (más néven PATA), SATA, vagy SCSI. Elérhető szabad hely. Partíciók. A más rendszereket tartalmazó particiók.</td>
</tr>
<tr>
<td>Hálózati csatolók</td>
<td>Elérhető hálózati csatolók típusa/modellje.</td>
</tr>
<tr>
<td>Nyomtató</td>
<td>Modell és gyártó</td>
</tr>
<tr>
<td>Videó kártya</td>
<td>Típus/modell és gyártó.</td>
</tr>
</tbody>
</table>

3.3. Hardver kompatibilitás

A legtöbb termék gond nélkül működik Linux architektúrán. Ráadásul a Linux általi hardver támogatás naponta fejlődik. Ezzel együtt az Linux még mindig nem támogat annyi különböző típusú hardvert, mint egyes operációs rendszerek.

Az Linux meghajtók a legtöbb esetben nem egy gyártó meghatározott „termékhez” vagy „márkájához” készülnek, hanem egy meghatározott hardverhez/lapakészlethez (chipset). Számos látszólag különböző termék/márka épül ugyanarra a hardverfelépítésre; nem ritka, hogy a chip gyártók úgynevezett „referencia dizájnokat” tesznek elérhetővé az ő chip-jeiket használó termékek részére, amit aztán számos különböző eszközgyártó felhasznál, és különböző termék-, vagy márkanévén elad.

Ennek megvannak az előnyei és hátrányaik. Egy előny, hogy egy adott lapakészlet (chipset) meghajtója sok más termékkal is működik, akár más gyártóktól is, amíg a termék azonos lapakészletre épül. Hátrány, hogy nem mindig látható könnyen, hogy melyik tényleges lapakészlet használ egy termék/márka. Sajnos a gyártók néha megváltoztatják egyes termékeik hardveres alapját anélkül, hogy a termék nevét, vagy legalább a verziószámát változtathatnánk. Így aztán előfordulhat, hogy két azonos marca/termék néven, de különböző időben vásárolt eszköz két különböző lapakészleten alapul, ezért különböző meghajtók szükségesek hozzájuk, vagy akár az is lehet, hogy az egyikhez nincs is egyáltalán meghajtó.

USB-s és PCI/PCI-Express/ExpressCard eszközök esetén úgy lehet megtudni, hogy milyen lapakészleten alapulnak, hogy megérkezik az eszköz azonosítójukat. Minden USB/PCI/PCI-Express/ExpressCard eszköznek van egy úgynevezett „kereskedő” és „termék” azonosítója, e kettő kombinációja általában megegyezik az azonos lapakészletű termékekkel.

On Linux systems, these IDs can be read with the `lsusb` command for USB devices and with the `lspci -nn` command for PCI/PCI-Express/ExpressCard devices. The vendor and product IDs are usually given in the form of two hexadecimal numbers, separated by a colon, such as „1d6b:0001”.

Egy példa kimenete a `lsusb` parancsnak: „Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub”, ahol az 1d6b a kereskedő azonosítója, a 0002 pedig a termék azonosítója.

Egy példa kimenete a `lspci -nn` parancsnak Ethernet-kártyára: „03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)”. Az azonosítók az utolsó szögletes zárójelben találhatók, itt 10ec a kereskedő, a 8168 pedig a termék azonosítója.

Egy másik példa, a grafikus kártyára például a következő kimenetet kaphatnánk: „04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI RV710 [Radeon HD 4350] [1002:954f]”. Windows rendszerekben az eszköz azonosítók a Windows Device manager-ben találhatóak, a „részeket” fül alatt, ahol a kereskedő azonosító VEN_előtaggal szerepel, a termék azonosító pedig DEV_előtaggal. Windows 7 rendszereken ki kell választanad a „Hardware IDs” lehetőséget a Device manager részletek fülén hogy lásd az azonosítókat, mivel alapból nem látszódnak.

Keress rá az interneten a kereskedő/termék azonosítóra, „Linux”, és „driver” kifejezésekre, az ilyen kereséseket jó esélyel adnak információt egy meghatározott lapakészlet meghajtó támogatottságáról. Ha a kereskedő/termék
FEJEZET 3. A DEBIAN GNU/LINUX TELEPÍTÉSE

3.4. SZÜKSÉGES MINIMUM

azonosítóra keresés nem hoz használható eredményt, a chip kód nevekkel lehet próbálkozni, amiket általában szintén megad az lsusb és lspci („RTL8111”/, „RTL8168B” a hálózati kártyás példában, és „RV710” a grafikus kártyás példában).

3.3.3.1. Hardver kompatibilitás ellenőrzése Live-System esetén

A Debian GNU/Linux úgynevezett „live system”-ként is elérhető bizonyos architektúrákra. Ezek előre beállított, használatra kész rendszerek, tömörített formában, amik csak olvasható adathordozókról indíthatók és használhatók, például CD vagy DVD-ről. Semmilyen állandó változást nem hoznak létre a gépen. Megváltoztathatod a felhasználói beállításokat, telepíthetsz további programokat a live system-en belül, de mindezt csak a gép RAM memóriájában történik, tehát ha kikapcsolod a gépet és újranyitod, minden visszaáll az eredeti értékekre. Ha kíváncsi vagy, hogy a hardveredet támogatja-e a Debian GNU/Linux, a legegyszerűbb futtatni rajta egy Debian live system-et, és kipróbálni.

Van pár megkötés a live system használatához. Az első, hogy minden változásnak, amit ezen belül csinálsz, a gépednek a RAM memóriájában kell tárolódnia, ezért csak olyan rendszereken működik, amik elegendő RAM memóriával rendelkeznek. Ha további nagyméretű szoftver csomagot akarsz telepíteni, ez meghiúsulhat memória korlát miatt. Egy másik megkötés a hardver kompatibilitás teszteléséhez kapcsolódik: a Debian GNU/Linux live system csak szabad komponenseket tartalmaz, tehát nincsenek benne zárt firmware fájlok. Természetesen ilyen zárt csomagok kézzel telepíthetők a rendszeren, de nem áll rendelkezésre automatikus firmware felismerést, mint a debian-installer esetén, ezért ha szükséges, kézzel kell telepíteni ezeket a komponenseket.

Az elérhető Debian live képek és további információ itt található: Debian Live Images webhelye.

3.3.4. Hálózati beállítások

Ha a gép olyan fix hálózaton van (például ethernet vagy hasonló kapcsolat — nem betárcsázós/PPP), amit valaki más tart karban, a hálózati rendszerhez kérdezd a következő adatokért:

• Gépnév (általában önállóan megadható).
• Tartomány (domain) név.
• A gép IP címe.
• Az adott hálózat hálózati maszkja.
• Az alapértelmezett átálló IP címe az útválasztáshoz, ha a hálózatnak van átállója.
• A hálózaton DNS (Domain Name Service) kiszolgálóként használható rendszer.

Ha a hálózatod használ DHCP (Dynamic Host Configuration Protocol) kiszolgálót, akkor nincs szükség ezenként az adatokra, mert a DHCP kiszolgáló közvetlenül átadja ezeket a gépeknél a telepítő folyamat során.

Ha DSL vagy kábel modemes internet hozzáféréssel van (pl. kábel TV hálózaton keresztül), és útvonalválasztó kezeli a hálózati csatlakozásodat, akkor általában alapul rendelkezésre áll DHCP.

Általános szabályként: ha Windows rendszert használ az otthoni hálózatodon, és ehhez nem kellett kézzel beállítanod a hálózati beállításokat az Internet eléréséhez, akkor a Debian GNU/Linux esetén is automatikusan fog menni a hálózati csatlakozás.

Drótnélküli WLAN/WiFi hálózat esetén ezek is kellenek:

• A drótnélküli hálózathoz tartozó ESSID („hálózat név”).

• WEP vagy WPA/WPA2 biztonsági kulcs a hálózat eléréséhez (ha alkalmazható).

3.4. Szükséges minimum hardverkövetelmények

Ha megvannak a gép adatai, ellenőrizd, hogy megfelelnek-e a tervezett telepítési módnak.

Igény szerint az alábbi táblázatban ajánlott pár hardvermelőd egyébként gyengébb is kipróbálható. Ám sok felhasználót felkeresve, ha fittyet hány e javaslatokra.

A legkisebb ajánlott rendszer egy asztali rendszerhez az 1GH-es Pentium 4.

A minimum values assume that swap will be enabled and a non-liveCD image is used. The „No desktop” value assumes that the non-graphical installer is used.

The actual minimum memory requirements are a lot less than the numbers listed in this table. With swap enabled, it is possible to install Debian with as little as 350MB. The same goes for the disk space requirements, especially if you pick and choose which applications to install; see D.2. szakasz for additional information on disk space requirements.
3. táblázat Ajánlott legkisebb hardverkövetelmények

<table>
<thead>
<tr>
<th>Telepítő típus</th>
<th>RAM (minimális)</th>
<th>RAM (ajánlott)</th>
<th>Merevlemez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asztal nélkül</td>
<td>256 megabájt</td>
<td>512 megabájt</td>
<td>2 gigabájt</td>
</tr>
<tr>
<td>Asztallal</td>
<td>1 gigabytes</td>
<td>2 gigabájt</td>
<td>10 gigabájt</td>
</tr>
</tbody>
</table>

It is possible to run a graphical desktop environment on older or low-end systems, but in that case it is recommended to install a window manager that is less resource-hungry than those of the GNOME or KDE Plasma desktop environments; alternatives include xfce4, icewm and wmaker, but there are others to choose from.

Kiszolgálóknál nem lehet pontosan megmondani az átlagos memória és hely igényét, mert ez nagyban attól függ, mire használjuk a kiszolgálót.

Ne feledd, e méretek nem tartalmaznak minden fájlt, a felhasználói fájlokat, leveleket és adatokat. Mindig légy bőkezű a saját fájljaid és adataid számára adott helyet.

Disk space required for the smooth operation of the Debian GNU/Linux system itself is taken into account in these recommended system requirements. Notably, the /var partition contains a lot of state information specific to Debian in addition to its regular contents, like logfiles. The dpkg files (with information on all installed packages) can easily consume 40MB. Also, apt puts downloaded packages here before they are installed. You should usually allocate at least 200MB for /var, and a lot more if you install a graphical desktop environment.

3.5. Több-rendszeres gép elő-particionálása

A lemez particionálása annak részekre választását jelenti. Minden rész független egymástól. Ez a házban lévő falakhoz hasonló; egy bútor egy szobában nincs hatással a másik szobára.

Ha már van egy másik rendszered is a gépen (Windows 9x, Windows NT/2000/XP/Vista/7, OS/2, MacOS, Solaris, FreeBSD, …), ami az egész lemez elfoglalja, és arra a lemezre akarod tenni a Debian rendszert is, szükség lehet a lemez újraindítására. A Debian önálló partíciókat igényel. A Windows vagy Mac OS X partíciótól külön kell választani, ha ezeket megtartanánk. Képes lehet megosztani partíciókat egyéb Unix rendszerekkel, de ezt itt nem fejtjük ki bővebben. Legalább a Debian gyökér számára önálló partíciót kell adni.

A már meglévő rendszerhez tartozó particionáló eszközzel megtudhatók a jelenlegi partíciók, ilyen például a Windows beépített Disk Manager-e, vagy DOS esetén az fdisk. A partíciós eszközökkel mindig megnezhetők a lemez érdekében a Debian önálló partíciókat.

Általában egy partíció és a rajta lévő fájlrendszerek cseréje törti az ott lévő adatokat. Ezért mentsd őket az újraindítás előtt. A ház példájával élve, a bútorok kivihetők az utcára a falak elmozdítása előtt, így biztosan nem sérülnek.

Számos modern operációs rendszer lehetővé teszi létrejövő partíciók újraindítását vagy mozgatását anélkül, hogy a tartalmuk elvesztesse. Így lehetséges további partícióknak helyet kialakítani a megélő adatok elvesztése nélkül.

Bár ez a legtöbb esetben nagyon jól működik, egy lemez particionálásán változottok mindenképp veszélyes művelet, és csak azután tedd, miután az adatadatok biztonsági mentést követettél. FAT/FAT32 és NTFS partícióknál DOS és Windows rendszerek esetén, az adatvesztés nélküli partíció mozgatás vagy újraindítás elérhető mind a debian-installer és a Windows beépített Disk Manager-ének használatával.

Ha debian-installer segítségével szeretnél adatvesztés nélkül újraindítani a megélő FAT vagy NTFS partíciókat, menj a particionálás lépéshez, válassz a kézi particionálást, és egyesére ad meg az új méretét.

Partíciók létrehozása és törlése megtehető a debian-installer használatával, vagy a megélő operációs rendszerből. Általános szabályként a partíciókat azzal a rendszerrel hozz hozz létre, amelyikkel használnak fogad, tehát a Debian GNU/Linux által használt partíciókat a debian-installer használatával, míg egy másik operációs rendszer által használt partíciókat ott hozz létre. A debian-installer képes nem-Linux partíciókat is létrehozni, és az így létrehozott partíciók általában jól működnek másik operációs rendszerrel is, de azért ritkán előfordulhatnak problémás esetek. Tehát ha biztosra akarsz menni, használj a másik operációs rendszerek natív particionáló eszközeit ezekre.

Ha több rendszer is telepítes a gépre, általában jobb, ha előbb a többi rendszert rakod fel a Linuxod előtt. Windows vagy más operációs rendszerek elronthatják a Debian indítás lehetőségét, vagy nem-saját partíciók újraindítására köteleznek.

Ezek általában megoldhatók vagy elkerülhetők, de ha korábban telepíted a többi rendszert, azzal megszporolhatod a fejfájást.
3.6. Telepítés-előtti hardver és operációs rendszer beállítás

This section will walk you through pre-installation hardware setup, if any, that you will need to do prior to installing Debian. Generally, this involves checking and possibly changing BIOS/UEFI/system firmware settings for your system. The „BIOS/UEFI“ or „system firmware“ is the core software used by the hardware; it is most critically invoked during the bootstrap process (after power-up).

3.6.1. Invoking the BIOS/UEFI Set-Up Menu

The BIOS/UEFI provides the basic functions needed to boot your machine and to allow your operating system to access your hardware. Your system provides a BIOS/UEFI setup menu, which is used to configure the BIOS/UEFI. To enter the BIOS/UEFI setup menu you have to press a key or key combination after turning on the computer. Often it is the Delete or the F2 key, but some manufacturers use other keys. Usually upon starting the computer there will be a message stating which key to press to enter the setup screen.

3.6.2. Indító eszköz választás

Within the BIOS/UEFI setup menu, you can select which devices shall be checked in which sequence for a bootable operating system. Possible choices usually include the internal harddisks, the CD/DVD-ROM drive and USB mass storage devices such as USB sticks or external USB harddisks. On modern systems there is also often a possibility to enable network booting via PXE.

A választott telepítő adathordozótól függően (CD/DVD, pendrive, hálózati indítás) engedélyezned kell a megfelelő indító eszközt, ha még nincs engedélyezve.

Most BIOS/UEFI versions allow you to call up a boot menu on system startup in which you select from which device the computer should start for the current session. If this option is available, the BIOS/UEFI usually displays a short message like „press F12 for boot menu“ on system startup. The actual key used to select this menu varies from system to system; commonly used keys are F12, F11 and F8. Choosing a device from this menu does not change the default boot order of the BIOS/UEFI, i.e. you can start once from a USB stick while having configured the internal harddisk as the normal primary boot device.

If your BIOS/UEFI does not provide you with a boot menu to do ad-hoc choices of the current boot device, you will have to change your BIOS/UEFI setup to make the device from which the debian-installer shall be booted the primary boot device.

Unfortunately some computers may contain buggy BIOS/UEFI versions. Booting debian-installer from a USB stick might not work even if there is an appropriate option in the BIOS/UEFI setup menu and the stick is selected as the primary boot device. On some of these systems using a USB stick as boot medium is impossible; others can be tricked into booting from the stick by changing the device type in the BIOS/UEFI setup from the default „USB harddisk” or „USB stick” to „USB ZIP” or „USB CDROM”. In particular if you use an isohybrid installation image on a USB stick (see 4.3.1. szakasz), changing the device type to „USB CDROM” helps on some BIOSes which will not boot from a USB stick in USB harddisk mode. You may need to configure your BIOS/UEFI to enable „USB legacy support”.

If you cannot manipulate the BIOS/UEFI to boot directly from a USB stick you still have the option of using an ISO copied to the stick. Boot debian-installer using 4.4. szakasz and, after scanning the hard drives for an installer ISO image, select the USB device and choose an installation image.

3.6.3. Systems with UEFI firmware

UEFI („Unified Extensible Firmware Interface”) is a new kind of system firmware that is used on many modern systems and is - among other uses - intended to replace the classic PC BIOS.

Currently most PC systems that use UEFI also have a so-called „Compatibility Support Module” (CSM) in the firmware, which provides exactly the same interfaces to an operating system as a classic PC BIOS, so that software written for the classic PC BIOS can be used unchanged. Nonetheless UEFI is intended to one day completely replace the old PC BIOS without being fully backwards-compatible and there are already a lot of systems with UEFI but without CSM.

On systems with UEFI there are a few things to take into consideration when installing an operating system. The way the firmware loads an operating system is fundamentally different between the classic BIOS (or UEFI in CSM mode) and native UEFI. One major difference is the way the harddisk partitions are recorded on the harddisk. While the classic BIOS and UEFI in CSM mode use a DOS partition table, native UEFI uses a different partitioning scheme called „GUID Partition Table” (GPT). On a single disk, for all practical purposes only one of the two can be used and in case of a multi-boot setup with different operating systems on one disk, all of them must therefore use the same
3.6. TELEPÍTÉS-ELŐTTI HARDVER ÉS

A Debian GNU/Linux telepítése

3.6. TELEPÍTÉS-ELŐTTI HARDVER ÉS

3.6.1. Type of partition table

Booting from a disk with GPT is only possible in native UEFI mode, but using GPT becomes more and more common as hard disk sizes grow, because the classic DOS partition table cannot address disks larger than about 2 Terabytes while GPT allows for far larger disks. The other major difference between BIOS (or UEFI in CSM mode) and native UEFI is the location where boot code is stored and in which format it has to be. This means that different bootloaders are needed for each system.

The latter becomes important when booting debian-installer on a UEFI system with CSM because debian-installer checks whether it was started on a BIOS- or on a native UEFI system and installs the corresponding bootloader. Normally this simply works but there can be a problem in multi-boot environments. On some UEFI systems with CSM the default boot mode for removable devices can be different from what is actually used when booting from hard disk, so when booting the installer from a USB stick in a different mode from what is used when booting another already installed operating system from the hard disk, the wrong bootloader might be installed and the system might be unbootable after finishing the installation. When choosing the boot device from a firmware boot menu, some systems offer two separate choices for each device, so that the user can select whether booting shall happen in CSM or in native UEFI mode.

3.6.4. Secure boot

Another UEFI-related topic is the so-called „secure boot” mechanism. Secure boot means a function of UEFI implementations that allows the firmware to only load and execute code that is cryptographically signed with certain keys and thereby blocking any (potentially malicious) boot code that is unsigned or signed with unknown keys. In practice the only key accepted by default on most UEFI systems with secure boot is a key from Microsoft used for signing the Windows bootloader. Debian includes a „shim” bootloader signed by Microsoft, so should work correctly on systems with secure boot enabled.

3.6.5. Disabling the Windows „fast boot”/„fast startup” feature

Windows offers a feature (called „fast boot” in Windows 8, „fast startup” in Windows 10) to cut down system startup time. Technically, when this feature is enabled, Windows does not do a real shutdown and a real cold boot afterwards when ordered to shut down, but instead does something resembling a partial suspend to disk to reduce the „boot” time. As long as Windows is the only operating system on the machine, this is unproblematic, but it can result in problems and data loss, when you have a dual boot setup, in which another operating system accesses the same filesystems as Windows does. In that case the real state of the filesystem can be different from what Windows believes it to be after the „boot” and this could cause filesystem corruption upon further write accesses to the filesystem. Therefore in a dual boot setup, to avoid filesystem corruption the „fast boot”/„fast startup” feature has to be disabled within Windows.

Furthermore, the Windows Update mechanism has (sometimes) been known to automatically re-enable this feature, after it has been previously disabled by the user. It is suggested to re-check this setting periodically.

It may also be necessary to disable „fast boot” to even allow access to UEFI setup to choose to boot another operating system or debian-installer. On some UEFI systems, the firmware will reduce „boot” time by not initialising the keyboard controller or USB hardware; in these cases, it is necessary to boot into Windows and disable this feature to allow for a change of boot order.

3.6.6. Kivédendő hardver gondok

USB BIOS támogatás és billentyűzetek Ha nincs PS/2 stílusú billentyűzetes csak USB-s, néhány nagyon régi gépen lehet, hogy be kell kapcsolni a régi billentyűzet emulációt a BIOS beállításban, hogy tudj használni a billentyűzetet a boot betöltő menténél. Modern rendszerekben ez nem probléma. Ha a billentyűzet nem működik a boot betöltő esetén, nézd meg az alaplap kézikönyvét és a BIOS-ban keresd a „Régi billentyűzet emuláció” vagy „USB billentyűzet támogatás” opciókat.
4. fejezet

A rendszer telepítő média elérése

4.1. Official Debian GNU/Linux installation images

By far the easiest way to install Debian GNU/Linux is from a set of official Debian installation images. You can buy a set of CDs/DVDs from a vendor (see the CD vendors page). You may also download the installation images from a Debian mirror and make your own set, if you have a fast network connection and a CD/DVD burner (see the Debian CD/DVD page and Debian CD FAQ for detailed instructions). If you have such optical installation media, and they are bootable on your machine, which is the case on all modern PCs, you can skip right to 5. fejezet. Much effort has been expended to ensure the most-used files are on the first CD and DVD image, so that a basic desktop installation can be done with only the first DVD or - to a limited extent - even with only the first CD image.

As CDs have a rather limited capacity by today’s standards, not all graphical desktop environments are installable with only the first CD; for some desktop environments a CD installation requires either network connectivity during the installation to download the remaining files or additional CDs.

Also, keep in mind: if the installation media you are using don’t contain some packages you need, you can always install those packages afterwards from your running new Debian system (after the installation has finished). If you need to know on which installation image to find a specific package, visit https://cdimage-search.debian.org/.

If your machine doesn’t support booting from optical media (only relevant on very old PC systems), but you do have a set of CD/DVD, you can use an alternative strategy such as hard disk, usb stick, net boot, or manually loading the kernel from the disc to initially boot the system installer. The files you need for booting by another means are also on the disc; the Debian network archive and folder organization on the disc are identical. So when archive file paths are given below for particular files you need for booting, look for those files in the same directories and subdirectories on your installation media.

Once the installer is booted, it will be able to obtain all the other files it needs from the disc.

If you don’t have an installation media set, then you will need to download the installer system files and place them on the hard disk or usb stick or a connected computer so they can be used to boot the installer.

4.2. Fájlok letöltése a Debian Tükrökről

A legközelebbi (és alighanem leggyorsabb) tükrő megtalálásához lásd a Debian tükrök listáját.

4.2.1. Where to Find Installation Files

Various installation files can be found on each Debian mirror in the directory debian/dists/bullseye/main/installer-amd64/current/images/ — the MANIFEST lists each image and its purpose.

4.3. Fájlok előkészítése USB tároló indításhoz

To prepare the USB stick, we recommend to use a system where GNU/Linux is already running and where USB is supported. With current GNU/Linux systems the USB stick should be automatically recognized when you insert it. If it is not you should check that the usb-storage kernel module is loaded. When the USB stick is inserted, it will be mapped to a device named /dev/sdX, where the „X” is a letter in the range a-z. You should be able to see to which device the USB stick was mapped by running the command dmesg after inserting it. To write to your stick, you may have to turn off its write protection switch.
The procedures described in this section will destroy anything already on the device! Make very sure that you use the correct device name for your USB stick. If you use the wrong device the result could be that all information on for example a hard disk could be lost.

4.3.1. Preparing a USB stick using a hybrid CD/DVD image

Debian installation images can now be written directly to a USB stick, which is a very easy way to make a bootable USB stick. Simply choose an image (such as the netinst, CD, DVD-1, or netboot) that will fit on your USB stick. See 4.1. szakasz to get an installation image.

Alternatively, for very small USB sticks, only a few megabytes in size, you can download the mini.iso image from the netboot directory (at the location mentioned in 4.2.1. szakasz).

The installation image you choose should be written directly to the USB stick, overwriting its current contents. For example, when using an existing GNU/Linux system, the image file can be written to a USB stick as follows, after having made sure that the stick is unmounted:

```bash
# cp debian.iso /dev/sdX
# sync
```

Information about how to do this on other operating systems can be found in the Debian CD FAQ.

The image must be written to the whole-disk device and not a partition, e.g. /dev/sdb and not /dev/sdb1. Do not use tools like unetbootin which alter the image.

Simply writing the installation image to USB like this should work fine for most users. The other options below are more complex, mainly for people with specialised needs.

The hybrid image on the stick does not occupy all the storage space, so it may be worth considering using the free space to hold firmware files or packages or any other files of your choice. This could be useful if you have only one stick or just want to keep everything you need on one device.

Create a second, FAT partition on the stick, mount the partition and copy or unpack the firmware onto it. For example:

```bash
# mount /dev/sdX2 /mnt
# cd /mnt
# tar zxvf /path/to/firmware.tar.gz
# cd /
# umount /mnt
```

You might have written the mini.iso to the USB stick. In this case the second partition doesn’t have to be created as, very nicely, it will already be present. Unplugging and replugging the USB stick should make the two partitions visible.

4.3.2. Manually copying files to the USB stick

An alternative way to set up your USB stick is to manually copy the installer files, and also an installation image to it. Note that the USB stick should be at least 1 GB in size (smaller setups are possible if you follow 4.3.3. szakasz).
There is an all-in-one file `hd-media/boot.img.gz` which contains all the installer files (including the kernel) as well as `syslinux` and its configuration file.

Note that, although convenient, this method does have one major disadvantage: the logical size of the device will be limited to 1 GB, even if the capacity of the USB stick is larger. You will need to repartition the USB stick and create new file systems to get its full capacity back if you ever want to use it for some different purpose.

To use this image simply extract it directly to your USB stick:

```bash
# zcat boot.img.gz > /dev/sdX
```

After that, mount the USB memory stick (`mount /dev/sdX /mnt`), which will now have a FAT filesystem on it, and copy a Debian ISO image (netinst or full CD/DVD) to it. Unmount the stick (`umount /mnt`) and you are done.

4.3.3. Manually copying files to the USB stick — the flexible way

If you like more flexibility or just want to know what's going on, you should use the following method to put the files on your stick. One advantage of using this method is that — if the capacity of your USB stick is large enough — you have the option of copying any ISO image, even a DVD image, to it.

4.3.3.1. Partitioning the USB stick

Bemutatjuk egy memória tár 1. partíciójának használatát az egész eszköz helyett.

MEGJEGYZÉS

Since most USB sticks come pre-configured with a single FAT16 partition, you probably won’t have to repartition or reformat the stick. If you have to do that anyway, use `cfdisk` or any other partitioning tool to create a FAT16 partition, install an MBR using:

```bash
# install-mbr /dev/sdX
```

The `install-mbr` command is contained in the `mbr` Debian package. Then create the filesystem using:

```bash
# mkdosfs /dev/sdX1
```

Take care that you use the correct device name for your USB stick. The `mkdosfs` command is contained in the `dosfstools` Debian package.

aDon’t forget to set the „bootable“ bootable flag.

In order to start the kernel after booting from the USB stick, we will put a boot loader on the stick. Although any boot loader should work, it’s convenient to use `syslinux`, since it uses a FAT16 partition and can be reconfigured by just editing a text file. Any operating system which supports the FAT file system can be used to make changes to the configuration of the boot loader.

A `syslinux` FAT16 partícióra helyezéséhez az USB tárra, telepítsd a `syslinux` és `mtools` csomagokat, majd tedd ezt:

```bash
# syslinux /dev/sdX1
```

Figyelj az eszköz nevének helyes voltára. A partíció ne legyen csatolva a SYSLINUX indításakor. E művelet egy boot szektort ír a partícióra és létrehozza a boot betöltő kódot tartalmazó `ldlinux.sys` fájlt.

4.3.3.2. Adding the installer image

Mount the partition (`mount /dev/sdX1 /mnt`) and copy the following installer image files to the stick:

- `vmlinuz` or `linux` (kernel binary)
- `initrd.gz` (initial ramdisk image)
You can choose between either the text-based or the graphical version of the installer. The latter can be found in the gtk subdirectory. If you want to rename the files, please note that syslinux can only process DOS (8.3) file names.

Next you should create a syslinux.cfg configuration file, which at a bare minimum should contain the following line (change the name of the kernel binary to „linux” if you used a netboot image):

```
default vmlinuz initrd=initrd.gz```

For the graphical installer you should add vga=788 to the line. Other parameters can be appended as desired.

To enable the boot prompt to permit further parameter appending, add a prompt 1 line.

If you used an hd-media image, you should now copy the ISO file of a Debian ISO image¹ onto the stick. When you are done, unmount the USB memory stick (umount /mnt).

4.4. Fájlok előkészítése merevlemez indításhoz

The installer may be booted using boot files placed on an existing hard drive partition, either launched from another operating system or by invoking a boot loader directly from the BIOS. On modern UEFI systems, the kernel may be booted directly from the UEFI partition without the need of a boot loader.

A full, „pure network” installation can be achieved using this technique. This avoids all hassles of removable media, like finding and burning CD/DVD images.

4.4.1. Hard disk installer booting from Linux using GRUB

This section explains how to add to or even replace an existing linux installation using GRUB.

At boot time, GRUB supports loading in memory not only the kernel, but also a disk image. This RAM disk can be used as the root file-system by the kernel.

Copy the following files from the Debian archives to a convenient location on your hard drive, for instance to /boot/newinstall/.

- vmlinuz (kernel binary)
- initrd.gz (ramdisk image)

Ha a merevlemez csak indításra a többi letöltésre pedig a hálózat szolgál, a netboot/debian-installer/amd64/-initrd.gz fájl és a megfelelő netboot/debian-installer/amd64/linux kernel letöltése kell. Ezzel átparticionálható a telepítő indítására használt merevlemez, körülettekintően.

Alternatively, if you intend to keep an existing partition on the hard drive unchanged during the install, you can download the hd-media/initrd.gz file and its kernel hd-media/vmlinuz, as well as copy an installation image to the hard drive (make sure the file is named ending in .iso). The installer can then boot from the hard drive and install from the installation image, without needing the network.

Végül állítsd be a boot betöltőt e folytatáshoz: 5.1.5. szakasz.

4.4.2. Hard disk installer booting from DOS using loadlin

This section explains how to prepare your hard drive for booting the installer from DOS using loadlin.

Copy the following directories from a Debian installation image to c:\.

- /install.amd (kernel binary and ramdisk image)
- /tools (loadlin tool)

4.5. Fájlok előkészítése TFTP hálózati indításhoz

Ha géped egy helyi hálózatra kötött, alkalom nyílik indítására a hálózaton át másik gépről TFTP használattával. Ha a telepítő rendszer másik gépről indítanád, az indító fájlokat adott helyre kell tenni azon és be kell állítani rajta, hogy támogassa az adott géped indítását.

Be kell állítanod egy TFTP kiszolgálót, és sok géphez egy DHCP kiszolgálót .

¹You can use either a netinst or a full CD/DVD image (see 4.1. szakasz). Be sure to select one that fits. Note that the „netboot mini.iso” image is not usable for this purpose.
A BOOTP egy IP protokoll mely megmondja egy gép IP-címét és, hogy hol éri el a hálózaton az indító képet. A DHCP (Dinamikus gazda konfiguráló Protokoll) a BOOTP egy sokkal rugalmasabb, visszafelé-kompatibilis kiterjesztése. Egyes rendszerek csak DHCP módon állíthatók be.

A Triviális fájl átviteli protokoll (TFTP) arra jó, hogy átadja az indító képet az ügyfélnek. Elméletileg bármely kiszolgáló bármely platformon, mely megvalósítja e protokollokat használható. A példákban SunOS 4.x, SunOS 5.x (más nevén Solaris), és GNU/Linux parancsokat adunk.

**MEGJEGYZÉS**

For a Debian GNU/Linux server we recommend tftpd-hpa. It's written by the same author as the syslinux bootloader and is therefore least likely to cause issues. A good alternative is atftpd.

### 4.5.1. Egy DHCP kiszolgáló beállítása

Egy szabad DHCP kiszolgáló az ISC dhcpd. A Debian GNU/Linux rendszerben a isc-dhcp-server csomagban van. Itt egy példa beállító fájl (lásd: /etc/dhcp/dhcpd.conf):

```conf
option domain-name "example.com";
option domain-name-servers ns1.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.253;
 option routers 192.168.1.1;
}

host clientname {
 filename "/tftpboot.img";
 server-name "servername";
 next-server servername;
 hardware ethernet 01:23:45:67:89:AB;
 fixed-address 192.168.1.90;
}
```

E példában a servername nevű kiszolgáló végzi a DHCP és TFTP kiszolgáló és hálózati átjáró munkáját. Természetesen be kell állítani a tartomány-név opciókat, a kiszolgáló nevét és az ügyfél hardver címét. A filename opció a TFTP-n át elérendő fájl neve.

A dhcpd beállító fájl szerkesztése után, indítsd újra így: /etc/init.d/isc-dhcp-server restart.

### 4.5.1.1. PXE indítás bekapcsolása a DHCP beállításban

Itt egy másik, indítás-előtti futtatási környezet (PXE) TFTP módot használó dhcp.conf példa.

```conf
option domain-name "example.com";
default-lease-time 600;
max-lease-time 7200;
allow booting;
allow bootp;

The next paragraph needs to be modified to fit your case
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.253;
 option broadcast-address 192.168.1.255;
 # the gateway address which can be different
 # (access to the internet for instance)
```
FEJEZET 4. A RENDSZER TELEPÍTŐ MÉDIA …

4.5. FÁJLOK ELŐKÉSZÍTÉSE TFTP HÁLÓZATI…”

... A RENDSZER TELEPÍTŐ MÉDIA

4.5. FÁJLOK ELŐKÉSZÍTÉSE TFTP HÁLÓZATI...

A PXE indítás számára a pxelinux.0 ügyfél fájl neve egy boot betöltő, nem egy kernel kép (lásd az alábbi 4.5.4. szakasz részt). If your machine uses UEFI to boot, you will have to specify a boot loader appropriate for UEFI machines, for example

```
A CMU bootpd használatához a /etc/inetd.conf megfelelő sorra kell. A Debian GNU/Linux rendszeren így érdemes: update-inetd --enable bootps, majd /etc/init.d/inetd reload. Csak arra az esetre mutatjuk, ha a BOOTP kiszolgáló nem Debian rendszert futtatna, a kérdéses sor így áll össze:

```

4.5.2. BOOTP kiszolgáló beállítása

2 BOOTP kiszolgáló van GNU/Linux alatt. Az 1. a CMU bootpd. A másik egy DHCP kiszolgáló: az ISC dhcpd. A Debian GNU/Linux rendszerben ezek a bootp és isc-dhcp-server csomagokban vannak.

A CMU bootpd parancshoz tudni kell az ügyfél hardver (MAC) címét. Itt egy példa /etc/bootptab:

```
Legalább a "ha" opciót cserélni kell, mely megadja az ügyfél hardver címét. A "bf" lehetőség megadja az ügyfél által a TFTP-n elérendő fájlt; lásd ezt: 4.5.4. szakasz több részletét.

By contrast, setting up BOOTP with ISC dhcpd is really easy, because it treats BOOTP clients as a moderately special case of DHCP clients. Some architectures require a complex configuration for booting clients via BOOTP. If yours is one of those, read the section 4.5.1. szakasz. Otherwise you will probably be able to get away with simply adding the allow bootp directive to the configuration block for the subnet containing the client in /etc/dhcp/dhcpd.conf, and restart dhcpd with /etc/init.d/isc-dhcp-server restart.

4.5.3. TFTP kiszolgáló bekapcsolása

To get the TFTP server ready to go, you should first make sure that tftpd is enabled.

In the case of tftpd-hpa there are two ways the service can be run. It can be started on demand by the system’s inetd daemon, or it can be set up to run as an independent daemon. Which of these methods is used is selected when the package is installed and can be changed by reconfiguring the package.
 oltre a TFTP kiszolgálók a /tftpboot könyvtárat használták képek adására. De a Debian GNU/Linux csomagok képesek a Fájlrendszer Hierarchia Szabványnak megfelelő könyvtárak használatára. Például a tftpd-hpa alapban a /srv/tftp könyvtárat használja. Állítsd be az e szakaszban adott beállító példákat így.

All in.tftpd alternatives available in Debian should log TFTP requests to the system logs by default. Some of them support a \texttt{-v} argument to increase verbosity. It is recommended to check these log messages in case of boot problems as they are a good starting point for diagnosing the cause of errors.

4.5.4. TFTP képek helyükre tétele

Most tedd a TFTP indító képet a 4.2.1. szakasz szerint a tftpd indító kép könyvtárba. Innen egy láncot kell csinálni arra a fájlra, melyet a tftpd egy adott ügyfél indítására használ majd. Sajnos, a fájl nevét a TFTP ügyfél határozza meg és erre nincs erős szabvány.

For PXE booting, everything you should need is set up in the netboot/netboot.tar.gz tarball. Simply extract this tarball into the tftpd boot image directory. Make sure your dhcp server is configured to pass pxelinux.0 to tftpd as the filename to boot. For UEFI machines, you will need to pass an appropriate EFI boot image name (such as /debian-installer/amd64/bootnetx64.efi).

4.6. Automata telepítés

For installing on multiple computers it's possible to do fully automatic installations. Debian packages intended for this include fai-quickstart (which can use an install server) and the Debian Installer itself. Have a look at the FAI home page for detailed information.

4.6.1. Automata telepítés a Debian Telepítő használataival

A Debian Telepítő támogatja az automata telepítéseket elő-beállító fájlokon át. Egy elő-beállító fájl a hálózatról vagy cserélhető médiáról töltethető le és a telepítő folyamat kérdéseinek megválaszolására használható.

Erről dokumentáció és működő példa a B. függelék részben található.

4.7. Verifying the integrity of installation files

You can verify the integrity of downloaded files against checksums provided in SHA256SUMS or SHA512SUMS files on Debian mirrors. You can find them in the same places as the installation images itself. Visit the following locations:

- checksum files for CD images,
- checksum files for DVD images,
- checksum files for BD images,
- checksum files for other installation files.

To compute the checksum of a downloaded installation file, use

\begin{verbatim}
sha256sum filename.iso
\end{verbatim}

respectively

\begin{verbatim}
sha512sum filename.iso
\end{verbatim}

and then compare the shown checksum against the corresponding one in the SHA256SUMS respective SHA512SUMS file.

The Debian CD FAQ has more useful information on this topic (such as the script check_debian_iso, to semi-automate above procedure), as well as instructions, how to verify the integrity of the above checksum files themselves.

24
5. fejezet

A telepítő rendszer indítása

5.1. A telepítő indítása 64-bit PC architektúrán

FIGYELEM

If you have any other operating systems on your system that you wish to keep (dual boot setup), you should make sure that they have been properly shut down before you boot the installer. Installing an operating system while another operating system is in hibernation (has been suspended to disk) could result in loss of, or damage to the state of the suspended operating system which could cause problems when it is rebooted.

MEGJEGYZÉS

A grafikus telepítő indításáról lásd az alábbi: 5.1.8. szakasz.

5.1.1. Indítás USB tárról

If your computer will boot from USB, this will probably be the easiest route for installation. Assuming you have prepared everything from 3.6.2. szakasz and 4.3. szakasz, just plug your USB stick into some free USB connector and reboot the computer. The system should boot up, and unless you have used the flexible way to build the stick and not enabled it, you should be presented with a graphical boot menu (on hardware that supports it). Here you can select various installer options, or just hit Enter.

5.1.2. Booting from optical disc (CD/DVD)

If you have a set of optical discs, and your machine supports booting directly off those, great! Simply configure your system for booting off an optical disc as described in 3.6.2. szakasz, insert the disc, reboot, and proceed to the next chapter.

Note that certain optical drives may require special drivers, and thus be inaccessible in the early installation stages. If it turns out the standard way of booting off an optical disc doesn’t work for your hardware, revisit this chapter and read about alternate kernels and installation methods which may work for you.

Even if you cannot boot from optical disc, you can probably install the Debian system components and any packages you want from such disc. Simply boot using a different medium and when it’s time to install the operating system, base system, and any additional packages, point the installation system at the optical drive.

Ha gondjaid vannak ez indítással, lásd az 5.4. szakasz részt.

25
5.1.3. Booting from Windows

To start the installer from Windows, you can either

- obtain installation media as described in 4.1. szakasz or 4.3. szakasz or

If you use optical installation media, a pre-installation program should be launched automatically when you insert the disc. In case Windows does not start it automatically, or if you are using a USB memory stick, you can run it manually by accessing the device and executing setup.exe.

After the program has been started, a few preliminary questions will be asked and the system will be prepared to reboot into the Debian GNU/Linux installer.

5.1.4. Booting from DOS using loadlin

Boot into DOS (not Windows). To do this, you can for instance boot from a recovery or diagnostic disk.

If you can access the installation CD, change the current drive to the CD-ROM drive, e.g.

d:

else make sure you have first prepared your hard disk as explained in 4.4.2. szakasz, and change the current drive to it if needed.

Enter the subdirectory for the flavor you chose, e.g.,

```
\install
```

If you prefer using the graphical installer, enter the `gtk` sub-directory.

```
\gtk
```

Next, execute `install.bat`. The kernel will load and launch the installer system.

5.1.5. Booting from Linux using GRUB

A telepítő merevlemezről indításához először le kell tölteni és elhelyezni a 4.4. szakasz részben írt fájlokat.

For GRUB2, you will need to configure two essential things in `/boot/grub/grub.cfg`:

- to load the `initrd.gz` installer at boot time;
- have the `vmlinuz` kernel use a RAM disk as its root partition.

An entry for the installer would be for example:

```
menuentry 'New Install' {
    insmod part_msdos
    insmod ext2
    set root=’(hd0,msdos1)’
    linux /boot/newinstall/vmlinuz
    initrd /boot/newinstall/initrd.gz
}
```

5.1.6. Indítás TFTP segítségével

Booting from the network requires that you have a network connection and a TFTP network boot server (and probably also a DHCP, RARP, or BOOTP server for automatic network configuration).

The server-side setup to support network booting is described in 4.5. szakasz.

i386 gépen több mód van a TFTP indításra.

5.1.6.1. PXE-támogató hálózati kártya vagy alaplap

It could be that your Network Interface Card or Motherboard provides PXE boot functionality. This is a Intel™ re-implementation of TFTP boot. If so, you may be able to configure your BIOS/UEFI to boot from the network.
5.1.6.2. NIC hálózati indító ROM-mal

Lehet, hogy hálózati csatoló kártyád TFTP indítást kínál.
Tudasd velünk (debian-boot@lists.debian.org) hogyan kezelted. Hivatkozz e dokumentumra.

5.1.6.3. Etherboot

Az etherboot project TFTP indítást adó indító lemezeket és indító romokat ad.

5.1.7. The Boot Screen

When the installer boots, you should be presented with a friendly graphical screen showing the Debian logo and a menu:

```
Debian GNU/Linux installer boot menu

Graphical install
 Install
 Advanced options  >
 Accessible dark contrast installer menu  >
 Help
 Install with speech synthesis
```

MEGJEGYZÉS

This graphical screen will look very slightly different depending on how your computer has booted (BIOS or UEFI), but the same options will be shown.

Depending on the installation method you are using, the „Graphical install” option may not be available. Bi-arch images additionally have a 64 bit variant for each install option, right below it, thus almost doubling the number of options.

For a normal installation, select either the „Graphical install” or the „Install” entry — using either the arrow keys on your keyboard or by typing the first (highlighted) letter — and press Enter to boot the installer. The „Graphical install” entry is already selected by default.

The „Advanced options” entry gives access to a second menu that allows to boot the installer in expert mode, in rescue mode and for automated installs.

If you wish or need to add any boot parameters for either the installer or the kernel, press Tab (BIOS boot), or e then down arrow three times then end (UEFI boot). This will bring the boot command for the selected menu entry and allow you to edit it to suit your needs. Note that the keyboard layout at this point is still QWERTY. The help screens (see below) list some common possible options. Press Enter (BIOS boot) or F10 (UEFI boot) to boot the installer with your options; pressing Esc will return you to the boot menu and undo any changes you made.

Choosing the „Help” entry will result in the first help screen being displayed which gives an overview of all available help screens. To return to the boot menu after the help screens have been displayed, type „menu” at the boot prompt and press Enter. All help screens have a boot prompt at which the boot command can be typed:

```
Press F1 for the help index, or ENTER to boot:
```

At this boot prompt you can either just press Enter to boot the installer with default options or enter a specific boot command and, optionally, boot parameters. A number of boot parameters which might be useful can be found on the various help screens. If you do add any parameters to the boot command line, be sure to first type the boot method (the default is install) and a space before the first parameter (e.g., install fb=false).
The keyboard is assumed to have a default American English layout at this point. This means that if your keyboard has a different (language-specific) layout, the characters that appear on the screen may be different from what you’d expect when you type parameters. Wikipedia has a schema of the US keyboard layout which can be used as a reference to find the correct keys to use.

If you are using a system that has the BIOS configured to use serial console, you may not be able to see the initial graphical splash screen upon booting the installer; you may even not see the boot menu. The same can happen if you are installing the system via a remote management device that provides a text interface to the VGA console. Examples of these devices include the text console of Compaq’s „Integrated Lights Out” (iLO) and HP’s „Integrated Remote Assistant” (IRA).

To bypass the graphical boot screen you can either blindly press Esc to get a text boot prompt, or (equally blindly) press „H” followed by Enter to select the „Help” option described above. After that your keystrokes should be echoed at the prompt. To prevent the installer from using the framebuffer for the rest of the installation, you will also want to add vga=normal fb=false to the boot prompt, as described in the help text.

5.1.8. The Graphical Installer

The graphical version of the installer is only available for a limited number of architectures, including 64-bit PC. The functionality of the graphical installer is essentially the same as that of the text-based installer as it basically uses the same programs, but with a different frontend.

Although the functionality is identical, the graphical installer still has a few significant advantages. The main advantage is that it supports more languages, namely those that use a character set that cannot be displayed with the text-based „newt” frontend. It also has a few usability advantages such as the option to use a mouse, and in some cases several questions can be displayed on a single screen.

The graphical installer is available with all CD/DVD images and with the hd-media installation method. To boot the graphical installer simply select the relevant option from the boot menu. Expert and rescue mode for the graphical installer can be selected from the „Advanced options” menu. The previously used boot methods installgui, expertgui and rescuegui can still be used from the boot prompt which is shown after selecting the „Help” option in the boot menu.

There is also a graphical installer image that can be netbooted. And there is a special „mini” ISO image¹, which is mainly useful for testing.

Just as with the text-based installer it is possible to add boot parameters when starting the graphical installer.

The graphical installer requires significantly more memory to run than the text-based installer: 810MB. If insufficient memory is available, it will automatically fall back to the text-based „newt” frontend.

If the amount of memory in your system is below 780MB, the graphical installer may fail to boot at all while booting the text-based installer would still work. Using the text-based installer is recommended for systems with little available memory.

¹ The mini ISO image can be downloaded from a Debian mirror as described in 4.2. szakasz. Look for netboot/gtk/mini.iso.
5.2. Accessibility

Some users may need specific support because of e.g. some visual impairment. USB braille displays are detected automatically (not serial displays connected via a serial-to-USB converter), but most other accessibility features have to be enabled manually. On machines that support it, the boot menu emits beeps when it is ready to receive keystrokes. It beeps once on BIOS systems, and beeps twice on UEFI systems. Some boot parameters can then be appended to enable accessibility features (see also 5.1.7. szakasz). Note that on most architectures the boot loader interprets your keyboard as a QWERTY keyboard.

5.2.1. Installer front-end

The Debian installer supports several front-ends for asking questions, with varying convenience for accessibility: notably, **text** uses plain text while **newt** uses text-based dialog boxes. The choice can be made at the boot prompt, see the documentation for **DEBIAN_FRONTEND** in 5.3.2. szakasz.

5.2.2. USB Braille Displays

USB braille displays should be automatically detected. A textual version of the installer will then be automatically selected, and support for the braille display will be automatically installed on the target system. You can thus just press **Enter** at the boot menu. Once **brltty** is started, you can choose a braille table by entering the preference menu. Documentation on key bindings for braille devices is available on the **brltty** website.

5.2.3. Serial Braille Displays

Serial braille displays cannot safely be automatically detected (since that may damage some of them). You thus need to append the **brltty=driver, port** boot parameter to tell **brltty** which driver and port it should use. **driver** should be replaced by the two-letter driver code for your terminal (see the BRLTTY manual). **port** should be replaced by the name of the serial port the display is connected to, **ttyS0** is the default, **ttyUSB0** can be typically used when using a serial-to-USB converter. A third parameter can be provided, to choose the name of the braille table to be used (see the BRLTTY manual); the English table is the default. Note that the table can be changed later by entering the preference menu. A fourth parameter can be provided to pass parameters to the braille driver, such as **protocol=foo** which is needed for some rare models. Documentation on key bindings for braille devices is available on the **brltty** website.

5.2.4. Software Speech Synthesis

Support for software speech synthesis is available on all installer images which have the graphical installer, i.e. all netinst, CD and DVD images, and the netboot gtk variant. It can be activated by selecting it in the boot menu by typing **s Enter**. The textual version of the installer will then be automatically selected, and support for software speech synthesis will be automatically installed on the target system.

If several sound cards are detected, you will be prompted to press **Enter** when you hear speech from the desired sound card.

The first question (language) is spoken in english, and the remainder of installation is spoken in the selected language (if available in espeak).

The default speech rate is quite slow. To make it faster, press CapsLock-6. To make it slower, press CapsLock-5. The default volume should be medium. To make it louder, press CapsLock-2. To make it quieter, press CapsLock-1. To get more details on the browsing shortcuts, see the Speakup guide. To just accept the default answer for a question, simply press **Enter** at the prompt. To provide an empty answer for a question, type **!** at the prompt. To get back to the previous question, type **<** at the prompt.

5.2.5. Hardware Speech Synthesis

Support for hardware speech synthesis devices is available on all installer images which have the graphical installer, i.e. all netinst, CD and DVD images, and the netboot gtk variant. You thus need to select a „Graphical install” entry in the boot menu.

Hardware speech synthesis devices cannot be automatically detected. You thus need to append the **speakup.synth=driver** boot parameter to tell speakup which driver it should use. **driver** should be replaced by the driver code for your device (see driver code list). The textual version of the installer will then be automatically selected, and support for the speech synthesis device will be automatically installed on the target system.
5.2.6. Board Devices

Some accessibility devices are actual boards that are plugged inside the machine and that read text directly from the video memory. To get them to work framebuffer support must be disabled by using the `vga=normal fb=false` boot parameter. This will however reduce the number of available languages.

If desired a textual version of the bootloader can be activated before adding the boot parameter by typing `h Enter`.

5.2.7. High-Contrast Theme

For users with low vision, the installer can use a high-contrast color theme that makes it more readable. To enable it, you can use the „Accessible high contrast” entry from the boot screen with the `d` shortcut, or append the `theme=dark` boot parameter.

5.2.8. Zoom

For users with low vision, the graphical installer has a very basic zoom support: the Control+- and Control– shortcuts increase and decrease the font size.

5.2.9. Expert install, rescue mode, automated install

Expert, Rescue, and Automated installation choices are also available with accessibility support. To access them, one has to first enter the „Advanced options” submenu from the boot menu by typing `a`. When using a BIOS system (the boot menu will have beeped only once), this has to be followed by `Enter`; for UEFI systems (the boot menu will have beeped twice) that must not be done. Then, to enable speech synthesis, `s` can optionally be pressed (followed again by `Enter` on BIOS systems but not on UEFI systems). From there, various shortcuts can be used: `x` for expert installation, `r` for rescue mode, or `a` for automated installation. Again these need to be followed by `Enter` when using a BIOS system.

The automated install choice allows to install Debian completely automatically by using preseeding, whose source can be entered after accessibility features get started. Preseeding itself is documented in B. függelék.

5.2.10. Accessibility of the installed system

Documentation on accessibility of the installed system is available on the Debian Accessibility wiki page.

5.3. Indító paraméterek

Az indító paraméterek Linux kernel paraméterek, melyek általában a perifériák helyes használatára szolgálnak. A kernel általában képes ezek adatainak automatikus érzékelésére. Egyes esetekben azonban egy kis segítség szükséges.

A rendszert 1. ízben az alap paraméterekkel jó indítani (vagyis továbbiak megadása nélkül) és meggyőződni arról, működése helyes-e. Ha nem, egy későbbi újraindítások megadhatók különleges paraméterek, melyek a rendszer kiszegíthetik egyes adatokkal a hardverről.

Sok indító paraméterről szóló adat van a Linux BootPrompt HOGYAN leírásban, benne képes hardverekről szólók és. Ez csak egy változatos szakasz a legáltalánosabb paraméterekről. Néhány szokásos találat megtalálható az alábbi: 5.4. szakasz részben.

5.3.1. Boot console

If you are booting with a serial console, generally the kernel will autodetect this. If you have a videocard (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial console, you may have to pass the `console=device` argument to the kernel, where `device` is a serial device of the target, which is usually something like `ttyS0`.

You may need to specify parameters for the serial port, such as speed and parity, for instance `console=ttyS0,9600n8`; other typical speeds may be 57600 or 115200. Be sure to specify this option after „---”, so that it is copied into the bootloader configuration for the installed system (if supported by the installer for the bootloader).

In order to ensure the terminal type used by the installer matches your terminal emulator, the parameter `TERM` can be added. Note that the installer only supports the following terminal types: `linux`, `bterm`, `ansi`, `vt102` and `dumb`. The default for serial console in `debian-installer` is `vt102`. If you are using an IPMI console, or a virtualization tool which does not provide conversion into such terminals types itself, e.g. QEMU/KVM, you can...
start it inside a `screen` session. That will indeed perform translation into the `screen` terminal type, which is very close to `vt102`.

5.3.2. Debian Telepítő paraméterek

The installation system recognizes a few additional boot parameters² which may be useful.

Sok paraméterhez van egy „rövid forma”, mely segít elkerülni a kernel parancs-sori opciók korlátját és könnyebben teszi a paraméterek megadását. Ha egy paraméternek van rövid formája, zárójelben írjuk a (rendes) hosszú forma után. A példák is a rövid formát használják.

debconf/priority (elsőbbség)

E paraméter adja meg a megjelenítendő üzenetek legkisebb elsőbbségét.

Az alap telepítés a `priority=high` értéket használja. Ekkor a kritikus és magas elsőbbségű üzenetek jelennek meg, a közepes és alacsony elsőbbségű üzenetek nem. Hibák esetén a telepítő a szükséges szintre állítja ezt.

A `priority=medium` részletesebb irányítást ad a telepítéshez. A `priority=low` mindent kérdez (ez ugyanaz, mint az `expert` indítás mód). A `priority=critical` esetén a rendszer csak a kritikus üzeneteket jeleníti meg és ha minden rendben, nem kérdez.

DEBIAN_FRONTEND

This boot parameter controls the type of user interface used for the installer. The current possible parameter settings are:

- `DEBIAN_FRONTEND=noninteractive`
- `DEBIAN_FRONTEND=text`
- `DEBIAN_FRONTEND=newt`
- `DEBIAN_FRONTEND=gtk`

The default frontend is `DEBIAN_FRONTEND=newt`. `DEBIAN_FRONTEND=text` may be preferable for serial console installs. Some specialized types of install media may only offer a limited selection of frontends, but the `newt` and `text` frontends are available on most default install media. On architectures that support it, the graphical installer uses the `gtk` frontend.

BOOT_DEBUG

Ha e paraméter értéke 2, a telepítő indító folyamat részletesebb naplózásra kerül. Ha 3, hibakereső hétakat tesz elérhetővé az indító folyamat fő pontjain. (Lépj ki a hétakból az indító folyamat folytatásához.)

- `BOOT_DEBUG=0` Ez az alap.
- `BOOT_DEBUG=1` Átlagnál bővebb.
- `BOOT_DEBUG=2` Sok hibakereső adat.
- `BOOT_DEBUG=3` A hétak az indító folyamat különböző pontjain futnak részletes hibák visszaadásához. Lépj ki a hétából az indítás folytatásához.

log_host, log_port

Causes the installer to send log messages to a remote syslog on the specified host and port as well as to a local file. If not specified, the port defaults to the standard syslog port 514.

lowmem

Can be used to force the installer to a lowmem level higher than the one the installer sets by default based on available memory. Possible values are 1 and 2. See also 6.3.1.1. szakasz.

noshell

Prevents the installer from offering interactive shells on tty2 and tty3. Useful for unattended installations where physical security is limited.

debian-installer/framebuffer (fb)

Some architectures use the kernel framebuffer to offer installation in a number of languages. If framebuffer causes a problem on your system you can disable the feature using the parameter `vga=normal fb=false`. Problem symptoms are error messages about bterm or bogl, a blank screen, or a freeze within a few minutes after starting the install.

debian-installer/theme (téma)

A theme determines how the user interface of the installer looks (colors, icons, etc.). Which themes are available may differ per frontend. Currently both the `newt` and `gtk` frontends have (apart from the default look) only one additional theme named „dark” theme, which was designed for visually impaired users. Set this theme by booting with `theme=dark` (there is also the keyboard shortcut `d` for this in the boot menu).

²With current kernels (2.6.9 or newer) you can use 32 command line options and 32 environment options. If these numbers are exceeded, the kernel will panic. Also there is a limit of 255 characters for the whole kernel command line, everything above this limit may be silently truncated.
netcfg/disable_autoconfig By default, the debian-installer automatically probes for network configuration via IPv6 autoconfiguration and DHCP. If the probe succeeds, you won’t have a chance to review and change the obtained settings. You can get to the manual network setup only in case the automatic configuration fails.

If you have an IPv6 router or a DHCP server on your local network, but want to avoid them because e.g. they give wrong answers, you can use the parameter netcfg/disable_autoconfig=true to prevent any automatic configuration of the network (neither v4 nor v6) and to enter the information manually.

disk-detect/dmraid/enable (dmraid) Set to true to enable support for Serial ATA RAID (also called ATA RAID, BIOS RAID or fake RAID) disks in the installer. Note that this support is currently experimental. Additional information can be found on the Debian Installer Wiki.

preseed/url (url) Megadja az automata telepítéshez letöltendő és használható elő-beállító fájlra mutató url-t. Lásd a 4.6. szakasz részét.

auto-install/enable (auto) Az elő-beállítások végrehajtása előtt feltett kérdések megválaszolása elhalasztható a hálózat beállításáig. Lásd a B.2.3. szakasz részét ennek használhatóhoz az automata telepítésben.

finish-install/keep-consoles During installations from serial or management console, the regular virtual consoles (VT1 to VT6) are normally disabled in /etc/inittab. Set to true to prevent this.

cdrom-detect/eject By default, before rebooting, debian-installer automatically ejects the optical media used during the installation. This can be unnecessary if the system does not automatically boot off such media. In some cases it may even be undesirable, for example if the optical drive cannot reinsert the media itself and the user is not there to do it manually. Many slot loading, slim-line, and caddy style drives cannot reload media automatically.

Legyen false az automata kiadás kikapcsolásához, ekkor magadnak kell biztosítani, hogy a rendszer ne induljon önműködően az optikai meghajtóról a telepítés után.

base-installer/install-recommends (recommends) By setting this option to false, the package management system will be configured to not automatically install „Recommends”, both during the installation and for the installed system. See also 6.3.5. szakasz.

Note that this option allows to have a leaner system, but can also result in features being missing that you might normally expect to be available. You may have to manually install some of the recommended packages to obtain the full functionality you want. This option should therefore only be used by very experienced users.

debian-installer/allow_unauthenticated Alapban a telepítő ismert gpg kulcs által hitelesített tárat igényel. Állítsd true értékre a hitelesítés kikapcsolásához. **Figyelmen kívül:** nem biztonságos, nem ajánlott.

rescue/enable Legyen true a rendes telepítés helyett mentő módba lépéshez. Lásd: 8.6. szakasz.

5.3.3. Indító paraméterek használata kérdések megválaszolására

Pár kivétellel az indító jelenlél bármely telepítés alatt feltett kérdés értéke beállítható, ez csak egyes esetekben igazán hasznos. Általános leírással erről a B.2.2. szakasz részben. Íme pár példa.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (honosítás) There are two ways to specify the language, country and locale to use for the installation and the installed system. The first and easiest is to pass only the parameter locale. Language and country will then be derived from its value. You can for example use locale=de_CH to select German as language and Switzerland as country (de_CH.UTF-8 will be set as default locale for the installed system). Limitation is that not all possible combinations of language, country and locale can be achieved this way.

The second, more flexible option is to specify language and country separately. In this case locale can optionally be added to specify a specific default locale for the installed system. Example: language=en country=DE locale=en_GB.UTF-8.
FEJEZET 5. A TELEPÍTŐ RENDSZER INDÍTÁSA

5.4. HIBÁK ELHÁRÍTÁSA A TELEPÍTŐ...

anna/choose_modules (modules) Az alapban nem betöltött telepítő összetevők automata betöltésére használható. Példa lehetséges hasznos összetevőre az openssh-client-udeb (így használhatod az scp másolót a telepítés alatt) és a ppp-udeb (lásd itt: D.5. szakasz).

netcfg/disable_autoconfig Set to true if you want to disable IPv6 autoconfiguration and DHCP and instead force static network configuration.

tasksel:tasksel/first (feladatok) Az interaktiv listából el nem érhető feladatok kiválasztására használható, fontos például a hungarian-desktop használata. Lásd a 6.3.6.2. szakasz részt további adatokért.

5.3.4. Paraméterek átadása kernel moduloknak

Kernelbe fordított meghajtók számára lehetséges a kernel dokumentációja szerinti paraméterek átadása. Ám akkor, ha modulokként fordítottak, mivel ezek kissé másképp töltődnének be a telepítéskor, mint a telepített rendszeren, nem adhatók át úgy paraméterek, mint rendesen. A telepítő által ismert különleges szintaxist kell használni, így ezek a helyes beállító fájiba kerülnek és felhasználására kerülnek a modulok tényleges betöltésekor. E paraméterek átkerülnek a telepített rendszerbe is.

Erre ritkán van szükség. A kernel szinte mindig képes a rendszeren lévő hardvert kipróbálni és jó alapértelmezett értékeket beállítani. De egyes esetekben jól jöhet paraméterek kézi beállítása.

A modulokhoz beállítandó paraméterek nyelvtana:

<table>
<thead>
<tr>
<th>modul_név</th>
<th>paraméter_név</th>
<th>érték</th>
</tr>
</thead>
</table>
| Ha több paramétert akarsz átadni egy vagy több modulhoz, csak ismételd ezt. Például egy régi 3Com hálózati csatoló kártya beállítása a BNC (koax) csatlakozó és IRQ 10 használatához:

3c509.xcvr=3 3c509.irq=10

5.3.5. Kernel modulok feketelistája

Néha egy modult feketelistára kell tenni, hogy a kernel és udev ne töltse be. Például, ha gondot ad egy adott hardverrel. A kernel néha 2 eltérő modult ad egy eszközhöz. Ez problémás működést okozhat, e meghajtók ütközése vagy előbb rossz meghajtó betöltése esetén.

Egy modul így tehető feketelistára: module_name.blacklist=yes. Így a modul feketelistára kerül a/etc/modprobe.d/blacklist.local fájlból a telepítés és a telepített rendszer alatt.

Lehet, hogy a modult a telepítő rendszer tölti be. Ez megakadályozható a telepítő szakértő modul kijelölt volta törlésével a hardver felismerő szakaszokban.

5.4. Hibák elhárítása a telepítő folyamat során

5.4.1. Reliability of optical media

Sometimes, especially with older drives, the installer may fail to boot from an optical disc. The installer may also — even after booting successfully from such disc — fail to recognize the disc or return errors while reading from it during the installation.

Ennek sok eltérő oka lehet. Csak néhány szokásos hibát és kezelésükről szóló általános tanácsot írunk le. A többi tévedés függ.

Először 2 egyszerű dolgot érdemes kipróbálni:

• If the disc does not boot, check that it was inserted correctly and that it is not dirty.

• If the installer fails to recognize the disc, try just running the option Detect and mount installation media a second time. Some DMA related issues with very old CD-ROM drives are known to be resolved in this way.

If this does not work, then try the suggestions in the subsections below. Most, but not all, suggestions discussed there are valid for CD-ROM and DVD.

If you cannot get the installation working from optical disc, try one of the other installation methods that are available.
5.4.1.1. Általános hibák

- Néhány régi CD-ROM meghajtó nem támogatja a korszerű CD-írók használatával nagy sebességgel írt lemezek olvasását.
- Some very old CD-ROM drives do not work correctly if „direct memory access“ (DMA) is enabled for them.

5.4.1.2. Hogyan vizsgálj ki és oldj meg gondokat

If the optical disc fails to boot, try the suggestions listed below.

- Check that your BIOS/UEFI actually supports booting from optical disc (only an issue for very old systems) and that booting from such media is enabled in the BIOS/UEFI.
- If you downloaded an iso image, check that the md5sum of that image matches the one listed for the image in the MD5SUMS file that should be present in the same location as where you downloaded the image from.

```
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92
debian-testing-i386-netinst.iso
```

Next, check that the md5sum of the burned disc matches as well. The following command should work. It uses the size of the image to read the correct number of bytes from the disc.

```
$ dd if=/dev/cdrom | \
  head -c `stat --format=%s debian-testing-i386-netinst.iso' | \
  md5sum
a20391b12f7ff22ef705cee4059c6b92
262668+0 rekord beolvasva
262668+0 rekord kiírva
134486016 bájt (134 MB) másolva, 97.474 másodperc, 1.4 MB/s
```

If, after the installer has been booted successfully, the disc is not detected, sometimes simply trying again may solve the problem. If you have more than one optical drive, try changing the disc to the other drive. If that does not work or if the disc is recognized but there are errors when reading from it, try the suggestions listed below. Some basic knowledge of Linux is required for this. To execute any of the commands, you should first switch to the second virtual console (VT2) and activate the shell there.

- Válts a VT4 termináira vagy nézd meg a /var/log/syslog tartalmát (használd a nano-t szerkesztőként) a hibák ellenőrzéséhez. Ezután ellenőrizd a dmesg kimenetét is.
- Check in the output of dmesg if your optical drive was recognized. You should see something like (the lines do not necessarily have to be consecutive):

```
ata1.00: ATAPI: MATSHITADVD-RAM UJ-822S, 1.61, max UDMA/33
ata1.00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-ROM UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
cdrom: Uniform CD-ROM driver Revision: 3.20
```

If you don’t see something like that, chances are the controller your drive is connected to was not recognized or may be not supported at all. If you know what driver is needed for the controller, you can try loading it manually using modprobe.

- Check that there is a device node for your optical drive under /dev/. In the example above, this would be /dev/sr0. There should also be a /dev/cdrom.
- Use the mount command to check if the optical disc is already mounted; if not, try mounting it manually:

```
$ mount /dev/hdc /cdrom
```

Check if there are any error messages after that command.

- Check if DMA is currently enabled:
§ cd /proc/ide/hdc
§ grep using_dma settings
using_dma 1 0 1 rw

A „1” in the first column after using_dma means it is enabled. If it is, try disabling it:

§ echo -n "using_dma:0" >settings

Make sure that you are in the directory for the device that corresponds to your optical drive.

- If there are any problems during the installation, try checking the integrity of the installation media using the option near the bottom of the installer's main menu. This option can also be used as a general test if the disc can be read reliably.

5.4.2. Indító beállítás

Ha a kernel megáll az indító folyamat során, nem ismer fel perifériákat vagy meghajtókat helyesen, először az indító paramétereket kell ellenőrizni a korábbi 5.3. szakasz szerint.

In some cases, malfunctions can be caused by missing device firmware (see 2.2. szakasz and 6.4. szakasz).

5.4.3. Software Speech Synthesis

If software speech synthesis does not work, there is most probably an issue with your sound board, usually because either the driver for it is not included in the installer, or because it has unusual mixer level names which are set to muted by default. You should thus submit a bug report which includes the output of the following commands, run on the same machine from a Linux system which is known to have sound working (e.g., a live CD).

- dmesg
- lspci
- lsmod
- amixer

5.4.4. Gyakori 64-bit PC telepítő gondok

Van pár gyakori telepítő gond, mely megoldható vagy elkerülhető egyes indító paraméterek átadásával a telepítőnél.

If your screen begins to show a weird picture while the kernel boots, eg. pure white, pure black or colored pixel garbage, your system may contain a problematic video card which does not switch to the framebuffer mode properly. Then you can use the boot parameter fb=false to disable the framebuffer console. Only a reduced set of languages will be available during the installation due to limited console features. See 5.3. szakasz for details.

5.4.4.1. A rendszer fagyása a PCMCIA beállító szakaszban

Some very old laptop models produced by Dell are known to crash when PCMCIA device detection tries to access some hardware addresses. Other laptops may display similar problems. If you experience such a problem and you don’t need PCMCIA support during the installation, you can disable PCMCIA using the hw-detect/start_pcmcia=false boot parameter. You can then configure PCMCIA after the installation is completed and exclude the resource range causing the problems.

A telepítő szakértő módban is indítható. Ekkor lehetőség nyilik a hardver igényeinek megfelelő erőforrás-tartományok bevitelére. Például a fenti Dell lapopokon megadható ez: exclude port 0x800-0x8ff. Van egy lista is néhány általános erőforrás-tartomány lehetőségről itt: PCMCIA HOGYAN rendszer erőforrás-beállítások szakasz. A vesszőket el kell hagyni, ha vannak, mikor beírod ezt az értéket a telepítőben.
5.4.5. A kernel indító üzenetek értelmezése

Az indítás alatt, sok ilyen üzenetet láthatsz: *can't find valami*, vagy *valami not present*, *can't initialize valami*, vagy akár *this driver release depends on valami*. A legtöbb ilyen nem számít. Azért láthatod, mert a telepítőben lévő kernel úgy készült, hogy a legkülönbözőbb eszközöket támogassza. Persze egy gépen sincs az összes lehetséges eszköz, és az operációs rendszer jelezheti, ha olyat keres, ami nem található. Néha azt is láthatod, hogy a rendszer egy pici időt vár a válaszra, mert az adott rendszer nem tartalmaz olyat. Néha az is láthatod, hogy a rendszer nagyon lassan indul. Ez akkor történik, ha vár egy eszköz válaszra, akkor a rendszer pedig nem tartalmaz olyat. Ha ezt túl hosszúra tart, a gép ellenőrzését elkezdi, később egyéni kernelt is készíthetsz (lásd a 8.5. szakasz részét).

5.4.6. Telepítő gondok jelentése

If you get through the initial boot phase but cannot complete the install, the menu option Save debug logs may be helpful. It lets you store system error logs and configuration information from the installer on a storage medium, or download them using a web browser. This information may provide clues as to what went wrong and how to fix it. If you are submitting a bug report, you may want to attach this information to the bug report.

További telepítő üzenetek találhatók a /var/log/ könyvtárban a telepítés során és a /var/log/installer/ könyvtárban, miután a gép a telepített rendszert elindította.

5.4.7. Telepítő jelentések küldése

Ha még mindig gondjaid vannak, kérjük, küldj telepítő jelentést. Siker esetén is kérünk erre, mert így a lehető legtöbb adatot kapjuk a legtöbb hardver összeállításról.

A telepítő jelentés között őrzi a Debian hibajelentő rendszerben (BTS) és nyilvános listára kerül. Gondold át, melyik email címedet használod.

If you have a working Debian system, the easiest way to send an installation report is to install the installation-report and reportbug packages (*apt install installation-report reportbug*), configure reportbug as explained in 8.4.2. szakasz, and run the command `reportbug installation-reports`.

Alternatively you can use this template when filling out installation reports, and file the report as a bug report against the installation-reports pseudo package, by sending it to submit@bugs.debian.org.

Package: installation-reports

Image version: <Full URL to image you downloaded is best>
Date: <Date and time of the install>

Machine: <Description of machine (eg, IBM Thinkpad R32)>
Processor:
Memory:
Partitions: <df -Tl will do; the raw partition table is preferred>

Output of lspci -knn (or lscpi -nn):

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

Initial boot: []
Detect network card: []
Configure network: []
Detect media: []
Load installer modules: []
Detect hard drives: []
Partition hard drives: []
Install base system: []
Clock/timezone setup: []
User/password setup: []
Install tasks: []
Install boot loader: []
Overall install: []

Comments/Problems:
In the bug report, describe what the problem is, including the last visible kernel messages in the event of a kernel hang. Describe the steps that you did which brought the system into the problem state.
6. fejezet

A Debian Telepítő használata

6.1. Hogyan működik a telepítő

A Debian Telepítő az egyes telepítő feladatokat ellátó különleges célú összetevőkből áll. Az összetevők szükség esetén a felhasználót kérdeze végzik feladatukat. A kérdések adott elsőbbséggel rendelkeznek, a feltételes kérdések elsőbbsége a telepítő indításakor kerül beállításra.

Alap telepítésnél csak a fontos (magas elsőbbségű) kérdések szerepelnek. Ez nagyon automatizált telepítést ad felhasználó kérdésekkel. Az összetevők automatikusan sorrendben futnak; hogy melyek, az főleg a használt telepítő modótól és hardvertől függ. A telepítő alap értékeket használ a fel nem tett kérdésekhez.

Ha probléma adódik, a felhasználó hiba-képernyőt lát, és a telepítő menü megjelenik egyéb műveletek kiválasztása érdekében. Ha nincs gond, a felhasználó nem látja a telepítő menüt, egyszerűen csak válaszol a feltett kérdésekre. A súlyos hibák “kritikus” elsőbbségűek, így erről a felhasználó mindig értesül.

Az alapértelmezett értékek néhány esetben befolyásolhatók indító argumentumok átadásával a debian-installer indulásakor. Ha, például, statikus hálózati beállítást szeretnél (IPv6 és DHCP az alapbeállítás, ha elérhető), a netcfg/disable_autoconfig=true indító paraméter használható. Lásd az 5.3.2. szakasz részét az elérhető opciókért.

A profik jobbá szeretik a menü-vezérlésű felületet, ahol minden lépést felügyelnek ahelyett, hogy a telepítő automatikus sorrendben végrehajtják őket. A telepítő kézi, menü-vezérlésű használata a priority=medium indító argumentummal indítható.

Ha a hardver a telepített kernel modulkokhoz opciók adását igényli, a telepítő „expert” módban indítható. Ez a telepítő expert parancssal indításával vagy a priority=low indító paraméter átadásával tehető. A mód adja a debian-installer teljes mértékű felügyeletét.

A karakter-alapú felület esetén az egér nem használható. Ezekben a párbeszédekben az alábbi billentyűk használhatók. A Tab vagy jobb nyíl „előre” megy, a Shift-Tab vagy bal nyíl „hátra” a megjelenő gombok és kijelölések között. A fel és le nyil elemeit választ egy görgethető listából és görgeti azt. Hosszú listákon egy betű leütése az azonos elemekhez görget, a Pg-Up és Pg-Down szakaszokat görget fel, illetve le. A szóköz elemeket, például jelölő-dobozok eltárgyalását is lehetséges a Enter gomb felhasználásaival.

Egyes párbeszédek további segítséget adhatnak. Ha elérhető ilyen segítség, azt az alsó sorban fogja jelölni egy felirat, mely szerint segítő információ elérhető az F1 gomb lenyomásával.

A részletes hibakeresés és naplók a 4. konzolra kerülnek. Ez a bal Alt-F4 leütésével érhető el, a fő telepítés folyamatában a bal Alt-F1 leütésével tehető. A részletes hibakeresés és naplók a /var/log/syslog fájiban is megtalálhatók. Egyes párbeszédek az /var/log/installer/syslog fájlban is megtalálhatók. A naplók a /var/log/installer/syslog fájlból kerül az új rendszereken. Tovább telepítő üzenetek vannak a /var/log/ könyvtárban a telepítés alatt és a /var/log/installer/ könyvtárban, miután a gép indította az új rendszerét.

6.1.1. Using the graphical installer

The graphical installer basically works the same as the text-based installer and thus the rest of this manual can be used to guide you through the installation process.

If you prefer using the keyboard over the mouse, there are two things you need to know. To expand a collapsed list (used for example for the selection of countries within continents), you can use the + and - keys. For questions where more than one item can be selected (e.g. task selection), you first need to tap to the Continue button after making your selections; hitting enter will toggle a selection, not activate Continue.

If a dialog offers additional help information, a Help button will be displayed. The help information can be accessed either by activating the button or by pressing the F1 key.

38
To switch to another console, you will also need to use the **Ctrl** key, just as with the X Window System. For example, to switch to VT2 (the first debug shell) you would use: Ctrl-Left Alt-F2. The graphical installer itself runs on VT5, so you can use Left Alt-F5 to switch back.

6.2. Összetevők bemutatása

Itt a telepítő összetevők listája az egyes összetevők céljainak rövid leírásával. Az egyes összetevők tudnivalóinak részletei a 6.3. szakasz részben vannak.

main-menu (fő-menü) Mutatja az összetevők listáját a telepítéskor és elindít egyet kiválasztáskor. A fő-menü kérdései közepes elsőbbségűek, így ha az elsőbbség nálad magasra vagy kritikusra lett állítva (a magas az alapértelmezett), ez a menü nem látszik. Azonban ha hiba adódik, mely beavatkozást igényel, a kérdés elsőbbsége átmenetileg lejebb állítódik, lehetővé téve a probléma megoldását, és így a menü már megjelenhet.

A fő menü a Go Back gomb ismételt kiválasztásával érhető el, kilépve a jelenlegi összetevőkből.

localechooser (helyi beállítás választó) Lehetővé teszi a honosítási lehetőségek kiválasztását a telepítéshez és a telepített rendszerhez: a nyelvet, országot és helyi beállításokat. A telepítő az üzeneteket a választott nyelven írja, kivéve, ha a fordítás e nyelvhez nem teljes, ekkor néhány üzenet angolul jelenhet meg.

console-setup (konzol beállítás) Shows a list of keyboard (layouts), from which the user chooses the one which matches his own model.

hw-detect (hardver-érzékelő) Önműködően érzékeli a rendszer legtöbb hardverét, mint például hálózati kártyák, lemez meghajtók vagy PCMCIA.

cdrom-detect (a CD-ROM felismerése) Look for and mounts a Debian installation media.

netcfg (hálózat-beállító) Beállítja a gép hálózati kapcsolatait, mely így internetet használhat.

iso-scan (ISO-keresés) ISO képeket (.iso fájlokat) keres a merevlemezen.

choose-mirror (tükör-választás) A Debian archívum tükörök egy listáját adja. A felhasználó az általa használt telepítő csomagok forrását választhatja ezzel.

cdrom-checker (CD-ROM ellenőrző) Checks integrity of installation media. This way, the user may assure him/herself that the installation image was not corrupted.

lowmem (kis memória) A Lowmem megpróbálja felismerni a kis memóriájú rendszereket, majd különböző trükköket hajt végre, hogy a debian-installer nem kötelező részelt eltávolítsa a memóriából (egyes képességek mellőzése árán).

anna Anna’s Not Nearly APT. Installs packages which have been retrieved from the chosen mirror or installation media.

user-setup (felhasználói beállítások) Beállítja a root jelszót és hozzáad egy simp (nem-root) felhasználót.

clock-setup (óra-beállítás) Igazítja a rendszerórát, és megadja, hogy az óra az UTC szerinti időre legyen-e beállítva.

tzsetup (időzóna beállítás) Megadja az időzónát a korábban megadott elhelyezkedés alapján.

partman (partíció-kezelő) Lehetővé teszi lemezek particionálását, fájlrendszerek létrehozását a kijelölt particiókon, és csatolásukat. Olyan kiemelkedő képességeket is tartalmaz, mint teljesen önműködő mód vagy LVM támogatás. Ez a Debian ajánlott particionáló eszköze.

partitioner (particionáló) Lehetővé teszi a rendszerhez csatolt lemezek particionálását. Olyan particionáló program került kiválasztásra, ami megfelel a számítógép architektúrádnak.

partconf (partíciók beállítása) Kijárja a particiókat és fájlrendszereket hoz létre a kijelölt lehetőségek mellett.

partman-lvm Segíti a felhasználót az LVM (Logikai kötet kezelő) beállításában.

partman-md Lehetővé teszi a szoftveres RAID (olcsó lemezek redundáns tőmbje) beállítását. Ez a szoftveres RAID általában jobb, mint az újabb alaplapokon található olsó IDE (látásonos hardver) RAID vezérők.
FEJEZET 6. A DEBIAN TELEPÍTŐ HASZNÁLATA

6.3. AZ EGYES ÖSSZETEVŐK HASZNÁLATA

TELEPÍTŐ ÖSSZETEVŐK

6.3.1. A Debian Telepítő és a hardver konfiguráció beállítása

A hardver felismerés során a `debian-installer` ellenőrzi, hogy a hardver eszközeid meghajtóinak bármelyike igényel-e firmware betöltését. Ha van olyan firmware, amire szükség lenne, de nem érhető el, egy párbeszéd fog megjelenni, melynél lehetőség van a hiányzó firmware betöltésére eltávolítható adathordozóról. További részleteket itt találasz: 6.4. szakasz.

6.3.1.1. Elérhető memória ellenőrzése / alacsony memória mód

A Debian Telepítő és a hardver konfiguráció beállítása

Ezeket további világos szakaszokra bontjuk. A bemutatás a megjelenés sorrendjében történik. Természetesen nem minden modul szerepel minden telepítésben; ez a telepítő módtól és hardvertől függ.
6.3. A helyi beállításai

6.3.1.2. A helyi beállítási lehetőségek kiválasztása

Az esetek túlnyomó részében az első kérdések a helyi beállításokról szólnak, melyeket mind a telepítéskor, mind a telepített rendszeren használni szeretnél. A helyi beállítási lehetőségek a nyelvből, országból és területi beállításokból állnak.

Innenytől a választott nyelvén szól majd a telepítés, feltéve, ha a különböző párhuzások fordításai előírhatók. Ha nincs fordítás a választott nyelven, a telepítő az angol használja.

A választott földrajzi hely (általánosan ország) alapján ajánl majd a telepítő alap időzónát és Debian tükört. A nyelv és ország együtt képezi majd az alap helyi beállításoknak és segít a megfelelő billentyúzet kiosztásával kiválasztásában.

Először az elsődleges nyelvet kell kiválasztanod. A nyelvek nevei angolul (balra) és az adott nyelven (jobbra) is megjelennek; a jobb oldali nevek a nyelvnek megfelelő írással is megjelennek. A sorrend az angol nevekre épül. A lista tetején a „C” beállítás is választható egy nyelv helyett. A „C” a telepítő esetében angolt ad; ekkor a friss rendszer még nem fog helyi beállításokat támogatni.

Ezután a földrajzi helyedet kell kiválasztanod. Ha olyan nyelvet választottál, ami több országnak is hivatalos nyelve,¹ akkor egy olyan listából kell választanod, ami csak ezeket az országokat mutatja. Ha olyan országot szeretnél választani, ami nincs e listában, válassz a Más lehetőséget (ez az utolsó opció). Ekkor a földrészek listája jelenik meg, ebből egyet válaszolva az ezen a földrészen található országok listáját kapod.

Ha a nyelv csak egy országhoz tartozik, akkor a lista annak a földrésznek a nyelvét tartalmazza, és ez az ország lesz alapból kiválasztva. Ha nincs a Go Back gombot, ha más földrészen levő országot választanál.

6.3.1.3. Billentyűzet választása

A billentyűzetek gyakran egy nyelvre vannak szabva. Válassz egy kiosztást, mely megfelel a használt billentyűzetnek, vagy egy hasonlót, ha nincs pont a kívánt. A telepítés után szélesebb választékóból lehet majd választani (akkor futtass majd a dpkg-reconfigure keyboard-configuration parancsot rendszergazdaként).

Vidd a kijelölést a kívánt billentyűzetre és üsd le az Enter billentyűt. Ha nincsenek megfelelő billentyűket, ezek minden nemzetibb nyelvű billentyűzetek azonos helyi vannak, így függetlenek a billentyűzet beállításától.

6.3.1.4. A Debian Telepítő ISO kép keresése

Ha hd-media móddal telepítesz, akkor eljön az a pillanat, amikor meg kell találnod a Debian Telepítő ISO kép helyét és csatolnod kell azt a további telepítő fájlok elérése érdekében. Az iso-scan összetevő pontosan ezt biztosítja.

¹ technikai meghatározás: ahol több helyi beállítás létezik e nyelvhez eltérő orszákgódokkal.
² Közepes és alacsony előségségnél mindig kiválaszthatod a preferált helyi beállítást azok közül, amik a nyelvekre elérhetőek (ha több, mint egy ilyen van).
³ Ezek olyan beállítások, amik nem UTF-8-at használnak karakter kódolásra, hanem valami régebbi sztenderdet, pl. ISO 8859-1-et (ezt a nyugat-európai nyelvek használják), vagy EUC-JP-t (ezt a japánok használják).
At first, *iso-scan* automatically mounts all block devices (e.g. partitions and logical volumes) which have some known filesystem on them and sequentially searches for filenames ending with `.iso` (or `.ISO` for that matter). Beware that the first attempt scans only files in the root directory and in the first level of subdirectories (i.e. it finds `/whatever.iso`, `/data/whatever.iso`, but not `/data/tmp/whatever.iso`). After an iso image has been found, *iso-scan* checks its content to determine if the image is a valid Debian iso image or not. In the former case we are done, in the latter *iso-scan* seeks for another image.

Ha e próbánál nem talált ISO képet, az *iso-scan* megkérdi, végezzen-e átfogóbb keresést. Ekkor már az egész fájlrendszert átnézi.

6.3.1.5. Hálózat beállítása

E lépéshez érve, ha a rendszer több hálózati eszközt talál, kiválasztható, melyik legyen az elsődleges hálózati csatoló, azaz, melyet a telepítéskor használnál. A többi csatoló ekkor még nem kerül beállításra. Ezek a telepítés után is beállíthatók; lásd az interfaces(5) kézikönyv oldalt.

6.3.1.5.2. Kézi hálózat beállítás

A kézi hálózat beállítás feltesz pár kérdést a hálózatról, ezek főleg az IP cím, Hálózati maszk, Átjáró, Név-kiszolgáló címek és egy Gépnév. Továbbá dróttalani hálózati csatoló esetén a Drótnélküli ESSID („drótnélküli hálózat név”) és egy WEP kulcs vagy WPA/WPA2 jelmondat kérdés is szerepel. Válaszolj a 3.3. szakasz szerint.

MEGJEGYZÉS

Néhány technikai részlet, amit hasznosnak találhatsz: a program feltételezi, hogy a hálózat IP címe a rendszer IP címe és a hálózati maszk közti bit-szintű ÉS művelet (AND). Az alapértelmezett broadcast cím a rendszer IP címe és a hálózati maszk bit-szintű negálja közti bit-szintű VAGY művelet (OR). Az átjárót is megpróbálja kitalálni. Ha e beállítási lehetőségek valamelyikére nem tudod a választ, használd a rendszer által feltételezett alapértékeket — ha kell, telepítés után is módosíthatók a `/etc/network/interfaces` szerkesztésével.

6.3.1.5.3. IPv4 és IPv6

A Debian GNU/Linux 7.0-tól („Wheezy”) kezdve a debian-installer támogatja az IPv6-ot is a „klasszikus” IPv4 mellett. Az IPv4 és IPv6 minden kombinációja támogatott (csak IPv4, csak IPv6, és kettős protokollesomag/dual-stack) beállítás.

Az IPv4 automatikus beállítása DHCP-n (Dinamikus Állomáskonfiguráló Protokoll - Dynamic Host Configuration Protocol) keresztül történik. Az IPv6 automatikus beállítása támogatja az átjárat nélküli automatikus beállítást NDP (Szomszéd Felderítő Protokoll, ezen belül Rekurzív DNS Kiszolgáló (RDNSS) hozzárendelés) használatával, állapottal rendelkező automatikus beállítást DHCPv6-tal, és vegyes állapot nélküli/állapottal rendelkező automatikus beállítást (cím beállítás NDP-vel, további beállítások DHCPv6-tal).
6.3.2. Felhasználók és jelszavaik felvétele

Az óra beállítása előtt a telepítő lehetőséget ad a „root”, és/vagy az első felhasználói fiók beállítására. További fiókok a telepítés befejezése után hozhatók létre.

6.3.2.1. A root jelszó beállítása

A root fiók szokásos másik neve super-user; e bejelentkezés átlépi a rendszer alapvető biztonsági védelmét. A root hozzáférést csak a rendszer adminisztrációjára szabad használni és még ekkor is csak a lehető legrövidebb ideig.

A létrehozott jelszavak legalább 6 karakterből álljanak és tartalmazzanak nagy- és kisbetűket és központozási karaktereket is. Kiemelten figyelj a root jelszóra, mivel ez egy rendkívül erős hozzáférés, itt még erősebb legyen a jelszó. Kerüld a szótári szavakat vagy kitalálható személyes adatok használatát.

Ha bárki bármikor azt állítja, hogy a root jelszavadra van szüksége, légy szélsőségesen bizalmatlan. Normális esetben soha ne add ki a root jelszót, kivéve, ha egy gépet másokkal felügyelnéd.

In case you do not specify a password for the „root” user here, this account will be disabled but the sudo package will be installed later to enable administrative tasks to be carried out on the new system. By default, the first user created on the system will be allowed to use the sudo command to become root.

6.3.2.2. Egy szokásos felhasználó létrehozása

A rendszer kér egy normál felhasználó létrehozására. E hozzáférés lesz valószínűleg az elsődleges személyes bejelentkezés. Tilos a root fiók használata a napi munkára vagy személyes bejelentkezés.

Miért tiltott ez? Nos, az egyik ok a root előjogok használatának kerülésére az, hogy nagyon könnyű javíthatatlan hibát okozni root felhasználóként. Egy másik fontos ok, hogy trójai programok futtatásába futhatsz — ez egy program, mely a super-user jogod adta erővel hátrad felrombolja a rendszer biztonságát. Minden jó könyv a unixos rendszer-adminisztrációról részletesen taglalja e témát — fontold meg ezt, hogy elolvasol egyet, ha ez új neked.

Először a felhasználó teljes nevét kell megadni. Ezután a felhasználó fiókjának nevét; általában egy saját névből vett ékezet nélküli szó vagy hasonló megfelel és ez lesz az alap. Végül meg kell adni az e felhasználói fiókhoz tartozó jelszót.

Ha a telepítés után bármikor létrehoznál egy fiókot, használd az adduser parancsot.

6.3.3. Óra és Időzóna beállítása

A telepítő először megpróbál csatlakozni egy idő kiszolgálóhoz az Interneten (NTP protokoll használatával), hogy pontosan beállítsa a rendszeridőt. Ha ez nem sikerül, akkor a telepítő feltételezi, hogy az az idő és dátum, amit a rendszerőráltó kapott a telepítő rendszer indításakor, pontos. A rendszeridő kézi beállítása nem lehetséges a telepítés alatt.

A telepítő folyamat elején választott helytől függően az ennek megfelelő időzónának listája jelenik meg. Ha az adott helyhez csak egy időzóna tartozik, és alap telepítést végzel, a rendszer nem kérdez semmit és ezt az időzónát feltetelezi.

Szákjádmódban, vagy ha közepes elsőségességgel telepítés, lehetőséged lesz továbbá „Coordinated Universal Time” (UTC) beállítására időzónának.

Ha valamilyen okból olyan időzónát szeretnél beállítani a telepített rendszeren, ami nem megfelel az előző szerint, két lehetőség van:

1. A legegyszerűbb, hogy a telepítés végeztesse és újraindítás után beállítja az eltérő időzónát. A parancs a következő:

```bash
# dpkg-reconfigure tzdata
```

2. Alternatívaként a telepítés lelején is beállítható az időzóna, mégpedig a `time/zone=érték` megadásával a telepítőrendszer indításakor. Az érték természetesen legyen valós időzóna, például Europe/London vagy UTC.

Automatikus telepítésnél az időzóna bármilyen kívánt értékre állítható preseeding (elő-konfigurációs fájl) segítségével.

6.3.4. Particionálás és csatolási pont választás

Most, a hardver érzékelés utolsó futása után, a debian-installer teljes erejében rendelkezésre áll a felhasználó igényeire szabva és kész az igazi munkára. Ahogy a szaksz címé jelzi, a most következő pár összetevő fő feladat a lemezek partitionálása, a megfelelő fájlrendszer létrehozása, csatolási pontok hozzárendelése és opcionálisan további hasonló lehetőségek, mint például RAID, LVM, vagy titkosított eszközök beállítása.
Ha bizonytalan vagy a particionálással kapcsolatban, vagy több részletre vagy kíváncsi, lásd a C. függelék részt.

Lehetőség van az automata particionálásra akár az egész meghajtó, akár a meghajtó néhány szabad területen. Ezt „irányított” particionálásnak is hívjuk. Ha a particionálást magad végeznéd, válaszd a Kézi pontot a menüből.

6.3.4.1. Támogatott particionálási lehetőségek

A debian-installer által használt particionáló meglehetősen sokszínű. Számos különféle particionáló séma létrehozását engedi, különböző partiícís táblák, fájlrendszerek és haladó blokk eszközökkel.

Hogy pontosan mely lehetőségek érhetők el, az főleg az architektúrán, de sok máson is múlik. Például korlátozott belső memóriajú rendszereken néhány funkció esetleg nem érhető el. Az alapértelmezett beállítások is eltérhetnek. Így például az alapból használt partiícís tábla típus más lehet nagy kapacitású merevlemezeknél, mint kisebbeknél. Néhány lehetőség csak közepes vagy alacsony memóriás rendszer esetén elérhető.

Így például az alapból használt partiícís tábla típus más lehet nagy kapacitású merevlemezeknél, mint kisebbeknél. Néhány lehetőség csak közepes vagy alacsony memóriás rendszer esetén elérhető.

A telepítő különböző haladó particionáló módokat és tárolóeszközöket is támogat, amiket gyakran együtt is lehet használni.

• Logikai Kötet Kezelő (LVM)

• Szoftveres RAID
 Támogatott RAID szintek: 0, 1, 4, 5, 6 és 10.

• Titkosítás

• Soros ATA RAID (dmraid használatával)
 Hívják még „hamis RAID”-nek, vagy „BIOS RAID”-nekre is. Soros ATA RAID támogatás jelenleg csak akkor érhető el, ha a telepítő indításakor engedélyezve lett. További információ a Wiki oldalunkon található.

• Többutas (Multipath) (kísérleti)
 Lásd a Wiki oldalunkat információért. Többutas (multipath) támogatás jelenleg csak akkor érhető el, ha a telepítő indításakor engedélyezve lett.

A következő fájlrendszer támogatottak.

• ext2, ext3, ext4
 Az alapértelmezett kiválasztott fájlrendszer a legtöbb esetben az ext4; kivéve /boot partíció esetében, ott vezetett particionálásnál ext2 lesz alapból kiválasztva.

• jfs (nem minden architektúrán érhető el)

• xfs (nem minden architektúrán érhető el)

• reiserfs (választható; nem minden architektúrán érhető el)
 Alapból a Reiser fájlrendszer már nem támogatott. Ha a telepítő közepes, vagy alacsony decon elosbség-gel fut, a partman-reiserfs összetevő kiválasztásával engedélyezhető. A fájlrendszerneke csak a harmas verziója támogatott.

• qnx4
 A már létező partíciók felismerésre kerülnek, és csatolópontokat lehet hozzájuk rendelni. Nem lehetséges új qnx4 partíciókat létrehozni.

• FAT16, FAT32

• NTFS (csak olvasható)
 A létező NTFS partíciók átmenetezhetők, és csatolópontok rendelhetők hozzájuk. Nem lehetséges új NTFS partíciókat létrehozni.
6.3.4.2. Irányított Particionálás

Irányított particionálás esetén 3 lehetőség van: partíciók közvetlen létrehozása a lemezen (klasszikus mód), létrehozás Logikai kötet kezelő (LVM) használatával vagy titkosított LVM használata⁴.

MEGJEGYZÉS

Nem minden architektúrán lehetséges (titkosított) LVM használata.

LVM vagy titkosított LVM használatakor a telepítő a legtöbb partíciót egy nagy partícióban hozza létre; ennek előnye, hogy így könnyen átméréthetők. Titkosított LVM esetén a nagy partíció csak egy különleges kulcs kifejezéssel lesz olvasható, mely az összes (személyes) adat különleges biztonságát nyújtja.

Titkosított LVM használatakor a telepítő véletlen adatok írásával automatikusan törli a lemezt. Ez tovább növeli a biztonságot (így lehetetlen lesz megmondani, a lemez mely része használt és a korábbi telepítések nyomait is törlő), de a lemez méretétől függően eltart egy ideig.

MEGJEGYZÉS

Irányított particionálás esetén LVM vagy titkosított LVM használataival, mindenképp módosul a partíciós tábla, amit ki kell írni a lemeze a LVM beállításakor. Ez tényleg törli az adott merevlemez összes adatát, és visszavonhatatlan. Természetesen a telepítő e módosítások megerősítését kéri, mielőtt lemezre írná őket.

Irányított particionálásnál (akár klasszikus akár (titkosított) LVM) egy egész lemezre, először ki kell választani a használni kívánt lemezre. Ellenőrizd, hogy a gép minden lemezét látod, több lemez esetén válaszd ki a kívántat. Felsorolásuk sorrendje eltérhet attól, amit megszoktál. A mutatott méretek is segíthetnek azonosítani őket.

A kijelölt lemez minden adata a legutolsó kérdés után elvész majd, de a telepítő minden esetben kéri a változások megerősítését lemeze az irányított particionálás sikertelen lesz. Legalább 1GB hely nélkül (a választott sémától függően) az irányított particionálás sikertelen lesz.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

Irányított particionálások (titkosított) LVM használataival, a telepítő önálló /boot partíciót is készít. A többi, a csere partícióval együtt, az LVM partíció belül jön létre.

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>

If you have booted in EFI mode then within the guided partitioning setup there will be an additional partition, formatted as a FAT32 bootable filesystem, for the EFI boot loader. This partition is known as an EFI System Partition (ESP). There is also an additional menu item in the formatting menu to manually set up a partition as an ESP.

Egy séma választása után, a következő képernyő megmutatja az új partíciós táblát, benne a leendő formázási és csatolási információkat.

A partíciók listája így lesz:

MEGJEGYZÉS

A telepítő 256 bites AES kulccsal titkosítja az LVM kötet-csoportot és beállítja a kernel „dm-crypt” támogatást.

<table>
<thead>
<tr>
<th>Particionáló séma</th>
<th>Minimum hely</th>
<th>Létrehozott partíciók</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minden fájl egy partíció</td>
<td>600 MB</td>
<td>., csere</td>
</tr>
<tr>
<td>Önálló /home partíció</td>
<td>500 MB</td>
<td>., /home, csere</td>
</tr>
<tr>
<td>Önálló /home, /var és /tmp partíció</td>
<td>1 GB</td>
<td>., /home, /var, /tmp, csere</td>
</tr>
</tbody>
</table>
A példa 2 merevlemezt mutat eltérő partíciókra osztva; az 1. lemezen van egy kis szabad hely. Egy partíció sor részei: partíció sorszám, típus, méret, opcionális kapcsolók, fájlrendszer és csatolási pont (ha van). Megjegyzés: pontosan e beállítás nem jöhet létre irányított particionálással, de egy kéri particionálással létrehozható lehetséges változatot mutat.

Itt zárul az irányított particionálás. Ha elégedett vagy az ajánlott partíciós táblával, válassz a Particionálás lezárása és a változások lemezre írása pontot a menüből az új partíciós tábla rögzítéséhez (leírva e szakasz végén). Módosítás-hoz válassz a Partíciók módosításainak visszavonása pontot és futtasd újra a particionálót vagy módosítsd a javasolt változtatásokat az alábbiért ír kéri particionálás szerint.

6.3.4.3. Kéri Particionálás

A fentihez hasonló képernyón jelenik meg kéri particionáláskor, de ekkor a létező partíciós táblát mutatja csatolási pontok nélkül. A partíciós tábla kézi beállítását és a partíciók Debian rendszer általi használatát tárgyaljuk e szakasz további részeiben.

Partíciókat vagy szabad helyet nem tartalmazó lemeznél új partíciós tábla létrehozása is kiválasztható (ez szükséges lehet, mert adott esetben csak így hozhatók létre új partíciók). Ekkor egy „SZABAD HELY” sor jelenik meg a választott lemezen.

Szabad hely választásakor új partíciós létrehozásra nyilik mód. Meg kell adni méretüket, típusukat (elsődleges vagy logikai), és az elhelyezkedéstüket (az üres hely elején, vagy végén). Ezután egy áttekintést kapsz az új partíciókról. A fő beállítás a Használat módja:, ami megadja, hogy a partíció tartalmaz-e majd fájlrendszert, vagy cserehelyként lesz használva, szoftver RAID, LVM, titkosított fájlrendszer lesz-e rajta, vagy mellőzve lesz. Más lehetőségek, például csatolási pont, csatolási opciók és indító zászló; ezek a partíció használatának módjától függően jelennek meg. Az elő-választott alapok tetszőlegesen módosíthatók. Például a Használat módban: kiválasztásával eltérő fájlrendszer is választható e partícióhoz ideértve a csere, szoftver RAID, LVM használatára, vagy mellőzést. Ha elfogadod a beállításokat, válassz a Partíció beállítása kész pontot és visszatér a partman fő képernyőjéhez.

Egy partíció módosításához egyszerűen válassz az ezt az új partíció beállító menübe visz. Ez azonos az új partíciós létrehozásakor kapott menüvel, így azonos lehetőségek állíthatók be. Egy csodálatos lehetőség, melyre talán elsőre sokan nem gondolnak, hogy a partíciók át is méretezhetők a méretüket író elem kiválasztása. Ez egyén esetekben lehetővé teszi a partíciók módosítását a teljes memória használattal.

6.3.4.4. Több-lemezes eszköz beállítása (szoftver RAID)

Több merevlemez esetén az partman-md segítségével a meghajtók nagyobb teljesítményre és/vagy az adatok nagyobb biztonságára is beállíthatók. Ennek neve Több-lemezes eszköz vagy legnagyobb teljesítménnyel és/vagy az adatok nagyobb biztonságára is beállíthatók. Ennek neve Több-lemezes eszköz (vagy legnémrészletesebb változata után szoftver RAID).

Az MD alapvetően eltérő lemezen lévő partíciók egy logikai eszközre való összefoglalva. Az eszköz egy sima partícióként használható (például a partman programban formázható, csatolható, és így tovább). Az előny a létrehozott MD eszköz típusától függ. A jelenlegi változatokban: ¹

¹Öszintén szólva MD eszköz egyetlen fizikai meghajtó partíciójából és készíthető, de ez jól jól sokok előnye.
RAID0 Főleg teljesítményt növel. Az adatokat sáv (stripes) részekre osztja és egyenlően eloszta a tömbben lévő egyes lemezeken. Ez megnöveli az írás/olvásás műveletek sebességét, de ha egy lemez tönkremegy, *minden* elvéz (az adatok egy része még mindig a jó lemezen van, más része a tönkrement lemezen *volt*).

Tipikus felhasználás a mozgókép szerkesztés.

RAID1 Használható az elsődlegesen megbizhatósági célú telepítéseknél. Több (általában 2) egyenlő méretű particióból áll, ahol minden partició ugyanazt tartalmazza. Ez lényegében 3 dolgot takar. 1: Ha egy lemez tönkremegy, az adatok a többi lemezen megvannak. 2: Az elérhető kapacitás csak egy része használható (a legkisebb partició mérete a RAID tömbben). 3: A fájl olvasások a lemezek között elosztódtak, ami megnöveli a teljesítményt olyan kiszolgálón, például tipikus fájl-kiszolgálón, mely lényegesen több szorú olvassa, mint írja a lemezeket.

Lehet tartalék lemez is a tömbben, mely átveszi egy másik helyét hiba esetén.

RAID5 A sebesség, megbízhatóság és redundáns adatok közti jó egyezség. Az adatokat sávokra (stripes) vágja és egyenlően eloszta 1 kivételével minden eszközön (RAID0 tömbhöz hasonló). A RAID0 tömbbel ellentétben a RAID5 *paritás* adatot is számol, melyet a maradék lemezekre felosztják. A RAID5 nem mindig ugyanaz (mint a RAID4 esetén), hanem periodikusan változik, így a paritás adat egyenlően kerül minden lemeztől. Egy lemez kiesésekor a hiányzó adatok a maradék adatból kimenek, és a RAID5 legalább 3 aktív particiót igényel. Itt is lehet tartalék lemez.

Amint látható, a RAID5 a RAID1 tömbhöz hasonlóan megbízható és kevésbé redundáns. Viszont kicsit lassabban írásokor, mint a RAID0 a paritás számolása miatt.

RAID6 Hasonló a RAID5-höz, de ez 2 paritás eszközt használ.

A RAID6 tömb akár két lemez meghibásodást is túlél.

RAID10 A RAID10 egyesíti a sávozást (mint a RAID0) és a tükrözést (mint a RAID1). A bejövő adatokból *n* darab másolatot készít, amiket elosztja a particiók között úgy, hogy egyenlően határozza meg az adat egyenlően összes lemezen. Az *n* alapértéke 2, de szakértői módban más értékre is állítható. A RAID5 alapértéke 3, de szakértői módban minden lemez kiesésekor a RAID5 a hiányzó adatokból és a paritásból kerül a kiszámolásra. A RAID5 legalább 3 aktív particiót igényel. Itt is lehet tartalék lemez.

A RAID10-zel megbízhatóság és redundancia érhető el a paritás számolás hátránya nélkül.

Összefoglalva:

<table>
<thead>
<tr>
<th>Típus</th>
<th>Legkisebb eszköz-szám</th>
<th>Tartalék eszköz</th>
<th>Túlél lemez hibát?</th>
<th>Elérhető hely</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>nincs</td>
<td>nincs</td>
<td>A legkisebb partició mérete szorozva a RAID tömbben lévő eszközök számával</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>választható</td>
<td>igen</td>
<td>A RAID tömbben lévő legkisebb partició mérete</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>választható</td>
<td>igen</td>
<td>A legkisebb partició mérete szorozva ezzel: (a RAID tömbben lévő eszközök száma minusz egy)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>választható</td>
<td>igen</td>
<td>A legkisebb partició mérete szorozva ezzel: (a RAID tömbben lévő eszközök száma minusz kettő)</td>
</tr>
</tbody>
</table>
FEJEZET 6. A DEBIAN TELEPÍTŐ HASZNÁLATA

6.3. AZ EGYES ÖSSZETEVŐK HASZNÁLATA

<table>
<thead>
<tr>
<th>Típus</th>
<th>Legkisebb eszköz-szám</th>
<th>Tartalék eszköz</th>
<th>Túlél lemez hibát?</th>
<th>Elérhető hely</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID10</td>
<td>2</td>
<td>választható</td>
<td>igen</td>
<td>Az összes partició száma osztva a töredék másolatok (chunk copy) számával (alapból kettő)</td>
</tr>
</tbody>
</table>

Teljes leírás a szoftver RAID tömbről itt: Szoftver RAID HOGYAN.

Egy MD eszköz létrehozásához a kívánt particiókat ki kell jelölni. (A partman Partíció beállítások) menüben válassz a Használat módja: → RAID fizikai kötet pontot.)

MEGJEGYZÉS

Make sure that the system can be booted with the partitioning scheme you are planning. In general it will be necessary to create a separate file system for /boot when using RAID for the root (/) file system. Most boot loaders (including grub) do support mirrored (not striped!) RAID1, so using for example RAIDs for / and RAID1 for /boot can be an option.

Most jön a Szoftver RAID beállítása a fő partman menüből. (E menü csak legalább egy partició Fizikai RAID kötet kijelölése után jelenik meg.) Az partman-md első képernyőjén egyszerűen válassz az MD eszköz létrehozása pontot. Megjelenik a támogatott MD eszközök listája, melyből egy választható (például RAID1). A következők a választott MD típustól függenek.

- **A RAID0 egyszerű — megjelenik a RAID számára elérhető particiók listája, és az egyetlen feladat a leendő MD-t alkotó particiók kijelölése.**

- **A RAID1 kicsit trükkösebb. Először meg kell adni a leendő MD-t adó aktív és tartalék eszközök számát. Ezután ki kell jelölni a RAID számára elérhető particiók listájából az aktív és tartalék particiókat. A kijelölt particiók számának egyeznie kell az előbb megadott számmal. Ne aggódj! A debian-installer figyelmeztet hiba esetén, és nem enged továbbblépni, amíg ki nem javítod.**

- **A RAID5 beállítása hasonló, mint a RAID1-é, de legalább három aktív particiót kell megadni.**

- **A RAID6 beállítása, mint a RAID1-é, de legalább négy aktív particiót kell megadni.**

- **A RAID10 beállítása is hasonló, mint a RAID1-é, kivéve szakértő módban. Szakértő módban a debian-installer bekéri a felépítést. A felépítésnek két része van. Az első rész a felépítés típusa. Ez vagy n (közeli másolatok (near copies)), f (távoli másolatok (far copies)), vagy o (offset copies). A második rész a másolatok száma. Legalább ennyi aktív eszköznél kell lennie, hogy minden másolat külön lemezekre kerülhessen.**

Eltérő MD-k is lehetnek egyszerre. Például 3 darab 200 GB méretű merevlemez esetén, melyek mindegyike 2 darab 100 GB méretű particiót tartalmaz, mindhárom lemez első particiója RAID0 tömbbe köthető (gyors, 300 GB méretű mozgókép szerkesztő partició) a többi (2 aktív és 1 tartalék) RAID1 tömbre használható (igen megbízható 100 GB méretű /home partició).

Az MD eszközök beállítása után a Befejezés: partman-md visszatér a partman programra fájlrendszerek létrehozására az új MD eszközökön és a szokásos attribútumok, például csatolási pontok társítására.

6.3.4.5. Logikai Kötet Kezelő (LVM) beállítása

Ha rendszer-adminisztrátorként vagy „haladó” felhasználóként dolgozol gépekkel, biztos láttál már olyan helyzetet, ahol egy partició a lemezen (általában a legfontosabb) kifogyott, míg egy másik alig volt használatban és a helyzetet átmozgatással, jellépes láncok (symlinking) létrehozásával és így tovább kellett kezelni.

Az ilyen helyzet elkerülésére használható a Logikai Kötet Kezelő (LVM). Ezzel a particiók (fizikai kötetek az LVM nyelven) virtuális lemezekkel (kötet-csoport) köthetők, melyek virtuális particiókra oszthatók (logikai kötetek). A logikai kötettek (és természetesen kötet csoportok) akár több fizikai lemez között is átnyúlnak.

Így, ha például kiderül, hogy több hely kell egy régi 160 GB méretű /home particióhoz, egyszerűen hozzáadhatsz egy új 300 GB méretű lemezt a géphez, beteheted egy létező kötet-csoportba majd átmeretezheted a /home particiót.
tartalmazó logikai kötetet és íme — a felhasználóknak ismét van helye a megújult, immár 460 GB méretű partíción. E példa természetesen egy kissé túlegyszerűsített. Ha még nem olvastad, lásd az LVM HOGYAN leírást.

A debian-installer LVM beállítása egyszerű és a partman teljes egészében támogatja. Először ki kell jelölni az LVM számára fizikai kötetként használt egy vagy több partíción. Ez a Partíció beállítások menüben tehető, itt válaszd a Használat módja: → LVM fizikai kötet pontot.

Be aware: the new LVM setup will destroy all data on all partitions marked with an LVM type code. So, if you already have an LVM on some of your disks, and want to install Debian additionally to that machine, the old (already existing) LVM will be wiped out! The same counts for partitions, which are (for any reason) misleadingly marked with an LVM type code, but contain something different (like an encrypted volume). You need to remove such disks from the system, before performing a new LVM setup!

A fő partman képernyőre visszatérve megjelenik egy új, Logikai kötet-kezelő beállítása lehetőség. Ezt kiválasztva, először a partíciós tábla eddigi módosításait kell megerősíteni (ha voltak), majd megjelenik az LVM beállító menü. A menü felett az LVM beállítás összefoglalója látható. A menü helyzet-érzékeny és csak a lehetséges műveleteket mutatja. A lehetséges műveletek:

- Beállítás részleteinek kiírása: mutatja az LVM eszköz struktúráját, a logikai kötetek neveit, méreteit és egyebeket
- Kötet csoport létrehozása
- Logikai kötet létrehozása
- Kötet csoport törlése
- Logikai kötet törlése
- Kötet csoport bővítése
- Kötet csoport csökkentése
- Vége: visszatér a fő partman képernyőhöz

Használd e menüt először egy kötet csoport, majd azon belül a logikai kötetek létrehozására.

A fő partman képernyőhöz való visszatérés után, minden létrehozott logikai kötet megjelenik hasonlóan a rendes partíciókhoz (és úgy is kezelhetők).

6.3.4.6. Titkosított kötetek beállítása

The two most important partitions to encrypt are: the home partition, where your private data resides, and the swap partition, where sensitive data might be stored temporarily during operation. Of course, nothing prevents you from encrypting any other partitions that might be of interest. For example /var where database servers, mail servers or print servers store their data, or /tmp which is used by various programs to store potentially interesting temporary files. Some people may even want to encrypt their whole system. Generally the only exception here is the /boot partition which must remain unencrypted, because historically there was no way to load the kernel from an encrypted partition. (GRUB is now able to do that, but debian-installer currently lacks native support for encrypted /boot. The setup is therefore covered in a separate document.)
MEGJEGYZÉS
A titkosított partíciók teljesítménye kisebb, mert az adatok titkosítását minden olvasáskor vagy íráskor vége kell hajtani vagy fel kell oldani. A csökkenés a CPU sebességén, a választott titkosítási módon és a kulcs hosszán múlik.

The encryption method supported by debian-installer is *dm-crypt* (included in newer Linux kernels, able to host LVM physical volumes).

Let’s have a look at the options available when you select encryption via *Device-mapper (dm-crypt)*. As always: when in doubt, use the defaults, because they have been carefully chosen with security in mind.

Titkosítás:

aes E lehetőséggel választható a titkosító algoritmus (*cipher*), mely a partíción lévő adatok titkosítására lesz használva. A debian-installer jelenleg az alábbi blokk titkosításokat támogatja: *aes, blowfish, serpent, és twofish*. Túlmutat e dokumentum célján ezen algoritmusok minőségének megvitata, de segítheti a döntést annak ismerete, hogy 2000-ben az American National Institute of Standards and Technology az AES-t választotta, mint szabvány titkosító algoritmus érzékeny adatok védelmére a XXI. században.

Kulcs méret: 256 Itt lehet megadni a titkosító kulcs hosszát. A nagyobb kulcs növeli a titkosítás erejét. Másrészt a kulcs hosszának növelése negatívan hat a teljesítményre. Az elérhető kulcs méretek a titkosítástól függén.

IV algoritmus: *xts-plain64* Az *Inicializáló Vektor* vagy IV algoritmus biztosítja, hogy egy titkosítás alkalmazása ugyanarra a sima szöveg adatra egyazon kulccsal eredménye mindig egyedi *titkosított szöveg* legyen. Célja az ismétlődő adatok általi törés megakadályozása.

Az adott lehetőség közül az alap *xts-plain64* jelenleg kevésbé érzékeny az ismert támadásokra. Csak akkor használj mást, ha korábban telepített rendszerrel való kompatibilitás kell, ami nem ismeri az újabb algoritmusokat.

Titkosító kulcs: Jelmondat Itt állítható be a titkosító kulcs e partícióhoz.

Jelmondat A titkosító kulcs kiszmáitäásra kerül6 jelmondat alapján, mely e folyamat folytatásában adható meg.

Véletlen kulcs Egy új titkosító kulcs készül véletlent adatokból a titkosított partíció minden bekapcsolásakor.

Adatok törlése: igen Biztosítja, hogy e partíció adatai felülírassanak véletlent adatokkal a titkosítás beállítása előtt.

A kívánt paraméterek kiválasztása után a titkosított partíciókhoz, lépj vissza a fő particionáló menübe. Egy új, Titkosított kötetek beállítása elem keletkezik. Kiválasztva meg kell erősíteni az adatok törlését az arra jelölt partíciókron és talán más műveleteket, mint egy új partíciós tábla írását. A nagy paritciókon ez eltart egy ideig.

Most meg kell adni egy jelmondatot az ehhez állított partíciókhoz. A jó jelmondat több, mint 8 karakter, betűk, arab számok és más karakterek keveréke és nem tartalmaz általános szótári szót vagy könnyen hozzáadható felhasználóhöz köthető adatot (mint születésnapok, hobbyek, kedvencek nevei, rokonok nevei és így tovább).

6Jelmondat használata kulcsként jelenleg azt jelenti, hogy a partíció LUKS használataival lesz beállítva.

7Ahhoz azért jó pár felülírás kell, hogy a 3-betűs ügynökségeknek se legyen esélye kinyerni az adatokat a párszor felülírás után.

Ha nem jelmondat módot választottál a titkosító kulcs létrehozásához, az most készül majd. Mivel a kernel számára talán még nincs elég összegyűjtött entópia a telepítés e korai szakaszában, a folyamat lassú lehet. Ez felgyorsítható az entópia növelésével: például véletlen billentyűk leütésével vagy a 2. virtuális konzolon lévő héja váltással és hálózati és lemez forgalom generálásával (fájlok letöltése, nagy fájlok megetítése a /dev/null eszközzel és így tovább). Ez minden titkosítandó partíciód megismételhető.

After returning to the main partitioning menu, you will see all encrypted volumes as additional partitions which can be configured in the same way as ordinary partitions. The following example shows a volume encrypted via dm-crypt.

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
   #1 115.1 GB F ext3
```

Now is the time to assign mount points to the volumes and optionally change the file system types if the defaults do not suit you.

Pay attention to the identifiers in parentheses (sda2_crypt in this case) and the mount points you assigned to each encrypted volume. You will need this information later when booting the new system. The differences between the ordinary boot process and the boot process with encryption involved will be covered later in 7.2 szakasz.

Ha a partíciós séma megfelel, folyatható a telepítés.

6.3.5. Az alaprendszer telepítése

Bár e lépés a legkevésbé problémás, ez a telepítés legjelentősebb része, mert ez végzi a teljes alaprendszer letöltését, ellenőrzését és kibontását. Lassú gép vagy hálózati kapcsolat esetén eltart egy kis ideig.

Az alaprendszer telepítése során, a csomag kicsomagoló és beállító üzenetek a tty4 terminálra kerülnek. Ez a Bal Alt-F4; leütésével érhető el, a fő telepítő folyamatohoz visszatéréshez a Bal Alt-F1 használható.

Az alaprendszer telepítésekor keletkező kibontó/beállító üzenetek a /var/log/syslog fájlba kerülnek. Itt mindig mód van ellenőrzésükre, ha a telepítés soros konzolon át történik.

A telepítés részeként a Linux kernel is települ. Alap elsőbbségben a telepítő a géphez álló jobbhot választja. A csomagokat a csomagkezelő rendszer telepíti, az ezen csomagok által javasolt többi csomag is alapból telepítésre kerül. A javasolt csomagok nem szükségesek szigorúan véve a kiválasztott szoftver működéséhez, de javítanak az adott szoftveren, és a csomagkarbantartók szerint együtt telepítendők az eredeti szoftverrel.

6.3.6. További szoftverek telepítése

Az alaprendszer telepítése után, egy tökéletesen használható, de korlátozott rendszered van. A legtöbb felhasználó további szoftvereket akar adni a rendszerhez, hogy beállítsa igényeit és a telepítő ezt is lehetővé teszi. Ez a szakasz tovább tarthat, mint az alaprendszer telepítése lassú gép vagy hálózat esetén.
6.3.6.1. Az apt beállítása

One of the tools used to install packages on a Debian GNU/Linux system is the program apt, from the apt package. Other front-ends for package management, like aptitude and synaptic, are also in use. These front-ends are recommended for new users, since they integrate some additional features (package searching and status checks) in a nice user interface.

Az apt parancsot be kell állítani, hogy tudja a csomagok beszerzési helyét. A beállítások a /etc/apt/sources.list fájlba kerülnek és természetesen a telepítés után is szerkeszthetők.

Ha alap elsőbséggel telepítesz, a telepítő magától elintézi a beállítások nagy részét, a használt telepítő módjától és a telepítés során hozott korábbi döntéseidőtől függően. A legtöbb esetben a telepítő automatikusan hozzáad egy biztonsági tükröt, és amennyiben stabil terjesztést használ, egy tükröt a „stabil frissítések (stable-upgrades)” szerviznek.

Amennyiben alacsonyabb elsőbséggel telepítesz (pl. szakértő módban), több döntést hozhatsz meg magad. Eldöntheted, hogy akarsz-e biztonsági és/vagy stabil frissítés (stable-upgrade) szervizeket használni, és kiválaszthatsz csomagokat az archív „contrib” és „nem-szabad” szekcióiból is.

6.3.6.1.1. Installing from more than one CD or DVD image

If you are installing from a CD or DVD image that is part of a larger set, the installer will ask if you want to scan additional installation media. If you have such additional media available, you probably want to do this so the installer can use the packages included on them.

If you do not have any additional media, that is no problem: using them is not required. If you also do not use a network mirror (as explained in the next section), it can mean that not all packages belonging to the tasks you select in the next step of the installation can be installed.

If you do scan multiple installation media, the installer will prompt you to exchange them when it needs packages from one that isn’t currently in the drive. Note that only discs that belong to the same set should be scanned. The order in which they are scanned does not really matter, but scanning them in ascending order will reduce the chance of mistakes.

6.3.6.1.2. Hálózati tükrö használata

Az egyik kérdés, ami a legtöbb telepítés során előjön az, hogy akarsz-e hálózati tükröt használni csomagok forrásként. A legtöbb esetben az alapértelmezett válasz megfelelő, de van néhány kivétel.

If you are not installing from a full CD/DVD image, you really should use a network mirror as otherwise you will end up with only a very minimal system. However, if you have a limited Internet connection it is best not to select the desktop task in the next step of the installation.

If you are installing from a single full CD image, using a network mirror is not required, but is still strongly recommended because a single CD image contains only a fairly limited number of packages. If you have a limited Internet connection it may still be best to not select a network mirror here, but to finish the installation using only what’s available on the CD image and selectively install additional packages after the installation (i.e. after you have rebooted into the new system).

If you are installing from DVD, any packages needed during the installation should be present on the first DVD image. Use of a network mirror is optional.

Note that the program which actually installs the packages is called dpkg. However, this program is more of a low-level tool. apt is a higher-level tool, which will invoke dpkg as appropriate. It knows how to retrieve packages from your installation media, the network, or wherever. It is also able to automatically install other packages which are required to make the package you’re trying to install work correctly.
One advantage of adding a network mirror is that updates, that have occurred since the CD/DVD images were created and have been included in a point release, will become available for installation, thus extending the life of your CD/DVD set without compromising the security or stability of the installed system.

In summary: selecting a network mirror is generally a good idea, except if you do not have a good Internet connection. If the current version of a package is available from installation media, the installer will always use that. The amount of data that will be downloaded if you do select a mirror thus depends on

1. a telepítés következő lépéseiében választott feladatok,
2. melyik csomagok szükségesek azokhoz a feladatokhoz,
3. which of those packages are present on the installation media you have scanned, and
4. whether any updated versions of packages included on the installation media are available from a mirror (either a regular package mirror, or a mirror for security or stable-updates).

Jó tudni, hogy az utolsó pont azt jelenti, hogy még akkor is, ha nem választottál hálózati tükröt, néhány csomag mégis letöltésre kerülhet az Internetről, ha létezik biztonsági, vagy stabil frissítés, és ezek a szervizek be lettek állítva.

6.3.6.1.3. Hálózati tükrő választása

Unless you chose not to use a network mirror, you will be presented with a list of network mirrors based upon your country selection earlier in the installation process. Choosing the offered default is usually fine.

The offered default is deb.debian.org, which is not a mirror itself but will redirect to a mirror that should be up-to-date and fast. These mirrors support TLS (https protocol) and IPv6. This service is maintained by the Debian System Administration (DSA) team.

A mirror can also be specified by hand by choosing “enter information manually”. You can then specify a mirror host name and an optional port number. This actually has to be a URL base, i.e. when specifying an IPv6 address, one has to add square brackets around it, for instance “[2001:db8::1]”.

Ha a géped csak IPv6-s hálózaton van (ami valószínűleg nem igaz a felhasználók többségére), akkor az országodhoz alapból beállított tükrő nem mindig fog működni. A lista minden tagja elérhető IPv4-gyel, de csak némelyik használható IPv6-tal. Mivel az egyes tükrök elérhetősége idővel változhat, ezt az információt a telepítő nem tartalmazza. Ha az országodhoz tartozó alap tükröt nem lehet IPv6-on elérni, próbálkozhatsz a többi felajánlott tükrőrel, vagy választhatod az „adatok kézi megadása” lehetőségét. Ott megadhatod az „ftp.ipv6.debian.org” tükrőt, ami egy IPv6-os tükrő másik neve, bár ez valószínűleg nem a leggyorsabb lesz.

6.3.6.2. Szoftverek kiválasztása és telepítése

A telepítő folyamat során lehetőség nyílik további szoftverek kiválasztására telepítéséhez. A több mint 87573 elérhető csomag közül egyéni szoftver csomagok kiválasztása közvetlenül a telepítő folyamat egy szakasza szintén megfelel az előre-megadott gyűjtemények kiválasztására és telepítésére összpontosít, hogy gyorsan beállítsa a gépet különböző feladatok elvégzésére.

E feladatok különböző munkákat vagy dolgokat képviselnek, melyekre a gépet használni akarod, például „Asztali munka-környezet”, „Web kiszolgáló” vagy „Nyomtató kiszolgáló”. A D.2. szakasz leírja az elérhető feladatok helyigényét.

Egyes feladatok gyakran előre-kijelöltek a telepítés alatti gép tulajdonságai alapján. Ha nem tetszenek, vagy nem e módon akarod ezeket telepíteni, szüntesd meg itt a feladatok kijelölését! Megvan a lehetőség, hogy egyáltalán ne telepíts semmit ezen a módon.

TIPP

A telepítő szabvány felhasználói felületében a szóköz használható egy feladat kijelölésének váltásához.

* A telepítő a tasksel programot hívja meg. Ez a telepítés utáni később is futtatható csomagok telepítésére (vagy törlésére), vagy használható sokkal finomabb eszköz, például aptitude. A telepítés utáni egy adott, egyéni csomaghoz egyszerűen futtassz az aptitude install csomag parancsot, ahol a csomag a kívánt csomag neve.
6.3. AZ EGYES ÖSSZETEVŐK HASZNÁLATA

The „Desktop environment” task will install a graphical desktop environment.

By default, debian-installer installs the Gnome desktop environment. It is possible to interactively select a different desktop environment during the installation. It is also possible to install multiple desktops, but some combinations of desktops may not be co-installable.

Note that this will only work if the packages needed for the desired desktop environment are actually available. If you are installing using a single full CD image, they will possibly need to be downloaded from a network mirror as they might not be available on the CD image due to its limited amount of space. Installing any of the available desktop environments this way should work fine if you are using a DVD image or any other installation method.

The various server tasks will install software roughly as follows. Web server: apache2; Print server: cups; SSH server: openssh.

A „Standard rendszer” feladat minden olyan csomagot telepít, aminek az elsőbbsége „standard”. Ide tartozik rengéteg olyan képesség, ami általában elérhető Linux vagy Unix rendszereken. Ezt a feladatot hagyd kíválasztva, kivéve, ha tudod mit csinálsz és igazán minimális rendszert szeretnél.

Ha a nyelvválasztás során a „C”-től eltérő helyi beállítást választottál, a tasksel ellenőrzi, hogy van-e lokalizációs feladat rendelve ehhez a beállításhoz, és automatikusan megpróbálja ezeket a csomagokat telepíteni. Ide tartoznak például olyan csomagok, amik szó listákat, vagy különleges betútipusokat tartalmaznak a nyelvedhez. Ha választottál desktop környezetet, az ahhoz tartozó lokalizációs csomagokat is telepíti (ha van ilyen).

A feladatok kiválasztása után, válaszd ezt: Continue. Ekkor az apt telepíti a csomagokat, melyek a választott feladatok részei. Ha egy programnak több információra van szüksége a felhasználótól, a folyamat alatt meg fogja kérdezni.

Lényeges, hogy a Munkaasztal feladat nagy. Főleg, ha a telepítés CD-ROM lemezről megy hálózati tükörrel, a telepítő sok csomagot a hálózatról szedhet. Lassú kapcsolatnál ez hosszan eltarthat. Nincs módszer a csomagok megkezdett telepítésének leállítására.

Ha a csomagok a CD-ROM lemezen is vannak, még mindig lehet, hogy a telepítő hálózatról tölt, ha az ott lévő verzió újabb, mint ami a CD-ROM lemezen van. Stabil terjesztés telepítésekor ez csak egy . kiadás (az eredeti stabil kiadás frissítése) után fordulhat elő; teszt terjesztésnél ez régebbi kép használatukor történik.

6.3.7. A rendszer indíthatóvá tétele

Lemez nélküli munkaállomás telepítésekor a helyi lemezről indítás természetesen értelmetlen, és e lépés kimarad.

6.3.7.1. Más operációs rendszerek érzékelése

Egy boot betöltő telepítése előtt a telepítő megkísérli felismerni, milyen más rendszerek vannak már esetleg a gépen. Ha talál támogatottat, közli a boot betöltő telepítő lépés alatt és a gépet beállítja ezek indítására is a Debian mellett.

Több operációs rendszer egy gépről indítása néha még mindig lekete mágia lehet. A boot betöltő más rendszerek felismerésére és beállítására vonatkozó automatikus támogatása architektúrák sőt sokszor akár al-architektúrák között is eltér. Ha ez nem működik, több információért lásd a boot kezelőd dokumentációját.

6.3.7.2. Install the Grub Boot Loader on the drive

The amd64 boot loader is called „grub”. Grub is a flexible and robust boot loader and a good default choice for new users and old hands alike.

By default, grub will be installed on the UEFI partition/the Boot Record of the primary drive, where it will take over complete control of the boot process. If you prefer, you can install it elsewhere. See the grub manual for complete information.

Ha a grub valamiért nem felel meg, használd a Go Back gombot a fő menühöz, és válaszd a kívánt boot betöltőt.
6.3.7.3. Folytatás boot betöltő nélkül

E lehetőség használható a telepítés befejezésére boot betöltő nélkül, vagy mert az architektúra/al-architektúra nem ad ilyet, vagy mert kívánatos (például egy már telepített boot betöltőt használz).

Ha a boot-betöltő kézi beállítását tervezed, ellenőrizni kell a telepített kernel nevét a /target/boot könyvtárban. Itt egy initrd jelenlétét is ellenőrizni kell; ha van, valószínűleg utasítani kell a boot-betöltőt ennek használatára. További szükséges adata a / fájlrendszer számára választott lemez és partíció és, ha a /boot külön partíciót van, a /boot fájlrendszer adatai.

6.3.8. A telepítés befejezése

Ezek az utolsó apróságok az új rendszer indítása előtt. Főleg a debian-installer feladatai utáni rendrakásból áll.

6.3.8.1. A rendszeróra beállítása

A telepítő megkérdezheti, hogy az óra az UTC szerint állított-e. Normális esetben e kérdést elkerüli, ha lehet és megpróbálja kitalálni a választ például a telepített más operációs rendszerek alapján.

Szakértő módban mindig ki lehet választani, hogy az óra az UTC szerint van-e beállítva vagy sem. A Dos vagy Windows rendszert futtató rendszerek is általában helyi időre vannak állítva. Ha egy ilyen rendszert is fennagynál, válassz helyi időt az UTC helyett.

Ezen a ponton a debian-installer megkíséri elmenteni az aktuális időt a rendszer hardver órájára. Ez vagy UTC, vagy helyi időt jelent attól függően, mit választottál ki.

6.3.8.2. A rendszer újraindítása

You will be prompted to remove the boot media (CD, USB stick, etc) that you used to boot the installer. After that the system will be rebooted into your new Debian system.

6.3.9. Hibaelhárítás

Az e szakaszban felsorolt összetevők általában nem részei a telepítő folyamatnak, de nehezebb helyzetekhez készen állnak a felhasználó segítségére.

6.3.9.1. Telepítő naplók mentése

Ha a telepítés sikeres, a telepítő folyamat során keletkező napló fájlok automatikusan mentésre kerülnek az új Debian rendszeren a /var/log/installer/ könyvtárba.

Choosing Save debug logs from the main menu allows you to save the log files to a USB stick, network, hard disk, or other media. This can be useful if you encounter fatal problems during the installation and wish to study the logs on another system or attach them to an installation report.

6.3.9.2. A héj használata és a naplók megtekintése

Több módja van egy héj indításának a telepítő alatt. A legtöbb rendszeren, ha nem soros konzolról telepítés, a leg-könnyebb mód a 2. virtualis konzola váltásra a Bal Alt-F2¹⁰ (Mac billentyűzeten Option-F2) leütése. Használj a Bal Alt-F1 gombokat a telepítőre visszaváltáshoz.

A grafikus telepítőhöz lásd: 6.1.1. szakasz.

Ha nem tudsz konzolt váltani, használd a Héj futtatása pontot a fő menüből, így elindítható egy héj. A fő menübe a legtöbb párbeszéd felhasználható a Go Back gomb egy vagy többszörös lenyomásával. A telepítőhöz való visszaállításra, gépeld be az exit parancsot a héj lezárásához.

Most egy RAM lemezből indítottunk és a szokásos eszközök közül csak egy korlátozott készlet áll rendelkezésre. Az ls /bin /sbin /usr/bin /usr/sbin és a help megadja az elérhető programokat. A héj egy ash nevű Bourne héj másolat pár szép képességgel mint például az automatikus kiegészítés és történet.

Fájlok szerkesztésére és megtekintésére, használd a nano szerkesztőt. A telepítő rendszer napló-fájljai a /var/log könyvtárban találhatók.

¹⁰Ami: nyomd le az Alt billentyűt a szóköz mellett balra és az F2 billentyűt egyszerre.
6.3.10. Telepítés hálózatról

Az egyik legérdekesebb összetevő a `network-console`. Lehetővé teszi a telepítés szinte egészét a hálózatról SSH-n át.

A hálózat használata feltételezi a telepítés első pár lépésének megtörténtét legalább a hálózat beállításágát. (Automatizálható a 4.6. szakasz részben írtak szerint.)

This component is not loaded into the main installation menu by default, so you have to explicitly ask for it. If you are installing from optical media, you need to boot with medium priority or otherwise invoke the main installation menu and choose Load installer components from installation media and from the list of additional components select network-console: Continue installation remotely using SSH. Successful load is indicated by a new menu entry called Continue installation remotely using SSH.

Ezen új bejegyzés kiválasztása után egy új jelszót kell megadnod a telepítő rendszerre csatlakozáshoz, és megerősítened. Ez minden. Ezután egy képernyőn fel leszolítva, hogy jelentskezz be távolról, mint `installer` felhasználó az adott jelszóval. Egy másik fontos részlet e képernyőn a rendszer útvonala. Ezt biztonságosan kell átadni a „telepítést távolról folytató személy” számára.

A telepítő `ssh` kiszolgálója olyan alapbeállítást használ, ami nem küld kapcsolat fenntartó (keep-alive) csomagokat. Ezért a telepítő rendszerrel való kapcsolatot határozatlan ideig nyitva kell tartani. Azonban néhány esetben — a helyi hálózati beállításaidtól függően — a kapcsolat megszakadhat ha egy bizonyos ideig nem használják. Egy lehetséges ilyen eset, amikor valamilyen Hálózati címfordítás (Network Address Translation, NAT) található valahol a kliens és a telepítendő rendszer között. Attól függően, hogy a telepítés mely lépésekor szakadt meg a kapcsolat, vagy tudod majd folytatni a telepítést újrakapcsolódás után, vagy nem.

Elkerülhető a kapcsolat megszakadása `ServerAliveInterval=érték` megadásával az `ssh` kapcsolat létesítésekor, vagy ugyanennek a megadásával az `ssh` konfigurációs fájlban. Tudj róla azonban, hogy néha pont ennek a megadására okozhatja a kapcsolat megszakadását (például ha kapcsolat fenntartó keep-alive csomagokat küldenek egy rövid hálózatkomparadás alatt, amiből az `ssh` egyébként vissza tudna állni), tehát csak akkor használd, ha szükséges.
6.4. Hiányzó firmware betöltése

A 2.2. szakaszban leírtak szerint, néhány eszközhöz firmware betöltése szükséges. A legtöbb esetben az eszköz egyáltalán nem fog működni firmware nélkül, néhány esetben viszont az alapfunkcionalitás elérhető lesz, és a firmware csak ahhoz kell, hogy további funkciók is működjönak.

Ha az eszköz meghajtó olyan firmware-t igényel, ami nem elérhető, a debian-installer egy párbeszédet jelenít meg, ami felajánlja a hiányzó firmware betöltését. Ha ezt választod, a debian-installer végignézi a rendelkezésre álló eszközöket firmware fájlért, vagy olyan csomagért, ami tartalmaz firmware-t. Ha talál, bemásolja a megfelelő helyre (\(/\text{lib/firmware}\)), és a meghajtó modult újra betölti.

6.4.1. Adathordozó előkészítése

Official installation images do not include non-free firmware. The most common method to load such firmware is from some removable medium such as a USB stick. Additionally, unofficial installation images containing non-free firmware can be found at https://cdimage.debian.org/cdimage/unofficial/non-free/cd-including-firmware/. To prepare a USB stick (or other medium like a hard drive partition), the firmware files or packages must be placed in either the root directory or a directory named /firmware of the file system on
FEJEZET 6. A DEBIAN TELEPÍTŐ HASZNÁLATA

6.4. HIÁNYZÓ FIRMWARE BETÖLTÉSE

der medium. The recommended file system to use is FAT as that is most certain to be supported during the early stages of the installation.

Aktuális csomagokat tartalmazó tarball és zip fájlok a leggyakoribb firmware-ekre itt találhatók:

- https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

Csak töltsd le a megfelelő kiadáshoz tartozó tarball vagy zip fájlt és tömörítsd az adathordozó fájlrendszerére.

Ha a tarball nem tartalmazza a szükséges firmware-t, konkrét firmware csomagokat is letölthetsz az archívból (a zárt szekciójából). A következő összefoglaló felsorolja a legtöbb elérhető firmware csomagot, de nem garantált, hogy teljes a lista, illetve tartalmazhat nem firmware csomagokat is:

- https://packages.debian.org/search?keywords=firmware

Lehetséges önálló firmware fájlokat is az adathordozóra másolni. Önálló firmware szerezhető egy már telepített rendszerről, vagy hardverkereskedőtől.

6.4.2. Firmware és a telepített rendszer

A telepítés során betöltött firmware-ek automatikusan a telepített rendszerre másolódnak. A legtöbb esetben ez biztosítja, hogy az ezeket a firmware-eket használó eszközök az újraindítás után az új rendszerrel is megfelelően fognak működni. Azonban ha a telepített rendszer más kernel verziót használ, mint a telepítő, van egy kis esélye annak, hogy a firmware nem töltethető be a verzió különbség miatt.

Ha a firmware-t csomagból töltötte be, a debian-installer megpróbálja ezt a csomagot a telepített rendszerre is telepíteni, és a csomag archív zárt szekcióját automatikusan hozzáadni az APT sources.list-jéhez. Ennek az az előnye, hogy a firmware automatikusan frissül amint új verzió verzió lesz elérhető.

Ha a telepítés során kihagytad a firmware telepítését, az érintett eszköz valószínűleg nem fog működni a telepített rendszerre, amíg a firmware-t vagy firmware csomagot kézzel nem telepíted.

MEGJEGYZÉS

Ha a firmware-t önálló firmware fájlból töltötte be, a telepített rendszerre másolt firmware nem fog automatikusan frissülni, hacsak a megfelelő firmware csomag (ha van) nem kerül telepítésre a telepítés befejezte után.
7. fejezet

Az új Debian rendszer indítása

7.1. Az igazság pillanata

A rendszer 1. önálló indítása olyasmi, amit a mérnökök úgy hívnak: „tűzpróba”.

If you did a default installation, the first thing you should see when you boot the system is the menu of the grub bootloader. The first choices in the menu will be for your new Debian system. If you had any other operating systems on your computer (like Windows) that were detected by the installation system, those will be listed lower down in the menu.

Ha a rendszer netán nem indulna rendesen, ne ess kétségbe! Ha a telepítés sikeres volt, valószínűleg csak valami nagyon apró probléma akadt. Ezek általában könnyűszerrel megoldhatók újratelepítés nélkül. Egy jó lehetőség indítási gondok orvosolására a telepítő beépített mentő módjának használata (lásd a 8.6. szakasz rész).

Ha új vagy a Debian és Linux világában, vigadhatsz régi motorosokkal. A közvetlen nemzetközi segítséget a #debian vagy #debian-boot IRC csatornán kapod az OFTC hálózaton. A Debian levelező listákon saját néped nagy Debian közössége is vár! Probléma esetén telepítő jelentést is küldhetsz az

Ha netán van olyan rendszer a gépeden, melyet a telepítő nem, vagy nem megfelelően derített fel, küldj telepítő jelentést!

7.2. Titkosított kötetek csatolása

Ha a telepítéskor titkosított köteteket hoztál létre és csatolási pontokhoz rendelted ezeket, az indításkor meg kell adnod majd a jelmondatokat ezekhez.

A dm-crypt által titkosított partíciókhoz az alábbi felhívás jelenik meg indításkor:

Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:

A felhívás 1. sorában a part az adott partíció neve, például sda2 vagy md0. Valószínűleg érdekel mely kötet számára kell megadni a jelmondatot. Ez a /home? Vagy a /var? Természetesen, ha csak 1 titkosított kötet van, ez könnyű és csak meg kell adni a kötet beállításakor megadott jelmondatot. Ha több titkosított kötet került beállításra a telepítés során, a 6.3.4.6. szakasz részben leírtak segítenek. Ha nem jegyezted le a part_crypt és a csatolási pontok közti térképet, az új rendszerben lévő /etc/crypttab és /etc/fstab fájlokban megleved.

A beviteli jel kissé eltérhet ha titkosított gyökér fájlrendszer van csatolva. Ez függ a rendszer indítására használt initrd-től. Előállított inintamfs-tools használataival előállított inintrd-t mutat:

Indítás: gyökér fájlrendszer csatolása... ...
Indítás: /scripts/local-top futtatása...
Add meg a LUKS jelmondatot:

A jelmondatok megadása után az indítás a szokásos módon folyik tovább.
7.2.1. Hibák orvoslása

Ha egyes titkosított kötetek rossz jelmondat megadása miatt nem csatolhatók, kézzel kell csatolni őket az indítás után. Több eset van.

- Az első a gyökér partíció esete. Ha csatolása nem sikerül, az indító folyamat leáll, így újra kell indítani a gépet és ismét megpróbálni.
- The easiest case is for encrypted volumes holding data like /home or /srv. You can simply mount them manually after the boot.

A dm-crypt esetén kicsit trükkösebb. Először regisztrálni kell a köteteket az eszköz-térképezővel így:

```
# /etc/init.d/cryptdisks start
```

Ez átnézi a /etc/crypttab fájlban lévő összes kötetet és létrehozza a megfelelő eszközöket a /dev könyvtárban a jól megadott jelmondat után. (A már regisztrált köteteket kilihagyja, így e parancs többször is gond nélkül futtatható.) A sikeres regisztráció után, egyszerűen csatold a köteteket a szokott módon:

```
# mount /csatolási_pont
```

- Ha egy nem-kritikus rendszer fájlokat tartalmazó kötet (például /usr vagy /var) csatolása nem sikerül, a rendszer még mindig elindul és a kötetek kézzel csatolhatók, mint az előző esetben. De (újra) el kell indítani az alap futási szintből futó szolgáltatásokat is, mert így valószínűleg nem indultak el. Ennek legkönnyebb módja a gép újraindítása.

7.3. Bejelentkezés

A rendszer elindulás után bejelentkezést kér. Jelentkezz be a telepítés során megadott személyes bejelentkezési neveddel és jelszavaddal. A rendszer használható készen.

Új felhasználóként, lényeges tudni, hol érhetők el a már a rendszerre települt dokumentációk és hogyan lehet őket használatalba venni. Jelenleg több dokumentációs rendszer is elérhető, melyek egyesítése folyik. Íme pár alapvető tudnivaló.

A telepített programok dokumentációi a /usr/share/doc/ alatt, a programokról (pontosabban a programot tartalmazó Debian csomagról) elnevezett alkönyvtárakban vannak. De a részletesebb leírás gyakran külön dokumentációs csomagba kerül, mely általában nem kerül alapértelmezetlen telepítésre. Például az apt csomag-kezelő eszköz nagyobb dokumentációjára az apt-doc és apt-howto csomagban van.

E dokumentumok olvasásának könnyű módja egy szöveg alapú böngésző használata így:

```
$ cd /usr/share/doc/
$ w3m .
```

A . a w3m programot az aktuális könyvtár mutatására utasítja.

Ha van grafikus asztalet környezet telepítve, használhatod web-bőngészőjét. Indítsd az alkalmazásokat felsoroló menüjét, és írd be a /usr/share/doc/ címet.

A fejlettebb info parancs vagy a szerényebb man parancs segítségével a parancssorban elérhető legtöbb parancsról is olvasható egy részletesebb vagy rövidebb dokumentáció. A help a hív parancsról sűg. Egy parancs után a --help beírása általában kérija a parancs használatának egy rövid összefoglalóját. Ha egy parancs kimene-te hosszú, a | more parancs után gépelése az eredmény kiírását egy oldal után további kérésig szünetelteti. Egy bizonyos betűvel kezdődő elérhető parancsok listájának megtekintéséhez, ísd le a betűt és kétszer a Tab billentyűt.
8. fejezet

A következő lépések. Milyen lehetőségekkel élhetünk?

8.1. A rendszer leállítása

Egy futó Debian GNU/Linux rendszer leállításához nem szabad az újraindító (reset) gombot használni, vagy csak kikapcsolni a gépet. Ehelyett szabályozottan tesszük ezt, így a fájlok vagy a lemez nem sérülhet. Ha asztali környezetet futtatsz, általában megleled a „kijelentkezés” pontot a környezet menüjében, mellyel leállíthatod (vagy újraindíthatod) a rendszert.

Alternatively you can press the key combination Ctrl-Alt-Del. If the key combinations do not work, a last option is to log in as root and type the necessary commands. Use `reboot` to reboot the system. Use `halt` to halt the system without powering it off¹. To power off the machine, use `poweroff` or `shutdown -h now`. The systemd init system provides additional commands that perform the same functions; for example `systemctl reboot` or `systemctl poweroff`.

8.2. Hangolódj a Debian rendszerre

A Debian természetesen egyedi jellemzőket is tartalmaz. Valószínűleg már dolgoztál hasonló rendszerrel, de még így is van pár hasznos tudnivaló, mellyel Debian rendszeredet jól és rendben tarthatod. Ez a fejezet ezekről szól; természetesen nem egy átfogó Debian oktatóanyag, csak egy pillantás a rendszerhez kötődő legsürgősebb ismeretekre.

8.2.1. A Debian csomagkezelő rendszer

A legfontosabb, amit meg kell értenünk, a Debian csomagkezelő rendszer. A rendszer legnagyobb részét ez kezeli. Így például:

- `/usr` (kivéve `/usr/local`)
- `/var` (készíthető egyéni `/var/local` és használható mentésre)
- `/bin`
- `/sbin`
- `/lib`

Például, ha lecseréled a `/usr/bin/perl` fájlt, működni fog, de ha frissül a rendszereden a perl csomag, az felülírja majd. Haladó felhasználóként viszont használható a `aptitude` parancssal indítható felület segítségével.

One of the best installation methods is apt. You can use the command line version of `apt` as well as tools like `aptitude` or `synaptic` (which are just graphical frontends for `apt`). Note that apt will also let you merge main, contrib, and non-free so you can have restricted packages (strictly speaking not belonging to Debian) as well as packages from Debian GNU/Linux at the same time.

¹Under the SysV init system `halt` had the same effect as `poweroff`, but with systemd as init system (the default since jessie) their effects are different.
8.2.2. További elérhető szoftverek a Debian számára

Vannak olyan hivatalos vagy nem hivatalos szoftver tárák, amik alapból nem engedélyezettek a Debian telepítő számára. Ezek olyan szoftvereket tartalmaznak, amiket sokan hasznosnak találnak, és elvárnak. Információ ezekről a tárákról a Debian Wiki oldalon találhatók: A Debian Stabil Kiadás számára elérhető szoftverek.

8.2.3. Alkalmazás verzió kezelés

Az alkalmazások párhuzamos verzióit az update-alternatives kezeli. Ha egyes alkalmazásaid egyszerre több változatát is karbantartod, olvasd el az update-alternatives kézikönyv oldalát.

8.2.4. Cron feladatok kezelése

Minden a rendszergazda hatáskörébe tartozó cron feladatnak a /etc könyvtárban kell lennie, mivel ezek a cron szempontjából beállítófájlok. Ha van egy napi, heti vagy havi rendszergazdai cron feladatod, tedd a /etc/cron. {daily, weekly, monthly} könyvtárba. A /etc/crontab meghívja őket, és ABC-rendben futtatja.

Illette, ha van egy cron feladatod, amit speciális (a) felhasználóként (b) időpontban vagy gyakorisággal kell futtatnod, használd a /etc/crontab vagy, még jobb, a /etc/cron.d/akimakarsz fájlt. E fájlokhoz extra mezők vannak, melyekkel megadhatod e feltételeket.

Csak szerkeszd e fájlokat és egy cron feladatot az /etc/cron. {daily, weekly, monthly} könyvtárban. Ez a cron feladat „rendben” futtatja a feladatot, és ő automatikusan mutatja be az információkat az érintetteknek.

8.3. További olvasnivalók és információk

A Debian weblap sok dokumentációt tartalmaz a Debian rendszerről. Lásd például a Debian GNU/Linux GYIK és Debian Referencia leírását. Több Debian dokumentációt listája a Debian Dokumentációs Projekt címén. A Debian egy támogatói közösség is, 1 vagy több Debian listára iratkozáshoz lásd a Levelező listák oldalt. Végül, de nem utolsó sorban a Debian levelező lista archívumok a Debian információinak egy aranybányája.

8.4. Az email beállítása

Ma, az email szinte minden ember életének egyik legfontosabb része. Sok lehetőség van beállítására, és mivel helyes beállítása pár Debian eszköz számára fontos, megbízhatóak bemutatni a legfontosabb alapokat.

3 fő összetevő biztosít egy email rendszert. Az egyik a levelező, angolul Mail User Agent (MUA), mellyel a felhasználó leveleket ír és olvas. A másik a levelező-kézikönyv, Mail Transfer Agent (MTA), mely átvissza a levelet. Végül a levelező-kézikönyv, Mail Delivery Agent (MDA), mely a bejövő leveleket a felhasználó levelesládájába teszi.

E 3 funkciói önálló vagy egyes ügynökök programok is végezhetik. Sőt, különböző típusú levelekhez különböző programok is végezhetik e funkciók.

Linux és Unix rendszereken a mutt egy nagyon népszerű MUA. A hagyományos Unix programokhoz hasonlóan szöveges üzenmódra alapul. Gyakran az exim vagy sendmail MTA és procmail MDA programokkal társul.

With the increasing popularity of graphical desktop systems, the use of graphical e-mail programs like GNOME’s evolution, KDE’s kmail or Mozilla’s thunderbird has becoming more popular. These programs combine the function of a MUA, MTA and MDA, but can — and often are — also be used in combination with the traditional Unix tools.
8.4. Alap email beállítás

Even if you are planning to use a graphical mail program, it would be useful, to have a traditional MTA/MDA installed and correctly set up on your Debian GNU/Linux system. Reason is that various utilities running on the system² can send important notices by e-mail to inform the system administrator of (potential) problems or changes.

For this you can install exim4 and mutt with `apt install exim4 mutt`. exim4 is a combination MTA/MDA that is relatively small but very flexible. By default it will be configured to only handle e-mail local to the system itself and e-mails addressed to the system administrator (root account) will be delivered to the regular user account created during the installation³.

Egy rendszer email kézbesítésekor az egy `/var/mail/ügynök név` útvonalú fájlba kerül. E levelek olvashatók a mutt programmal.

8.4.2. Email küldése kifelé

Ahogy írtuk, egy frissen telepített Debian rendszer csak helyi email-kezelésre van beállítva, külső levelezésre nem.

Ha szeretnéd, hogy az `exim4` külső leveleket is fogadjon, olvasd el az alábbiakat az alapvető beállításokhoz.

Ellenőrizd, hogy a levelek rendesen küldhetők és fogadhatók.

Ha egy grafikus levelező program használatát tervezed és az Internet-szolgáltatód vagy a céged egy levelező szerverét használd, nem elengedhetetlenül szükséges az `exim4` beállítása külső levelezéshoz. Beállíthatod a grafikus levelező programodat a megfelelő kiszolgáló használatára email külső küldésére és fogadására (ennek tárgyalása e kézikönyvnek nem célja).

De ha ez nincs beállítva, egyes eszközöket egyénileg kell beállítani levelek helyes küldésére. Egy ilyen eszköz a reportbug, egy program, ami elősegíti hibák jelentését a Debian csomagokra. Alapban azt feltételezi, hogy az `exim4` képes elküldeni a jelentéseket.

A `reportbug` külső beállításhoz futtass a `reportbug --configure` parancsot és mondod, hogy „no” a helyi MTA elérhetőségére. Ekkor rákérdezd a külső SMTP kiszolgálóra.

8.4.3. Exim4 MTA beállítása

Ha szeretnéd, hogy az egész rendszer kezeljen külső leveleket, be kell állítanod az `exim4 csomagot`⁴:

```
# dpkg-reconfigure exim4-config
```

E parancs kiadása után (rendszergazda ként), megkéri, szétvágja-e a beállítást kisebb fájlokba. Kétség esetén az alap lehetőséget kell választani.

Most néhány általános levél forgatókönyvet mutatunk be. Válaszd a szükség szerint leginkább megfelelőt.

internet site A rendszer hálózatra kötött és a levelek közvetlenül SMTP szolgáltatáson át kerülnek küldésre és fogadásra. A következő képernyőhöz párhuzamosan eszközöket építünk fel, például a rendszer levelező nevére vagy tartományok listájára, melyekről elfogadásra vagy megtagadásra képes lesznek.

levél küldése smarthost segítségével E forgatókönyvben a kimenő levél egy másik gépre továbbítódik, melyet egy „smarthost” néven hívunk, mely elküldi az üzeneteket. A smarthost általában tárolja a gépére készült bejövő levélleveleket is, így nem kell folyton hálózaton lenni. Ez azt is jelenti, hogy le kell szedni a leveleidet a smarthost gépről egy olyan programmal, mint amilyen például a fetchmail.

Sok esetben a smarthost az internet-szolgáltatód levelező szervere lesz, ami e lehetőségét nagyon kívánatosá teszi betársaságához átadható. Ez egy céges levelező szerver is lehet vagy egy másik gép a hálózatod.

levél küldése smarthost útján, nincs helyi levél Ez a lehetőség alapban ugyanaz, mint a előző kivéve, hogy a rendszer nem kezel leveleket helyi email-tartományokból. A rendszeren magán lévő levelek (például a rendszergazda számára) kezelése megmarad.

csak helyi kézbesítés E lehetőségre van a rendszer alapértelmezettan beállítva.

beállítás elhalasztása Cskak akkor válaszd, ha tökéletesen tudod, ezt miért teszed. A levelező rendszer így beállítás nélkül marad — míg be nem álltad, nem tudsz leveleket küldeni vagy fogadni és nem fogod megkapni egyes rendszer-eszközök fontos üzeneteit.

²Examples are: `cron`, `quota`, `logcheck`, `aide`, ...
³The forwarding of mail for root to the regular user account is configured in `/etc/aliases`. If no regular user account was created, the mail will of course be delivered to the root account itself.
⁴Természetesen az `exim4` más MTA/MDA programmal is váltható.
8.5. Új rendszermag (kernel) fordítása

Why would someone want to compile a new kernel? It is most probably not necessary since the default kernel shipped with Debian handles almost all configurations.

If you want to compile your own kernel nevertheless, this is of course possible and we recommend the use of the „make deb-pkg” target. For more information read the Debian Linux Kernel Handbook.

8.6. Egy sérült rendszer helyreállítása

Mint bármi, egy gondosan telepített rendszer is elromolhat. Például egy változtatásnál elállítjuk a boot betöltőt, egy nem megfelelő kernelre váltunk és nem indul, vagy teljesen vétletlenül, például a lemezt érő kozmikus háttérsugárzás átírhat egy érzékeny bitet a /sbin/init fájlban. Ezért szükséged lesz egy rendszerre, melyről javíthatod, és erre kiválóan alkalmas lesz például a telepítő mentési módja.

To access rescue mode, select rescue from the boot menu, type rescue at the boot: prompt, or boot with the rescue/enable=true boot parameter. You'll be shown the first few screens of the installer, with a note in the corner of the display to indicate that this is rescue mode, not a full installation. Don’t worry, your system is not about to be overwritten! Rescue mode simply takes advantage of the hardware detection facilities available in the installer to ensure that your disks, network devices, and so on are available to you while repairing your system.

A particionáló eszköz helyett egyszerűen kiválaszthatod egyet. Itt általában a javítandó rendszer gyökér fájlrendszerét tartalmazó partíciót kell kiválasztanod.

Ha lehetséges, a telepítő bead egy héj promptot a kijelölt fájlrendszeren, mellyel bármilyen javítási műveletet végezhetsz. Például ha újra kell tenned a GRUB boot betöltőt az 1. merevlemez MBR-jébe, kiadhatod a grub-install ' (hd0)' parancsot.

Ha a telepítő nem tud használható héjat futtatni a kijelölt gyökér fájlrendszeren, mert az például sérült, figyelmeztet és felajánlja, hogy nyit egy héjat a telepítő környezetén belül. Itt nincs annyi eszközöd, de általában elég a rendszer alapvető megjavításához. A kijelölt gyökér fájlrendszert a /target könyvtárba csatolja.

A héjból való kilépés újraindít.

Természetesen egy sérült rendszer javítása ennél jóval nehezebb is lehet és e leírás nem szóthat az összes lehetséges részletéről. Ha kérdésed van, bátran kérd a közösség segítségét!
A. függelék

Telepítő Hogyan

E dokumentum leírja a Debian GNU/Linux bullseye telepítését 64-bit PC („amd64”) gépre az új debian-installer által. Ez a telepítés lépéseinek gyors áttekintése, mely tartalmazza a legtöbb telepítéshez szükséges összes adatot. Ahol több adat is hasznos lehet, hivatkozunk e dokumentum más részeiben lévő részletesebb leírásokra.

A.1. Elöljáróban

Ez még mindig a debian-installer béta állapota. Ha hibát találász, nézd meg az alábbi: 5.4.7. szakasz részt a jelentés módjáról. Ha e dokumentum nem válaszolja meg a kérdésedet, fordulj a debian-boot listához (debian-boot@lists.debian.org) vagy tedd fel IRC-n (#debian-boot az OFTC hálózaton).

A.2. A telepítő indítása

For some quick links to installation images, check out the debian-installer home page. The debian-cd team provides builds of installation images using debian-installer on the Debian CD/DVD page. For more information on where to get installation images, see 4.1. szakasz.

A.2.1. Optical disc

The netinst CD image is a popular image which can be used to install bullseye with the debian-installer. This installation method is intended to boot from the image and install additional packages over a network; hence the name “netinst”. The image has the software components needed to run the installer and the base packages to provide a minimal bullseye system. If you’d rather, you can get a full size CD/DVD image which will not need the network to install. You only need the first image of such set.

To boot the disc, you may need to change your BIOS/UEFI configuration, as explained in 3.6.1. szakasz.

A.2.2. Pendrive

USB tároló eszközökkről is telepíthetsz. Például egy USB kulcsstartó egy igen barátságos Debian telepítő médium lehet, ami mindig könnyen veled lehet.

The easiest way to prepare your USB memory stick is to download any Debian CD or DVD image that will fit on it, and write the image directly to the memory stick. Of course this will destroy anything already on the stick. This works because Debian CD/DVD images are „isohybrid” images that can boot both from optical and USB drives.

Más, rugalmasabb módok is vannak pendrive beállításához a Debian Telepítéshez, és kisebb eszközökkel is működhet. A részletekért lásd a 4.3. szakasz részt.

Download whichever type you prefer and burn it to an optical disc. To boot the disc, you may need to change your BIOS/UEFI configuration, as explained in 3.6.1. szakasz.
A.2.3. Indítás hálózatról

A debian-installer indítása teljes egészében hálózatról is végezhető. A hálózati indítás módjai a géped felépítésétől és a hálózati indítás beállításaitól függnek. A netboot/ könyvtárban lévő fájlok használhatók a debian-installer hálózati indításához.

E hálózati indítás beállításának egyik legkönnyebb módja a PXE. Bontsd ki a netboot/pxeboot.tar.gz fájlt a srv/tftp-be, vagy ahol tftp-t tartod. Mondd meg a DHCP kiszolgálónak, hogy az klienseknek a pxelinux.0 fájlt adjá, és kis szerencsével minden menni fog. Bővebben a 4.5. szakasz részben.

A.2.4. Indítás merevlemezről

It's possible to boot the installer using no removable media, but just an existing hard disk, which can have a different OS on it. Download hd-media/initrd.gz, hd-media/vmlinuz, and a Debian CD/DVD image to the top-level directory of the hard disk. Make sure that the image has a filename ending in .iso. Now it's just a matter of booting linux with the initrd. 5.1.5. szakasz explains one way to do it.

A.3. Telepítés

A telepítő indítása után egy üdvözlő képernyő fogad. Üsd le az Enter billentyűt az indításhoz vagy olvasd el a lehetőségeket más indítási módokhoz és paraméterekhez (lásd: 5.3. szakasz).

Sikeress egy hálózati esetén egy hosszú, görgethető listát adó felépítő képernyőt és beállítani a hálózatot DHCP kiszolgálóval. Ha nem vagy hálózaton, vagy azon nincs DHCP, akkor természetesen lehetőséged nyilik megadni hálózati adataidat.

A következő lépés az aktuális idő és időzóna beállítása. A telepítő megpróbálja felismerni hálózati eszközeit és beállítani a hálózatot DHCP kiszolgálóval. Ha nem vagy hálózaton, vagy azon nincs DHCP, akkor a Kézi beállítást válaszd.

Most kell a lemezek particionálásáról dönteni. Adott a lehetőség, hogy a telepítő a particionálást automatikusan, vagy azon nincs DHCP, akkor a felhasználókánkra vagy bárkinek, aki siet. Ha nem akarsz automata particionálást, a Kézi beállítást válaszd.

Ha van egy létező DOS vagy Windows partíciót és valamiért meg akarod tartani, figyelj az automatikus választáshoz. Ha a partíciók automatikus beállítását választod, és nem megjelenik a particionáló használatáról a 6.3.4.2. szakasz.
the primary drive, which is generally a good choice. You'll be given the opportunity to override that choice and install it elsewhere.

A debian-installer most értesít, hogy a telepítés megtörtént. Távolítsd el a CD lemezt vagy a telepítéskor használt indító médiát és üsd le az Enter billentyűt a gép újraindításához. Ez elindítja majd az éっぷん most telepített rendszert és lehetővé teszi a bejelentkezést. Ezt a 7. fejezet részben ismertetjük.

Ha több adat érdekel a telepítő folyamatról, nézz bele ebbe: 6. fejezet.

A.4. Küldj nekünk telepítési beszámolót

If you successfully managed an installation with debian-installer, please take time to provide us with a report. The simplest way to do so is to install the reportbug package (`apt install reportbug`), configure `reportbug` as explained in 8.4.2. szakasz, and run `reportbug installation-reports`.

Ha a telepítés közben bármikor hiba történt, valószínűleg találtál egy hibát a telepítőben. Hogy a telepítőt folyamatosan egyre jobbá tegyük, tudnunk kell ezekről, ezért kérjük, jelezd e hibát. A fent már ismertetett egyszerű telepítési beszámolóval megteheted ezt; ha a telepítés egyáltalán nem sikerült valamilyen okból, olvasd el most a 5.4.6. szakasz részt.

A.5. És végül...

Reméljük, a Debian telepítésed igazán kellemes lett, és hasznosnak találod majd a Debian rendszert. Érdemes elolvasni a 8. fejezet részt.
B. függelék

Automata telepítés előírással

B.1. Bemutatás

Az előírás mödot ad a telepítő alatt feltett kérdésekre adott válasz beállítására, anélkül, hogy ezeket kézzel kellene megadni a telepítés alatt. Ez lehetővé teszi a legtöbb telepítés teljes automatizálását, sőt a sima telepítésben el nem érhető lehetőségeket is ad.

Preseeding is not required. If you use an empty preseed file, the installer will behave just the same way as in a normal manual installation. Each question you preseed will (if you got it right!) modify the installation in some way from that baseline.

B.1.1. Előíró módok

Három mód használható előírásra: az initrd, a fájl és a hálózati mód. Az initrd mód minden telepítő móddal működik és a legtöbb dolog előírását támogatja, de a legtöbb előkészületet igényli. A fájl és hálózati előírás eltérő telepítő módokkal használható.

Az alábbi tábla mutatja, mely előíró mód mely telepítő móddal használható.

<table>
<thead>
<tr>
<th>Telepítő mód</th>
<th>initrd</th>
<th>fájl</th>
<th>hálózat</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>igen</td>
<td>igen</td>
<td>igen¹</td>
</tr>
<tr>
<td>netboot</td>
<td>igen</td>
<td>nem</td>
<td>igen</td>
</tr>
<tr>
<td>hd-media (usb-tárral is)</td>
<td>igen</td>
<td>igen</td>
<td>yes¹</td>
</tr>
</tbody>
</table>

An important difference between the preseeding methods is the point at which the preconfiguration file is loaded and processed. For initrd preseeding this is right at the start of the installation, before the first question is even asked. Preseeding from the kernel command line happens just after. It is thus possible to override configuration set in the initrd by editing the kernel command line (either in the bootloader configuration or manually at boot time for bootloaders that allow it). For file preseeding this is after the installation image has been loaded. For network preseeding it is only after the network has been configured.

¹de csak hálózati eléréssel, és a preseed/url helyes beállításával
B.1.2. Korlátok

Bár a debian-installer legtöbb kérdésére adott válasz előírható így, van pár kivétel. Szükséges egy egész lemez (újra)particionálása vagy az elérhető szabad hely használata egy lemezen; nem használhatók létező partíciók.

B.2. Előírás használata

You will first need to create a preconfiguration file and place it in the location from where you want to use it. Creating the preconfiguration file is covered later in this appendix. Putting it in the correct location is fairly straightforward for network preseeding or if you want to read the file off a usb-stick. If you want to include the file in an installation ISO image, you will have to remaster the image. How to get the preconfiguration file included in the initrd is outside the scope of this document; please consult the developers' documentation for debian-installer.

B.2.1. Az elő-beállító fájl betöltése

Initrd előírás használatakor csak el kell helyezní a preseed.cfg fájlt az initrd gyökér könyvtárába. A telepítő önműködően betölti e fájlt, ha létezik.

For the other preseeding methods you need to tell the installer what file to use when you boot it. This is normally done by passing the kernel a boot parameter, either manually at boot time or by editing the bootloader configuration file (e.g. syslinux.cfg) and adding the parameter to the end of the append line(s) for the kernel.

If you do specify the preconfiguration file in the bootloader configuration, you might change the configuration so you don't need to hit enter to boot the installer. For syslinux this means setting the timeout to 1 in syslinux.cfg.

A helyes elő-beállító fájl betöltéséhez megadható hozzá egy ellenőrző-összeg. Jelenleg ez egy md5sum kell legyen, és ha nem egyezik, a telepítő elveti a fájlt.

Boot parameters to specify:
- if you’re netbooting:
 preseed/url=http://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- or
 preseed/url=tftp://host/path/to/preseed.cfg
 preseed/url/checksum=5da499872becccfeda2c4872f9171c3d

- if you’re booting a remastered installation image:
 preseed/file=/cdrom/preseed.cfg
 preseed/file/checksum=5da499872becccfeda2c4872f9171c3d

- if you’re installing from USB media (put the preconfiguration file in the toplevel directory of the USB stick):
 preseed/file=/hd-media/preseed.cfg
B.2. ELŐÍRÁS HASZNÁLATA

B.2.2. Indító paraméterek használata kérdések előírt válaszára

Ha egy elő-beállító fájl nem használható egyes lépésekhez, a telepítő akkor is teljesen automatizálható, mert az előíró értékek átadhatók paraméterként is a telepítő indításakor.

Indító paraméterek teljes előírás nélkül is használhatók 1-1 kérdés megválaszolására. Pár hasznos példa erre a kézikönyv más részeiben.

Egy érték beállításához debian-installer általi használatra add meg a változó/útvonala=érték paramétert bármely e függelék példáiban lévő előíró változóhoz. Ha egy érték a leendő rendszer csomagjai beállításához kerül használatra, elő kell fűzni a változóhoz tartozó tartozó tulajdonos nevét így:

```
tulajdonos=változó/útvonala=érték.
```

Ezt a tulajdonos beállítás koordinálja a debconf adatbázisban, így az adott csomag beállításakor. A változó értéke nem kerül a debconf adatbázisba, így használatlan marad az adott csomag beállításakor.

Normally, preseeding a question in this way will mean that the question will not be asked. To set a specific default value for a question, but still have the question asked, use `?=` instead of `=` as operator. See also B.5.2. szakasz.

Note that some variables that are frequently set at the boot prompt have a shorter alias. If an alias is available, it is used in the examples in this appendix instead of the full variable. The `preseed/url` variable for example has been aliased as `url`. Another example is the `tasks` alias, which translates to `tasksel:tasksel/first`.

A jelenlegi linux kernelek (2.6.9 és később) legfeljebb 32 parancssori és 32 környezeti opciót fogadnak a telepítő által alapban hozzáadott lehetőségekkel együtt. Ezt átlépve kernel pánik (összeomlás) következik. (Korábban e számok kisebbek voltak.)

A legtöbb telepítésnél a boot-betöltő beállító fájlban lévő sok alap lehetőség, például a `vga=normal`, biztonsággal eltávolítható, mely lehetővé teszi több lehetőség átadását az előírásnak.

B.2.3. Automata mód

There are several features of Debian Installer that combine to allow fairly simple command lines at the boot prompt to result in arbitrarily complex customized automatic installs.

This is enabled by using the Automated install boot choice, also called auto for some architectures or boot methods. In this section, auto is thus not a parameter, it means selecting that boot choice, and appending the following boot parameters on the boot prompt. See 5.1.7. szakasz for information on how to add a boot parameter.

Íme az indító jelnél használható pár példa:

```
auto url=autoserver
```

Egy debconf változó (vagy sablon) tulajdonosa alapban az adott debconf sablon tartalmazó csomag neve. A telepítő által használt változók tulajdonosa: „d-i”. Sablonoknak és változóknak több tulajdonosa is lehet, mely segít meghatározni, eltávolíthatók-e a debconf adatbázisból egy csomag törlésekor.
Egy DHCP kiszolgáló megadja egy DNS által feloldható auto-server helyét, akár egy a DHCP által adott helyi tartomány hozzáadása után. Ha az example.com volt a tartomány, és jó a DHCP beállítás, az előíró fájl helye: http://autoserver.example.com/d-i/bullseye/.preseed.cfg

Ha nincs helyi DHCP vagy DNS, vagy nem akarod az alap útvonalat használni a preseed.cfg fájlra, lehetőség van egy url megadására, mely /./ elem nélkül az útvonal elejére kerül (ami a 3. / az URL szerkezetében). Itt egy helyi hálózat minimalis támogatását igénylő példa:

```
auto url=http://192.168.1.2/útvonal/az/előíró.fájlomhoz
```

Így működik:

- ha az URL nem tartalmaz protokollt, http kerül kiválasztásra,
- ha a gépnév szakaszban nincs pont, a DHCP által adott tartomány kerül hozzáadásra, és
- Ha egyetlen / jel sem szerepel a gépnév után, akkor az alap útvonal kerül hozzáadásra.

Az url megadásán túl, megadhatsz beállításokat, melyek nem hatnak közvetlenül a debian-installer viselkedésére, de átadhatók szkripteknek a preseed/run használatával a betöltött előíró fájiban. Jelenleg, ennek egyetlen példája az auto-install/classes, melyre egy álnev a classes. Példa:

```
auto url=http://example.com.classes=class_A;class_B
```

Az osztályok például leírhatják a telepítendő rendszer típusát vagy a helyi beállítást.

Természetesen ez az elképzelés kiterjeszthető, és erre igen jó az auto-install név-hely. Például így: auto-install/style, melyet később szkriptjeidben használhatsz. Ha ezt szükségesnek érzed, írj a debian-boot@lists.debian.org listára, így elkerülhetjük a név-hely ütközéseket és talán adhatunk egy álnevet a szükséges paraméternek.

A Tipp

E keretrendszer használatáról átfogó példa található szkriptekkel és osztályokkal a fejlesztő weblapján. Az elérhető példák sok más az elő-beállítás használatával elérhető szép hatást is mutatnak.

B.2.4. Az előírásnál használható álnévek

The following aliases can be useful when using (auto mode) preseeding. Note that these are simply short aliases for question names, and you always need to specify a value as well: for example, auto=true or interface=eth0.

<table>
<thead>
<tr>
<th>priority</th>
<th>debconf/priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
</tbody>
</table>
fájl | preseed/file
---|---
url | preseed/url
domain | netcfg/get_domain
hostname | netcfg/get_hostname
interface | netcfg/choose_interface
protocol | mirror/protocol
suite | mirror/suite
modules | anna/choose_modules
recommends | base-installer/install-recommends
tasks | tasksel:tasksel/first
asztal | tasksel:tasksel/desktop
dmraid | disk-detect/dmraid/enable
keymap | keyboard-configuration/xkb-keymap
preseed-md5 | preseed/file/checksum

B.2.5. Examples of boot prompt preseeding

Here are some examples of how the boot prompt might look like (you will need to adapt this to your needs; also see 5.1.7. szakasz).

```
# To set French as language and France as country:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz language=fr  ←
country=FR  --- quiet
# To set English as language and Germany as country, and use a German keyboard  ←
layout:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz language=en  ←
country=DE locale=en_US.UTF-8 keymap=de  --- quiet
# To install the MATE desktop:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz desktop=mate-  ←
desktop  --- quiet
# To install the web-server task:
/install. amd/vmlinuz initrd=/install. amd/initrd.gz tasksel:tasksel/first=web- ←
server  --- quiet
```

B.2.6. Egy DHCP kiszolgáló használata elő-beállító fájlok megadására

DHCP használatával megadható egy hálózatról letöltendő elő-beállító fájl is. A DHCP lehetővé teszi egy fájlnév megadását. Simán ez egy netboot fájl, de ha úgy tűnik: URL, akkor a hálózati előírást támogató telepítő média letölti és elő-beállító fájlként használja a fájlt. Itt egy példa, hogyan állíts be ilyet az ISC DHCP kiszolgáló 3. verziójának (a isc-dhcp-server Debian csomag) dhcpd.conf fájljában.

```
if substring (option vendor-class-identifier, 0, 3) = "d-i" {  
    filename "http://host/preseed.cfg";
}
```

A fenti példa a magukat „d-i” néven azonosító DHCP ügyfelekre korlátozza a fájlnevet, így ez nem hat a sima DHCP ügyfelekre csak a telepítőre. Egy idezőjelben megadott szövegben csak egy gép is megadható, a hálózaton lévő összes telepítés előírásának elkerülésére.

A DHCP előírás egy jó módja csak a hálózatra vonatkozó értékek előírása, mind például a Debian tükör. Így a hálózat automatikusan egy jó tükört kap, emellett a telepítés interaktívan végezhető. A Debian telepítés teljes automatizálását DHCP előírással figyelmesen kell végezni.

B.3. Elő-beállító fájl létrehozása

Az elő-beállító fájl a debconf-set-selections által használt formájú. Egy sor általános formája:

```
<talajdonos> <a kérdés neve> <a kérdés típusa> <érték>
```
The file should start with "#_preseed_V1"

Van pár fontos szabály az elő-beállító fájlok frásakor.

- Csak 1 szóközt vagy tab karaktert rakj a típus és érték közé: továbbiak az érték részeként kerülnek értelmezésre.
- A line can be split into multiple lines by appending a backslash (\") as the line continuation character. A good place to split a line is after the question name; a bad place is between type and value. Split lines will be joined into a single line with all leading/trailing whitespace condensed to a single space.
- For debconf variables (templates) used only in the installer itself, the owner should be set to „d-i“; to preseed variables used in the installed system, the name of the package that contains the corresponding debconf template should be used. Only variables that have their owner set to something other than „d-i“ will be propagated to the debconf database for the installed system.
- A legtöbb elő-válaszolandó kérdés az angolul megadott értékeket várja, nem a lefordított értékeket. De van pár kérdés (például a partman részben), ahol a lefordított értékeket kell használni.
- Pár kérdés egy kódot vár értékéért a telepítés alatt megjelenített angol szöveg helyett.
- Start with "#_preseed_V1"
- A comment consists of a line which starts with a hash character (#) and extends up to the length of that line.

Elő-beállító fájl létrehozásának legkönnyebb módja a B.4. szakasz részben hivatkozott példa fájl használata alap-ként és az innen való munka.

Egy másik mód a kézi telepítés és az újraindítás után a debconf-get-selections használata a debconf-utils csomagból, ez a debconf és a telepítő cdebconf adatbázist egy fájlból teszi:

```
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

Jó tudni, hogy az így előállított fájl pár előírhatatlan elemet is tartalmaz, a példa fájl jobb kezdés a legtöbb felhasználónak.

MEGJEGYZÉS

E mód azon alapul, hogy a telepítés végén a cdebconf adatbázis a telepített rendszert /var/log/installer/cdebconf könyvtárába kerül. E fájlok érzékeny adatai miatt, alapban őket csak a root olvashatja.

A /var/log/installer fájlok megsemmisülnek az installation-report csomag törlesékor.

A kérdések lehetséges válaszai ellenőrzéséhez, használhatod a nano parancsot a /var/lib/cdebconf fájlok vizsgálatához a telepítés alatt. A templates.dat a nyers sablonokat, a questions.dat a mostani értékeket és a változókhoz rendelt értékeket adja.

Az elő-beállító fájl formája érvényességének ellenőrzéséhez egy telepítés előtt, használd a debconf-set-selections -c preseed.cfg parancsot.

B.4. Contents of the preconfiguration file (for bullseye)

Az itt használt beállító töredékek példa elő-beállító fájlként itt is elérhetők: https://d-i.debian.org/manual/example-preseed.txt.

Fontos, hogy e példák egy Intel x86 telepítésre épülnek. Más architektúránál pár példa (például billentyűzet és boot-betöltő választás) érdéktelen lehet és az architektúrának megfelelő debconf beállításokra kell cserélni.

Details on how the different Debian Installer components actually work can be found in 6.3. szakasz.
B.4.1. Honosítás

During a normal install the questions about localization are asked first, so these values can only be preseeded via the initrd or kernel boot parameter methods. Auto mode (B.2.3. szakasz) includes the setting of auto-install/enable=true (normally via the auto preseed alias). This delays the asking of the localisation questions, so that they can be preseeded by any method.

The locale can be used to specify both language and country and can be any combination of a language supported by debian-installer and a recognized country. If the combination does not form a valid locale, the installer will automatically select a locale that is valid for the selected language. To specify the locale as a boot parameter, use `locale=en_US`.

Although this method is very easy to use, it does not allow preseeding of all possible combinations of language, country and locale. So alternatively the values can be preseeded individually. Language and country can also be specified as boot parameters.

```bash
# Preseeding only locale sets language, country and locale.
d-i debian-installer/locale string en_US

# The values can also be preseeded individually for greater flexibility.
d-i debian-installer/language string en
d-i debian-installer/country string NL
#d-i debian-installer/locale string en_GB.UTF-8
# Optionally specify additional locales to be generated.
d-i localechooser/supported-locales multiselect en_US.UTF-8, nl_NL.UTF-8
```

Keyboard configuration consists of selecting a keymap and (for non-latin keymaps) a toggle key to switch between the non-latin keymap and the US keymap. Only basic keymap variants are available during installation. Advanced variants are available only in the installed system, through `dpkg-reconfigure keyboard-configuration`.

```bash
# Billentyűzet választás.
d-i keyboard-configuration/xkb-keymap select hu
d-i keyboard-configuration/toggle select No toggling
```

A billentyűzet beállítás átugrására írd elő ezt: `keymap` így: `skip-config`. Így a kernel billentyű-kiosztás marad aktív.

B.4.2. Hálózat beállítás

Of course, preseeding the network configuration won’t work if you’re loading your preconfiguration file from the network. But it’s great when you’re booting from optical disc or USB stick. If you are loading preconfiguration files from the network, you can pass network config parameters by using kernel boot parameters.

Ha szükség van egy adott csatoló választására, használj ilyen indító paramétert: `interface=eth1`.

Although preseeding the network configuration is normally not possible when using network preseeding (using „preseed/url”), you can use the following hack to work around that, for example if you’d like to set a static address for the network interface. The hack is to force the network configuration to run again after the preconfiguration file has been loaded by creating a „preseed/run” script containing the following commands:

```
kill-all-dhcp; netcfg
```

The following debconf variables are relevant for network configuration.

```bash
# Disable network configuration entirely. This is useful for cdrom
# installations on non-networked devices where the network questions,
# warning and long timeouts are a nuisance.
d-i netcfg/enable boolean false

# netcfg will choose an interface that has link if possible. This makes it
# skip displaying a list if there is more than one interface.
d-i netcfg/choose_interface select auto

# To pick a particular interface instead:
d-i netcfg/choose_interface select eth1
```

³Preseeding locale to en_NL would for example result in en_US.UTF-8 as default locale for the installed system. If e.g. en_GB.UTF-8 is preferred instead, the values will need to be preseeded individually.
To set a different link detection timeout (default is 3 seconds).
Values are interpreted as seconds.

```
#d-i netcfg/link_wait_timeout string 10
```

If you have a slow dhcp server and the installer times out waiting for
it, this might be useful.

```
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpv6_timeout string 60
```

If you prefer to configure the network manually, uncomment this line and
the static network configuration below.

```
#d-i netcfg/disable_autoconfig boolean true
```

If you want the preconfiguration file to work on systems both with and
without a dhcp server, uncomment these lines and the static network
configuration below.

```
#d-i netcfg/dhcp_failed note
#d-i netcfg/dhcp_options select Configure network manually
```

Static network configuration.

```
# IPv4 example
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/confirm_static boolean true
```

```
# IPv6 example
#d-i netcfg/get_ipaddress string fc00::2
#d-i netcfg/get_netmask string ffff:ffff:ffff:ffff::
#d-i netcfg/get_gateway string fc00::1
#d-i netcfg/get_nameservers string fc00::1
#d-i netcfg/confirm_static boolean true
```

Any hostname and domain names assigned from dhcp take precedence over
values set here. However, setting the values still prevents the questions
from being shown, even if values come from dhcp.

```
#d-i netcfg/get_hostname string unassigned-hostname
#d-i netcfg/get_domain string unassigned-domain
```

If you want to force a hostname, regardless of what either the DHCP
server returns or what the reverse DNS entry for the IP is, uncomment
and adjust the following line.

```
#d-i netcfg/hostname string somehost
```

Disable that annoying WEP key dialog.

```
#d-i netcfg/wireless_wep string
```

The wacky dhcp hostname that some ISPs use as a password of sorts.

```
#d-i netcfg/dhcp_hostname string radish
```

If non-free firmware is needed for the network or other hardware, you can
configure the installer to always try to load it, without prompting. Or
change to false to disable asking.

```
#d-i hw-detect/load_firmware boolean true
```

Please note that netcfg will automatically determine the netmask if netcfg/get_netmask is not preseeded.
In this case, the variable has to be marked as seen for automatic installations. Similarly, netcfg will choose an
appropriate address if netcfg/get_gateway is not set. As a special case, you can set netcfg/get_gateway
to „none” to specify that no gateway should be used.

B.4.3. Network console
B.4.4. Tükör beállítások

A választott telepítő módtól függően egy tükör használható a telepítő további összetevői letöltésére, az alaprendszer telepítésére, és a `/etc/apt/sources.list` beállítására a telepített rendszerhez.

A mirror/suite paraméter megadja a telepített rendszerhez használt készletet. The parameter mirror/udeb/suite determines the suite for additional components for the installer. It is only useful to set this if components are actually downloaded over the network and should match the suite that was used to build the initrd for the installation method used for the installation. Normally the installer will automatically use the correct value and there should be no need to set this.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mirror/protocol</code></td>
<td>ftp</td>
</tr>
<tr>
<td><code>mirror/country</code></td>
<td>manual</td>
</tr>
<tr>
<td><code>mirror/http/hostname</code></td>
<td>http.us.debian.org</td>
</tr>
<tr>
<td><code>mirror/http/directory</code></td>
<td>/debian</td>
</tr>
<tr>
<td><code>mirror/http/proxy</code></td>
<td></td>
</tr>
<tr>
<td><code>mirror/suite</code></td>
<td>testing</td>
</tr>
<tr>
<td><code>mirror/udeb/suite</code></td>
<td>testing</td>
</tr>
</tbody>
</table>

B.4.5. Fiók beállítások

The password for the root account and name and password for a first regular user’s account can be preseeded. For the passwords you can use either clear text values or crypt(3) hashes.

FIGYELEM

Be aware that preseeding passwords is not completely secure as everyone with access to the preconfiguration file will have the knowledge of these passwords. Storing hashed passwords is considered secure unless a weak hashing algorithm like DES or MD5 is used which allow for bruteforce attacks. Recommended password hashing algorithms are SHA-256 and SHA512.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>passwd/root/login</code></td>
<td>false</td>
</tr>
<tr>
<td><code>passwd/make-user</code></td>
<td>false</td>
</tr>
<tr>
<td><code>passwd/root-password</code></td>
<td>r00tme</td>
</tr>
<tr>
<td><code>passwd/root-password-again</code></td>
<td>r00tme</td>
</tr>
<tr>
<td><code>passwd/root-password-crypted</code></td>
<td>[crypt(3) hash]</td>
</tr>
<tr>
<td><code>passwd/user-fullname</code></td>
<td>Debian User</td>
</tr>
</tbody>
</table>
#d-i passwd/username string debian
Normal user’s password, either in clear text
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
or encrypted using a crypt(3) hash.
#d-i passwd/user-password-crypted password {crypt(3) hash}
Create the first user with the specified UID instead of the default.
#d-i passwd/user-uid string 1010

The user account will be added to some standard initial groups. To
override that, use this.
#d-i passwd/user-default-groups string audio cdrom video

A passwd/root-password-crypted és passwd/user-password-crypted változók „!” értéke
is előírható. Az adott fiók ekkor kikapcsolt. Ez jó lehet root fióknál, ha természetesen egy más, adminisztratív
tevékenységet vagy root bejelentkezést biztosító mód adott (például SSH kulcs hitelesítés vagy sudo).

The following command (available from the whois package) can be used to generate a SHA-512 based crypt(3)
hash for a password:

$ printf “r00tmagam” | mkpasswd -s -m md5

B.4.6. Óra és időzóna beállítás

Controls whether or not the hardware clock is set to UTC.
d-i clock-setup/utc boolean true

You may set this to any valid setting for $TZ; see the contents of
/usr/share/zoneinfo/ for valid values.
d-i time/zone string US/Eastern

Controls whether to use NTP to set the clock during the install
#d-i clock-setup/ntp boolean true
NTP server to use. The default is almost always fine here.
#d-i clock-setup/ntp-server string ntp.example.com

B.4.7. Particionálás

Using preseeding to partition the harddisk is limited to what is supported by partman-auto. You can choose to
partition either existing free space on a disk or a whole disk. The layout of the disk can be determined by using a
predefined recipe, a custom recipe from a recipe file or a recipe included in the preconfiguration file.

Preseeding of advanced partition setups using RAID, LVM and encryption is supported, but not with the full
flexibility possible when partitioning during a non-preseeded install.

The examples below only provide basic information on the use of recipes. For detailed information see the files
partman-auto-recipe.txt and partman-auto-raid-recipe.txt included in the debian-installer
package. Both files are also available from the debian-installer source repository. Note that the supported
functionality may change between releases.

FIGYELEM

A lemezek azonosítása függ betöltött meghajtójuk sorrendjétől. Több lemez esetén
ügyelj nagyon, hogy a helyeset válassz az előírás előtt.

B.4.7.1. Partitioning example

If the system has free space you can choose to only partition that space.
This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatically_partition select biggest_free
Alternatively, you may specify a disk to partition. If the system has only
one disk the installer will default to using that, but otherwise the device
name must be given in traditional, non-devfs format (so e.g. /dev/sga
and not e.g. /dev/discs/disc0/disc).
For example, to use the first SCSI/SATA hard disk:
```bash
d-i partman-auto/disk string /dev/sga
```
In addition, you’ll need to specify the method to use.
The presently available methods are:
```bash
# - regular: use the usual partition types for your architecture
# - lvm: use LVM to partition the disk
# - crypto: use LVM within an encrypted partition
```
```bash
d-i partman-auto/method string lvm
```
You can define the amount of space that will be used for the LVM volume
```bash
# You can specify a free space or the 'max' keyword.
# d-i partman-auto-lvm/guided_size string max
```
If one of the disks that are going to be automatically partitioned
contains an old LVM configuration, the user will normally receive a
warning. This can be preseeded away...
```bash
# d-i partman-lvm/device_remove_lvm boolean true
```
The same applies to pre-existing software RAID array:
```bash
# d-i partman-md/device_remove_md boolean true
```
And the same goes for the confirmation to write the lvm partitions.
```bash
# d-i partman-lvm/confirm boolean true
```
```bash
# d-i partman-lvm/confirm_nooverwrite boolean true
```
You can choose one of the three predefined partitioning recipes:
```bash
# - atomic: all files in one partition
# - home: separate /home partition
# - multi: separate /home, /var, and /tmp partitions
```
```bash
d-i partman-auto/choose_recipe select atomic
```
Or provide a recipe of your own...
```bash
# If you have a way to get a recipe file into the d-i environment, you can
# just point at it.
# d-i partman-auto/expert_recipe_file string /hd-media/recipe
```
If not, you can put an entire recipe into the preconfiguration file in one
(physical) line. This example creates a small /boot partition, suitable
swap, and uses the rest of the space for the root partition:
```bash
# d-i partman-auto/expert_recipe string
  # boot-root ::
  #   40 50 100 ext3
  #   $primary{ } $bootable{ }
  #   method{ format } format{ }
  #   use_filesystem{ } filesystem{ ext3 }
  #   mountpoint{ /boot }
  #   .
  #   500 100000 1000000000 ext3
  #   method{ format } format{ }
  #   use_filesystem{ } filesystem{ ext3 }
  #   mountpoint{ / }
  #   .
  #   64 512 300$ linux-swap
  #   method{ swap } format{ }
  #   .
```
The full recipe format is documented in the file partman-auto-recipe.txt
```bash
# included in the 'debian-installer' package or available from D-I source
# repository. This also documents how to specify settings such as file
# system labels, volume group names and which physical devices to include
```
in a volume group.

Partitioning for EFI

If your system needs an EFI partition you could add something like this to the recipe above, as the first element in the recipe:

```
  538 538 1075 free \\
  $iflabel{ gpt } \\
  $reusemethod{ } \\
  method{ efi } \\
  format{ } \\
  .
```

The fragment above is for the amd64 architecture; the details may be different on other architectures. The `partman` package in the D-I source repository may have an example you can follow.

This makes partman automatically partition without confirmation, provided that you told it what to do using one of the methods above.

```
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
```

B.4.7.2. Particionálás RAID használatával

You can also use preseeding to set up partitions on software RAID arrays. Supported are RAID levels 0, 1, 5, 6 and 10, creating degraded arrays and specifying spare devices.

If you are using RAID 1, you can preseed grub to install to all devices used in the array; see B.4.11. szakasz.

This type of automated partitioning is easy to get wrong. It is also functionality that receives relatively little testing from the developers of debian-installer. The responsibility to get the various recipes right (so they make sense and don’t conflict) lies with the user. Check `/var/log/syslog` if you run into problems.

```
d-i partman-auto-crypto/erase_disks boolean false
```

```
# The method should be set to "raid".
#d-i partman-auto/method string raid
# Specify the disks to be partitioned. They will all get the same layout, # so this will only work if the disks are the same size.
#d-i partman-auto/disk string /dev/sda /dev/sdb
```

```
# Next you need to specify the physical partitions that will be used.
#d-i partman-auto/expert_recipe string \ 
#  multiraid :: \\
#    1000 5000 4000 raid \\
#    $primary{ } method{ raid } \\
#    . \\
#    64 512 300% raid \\
#    method{ raid } \\
#    .
```
B.4. CONTENTS OF THE PRECONFIGURATION

500 10000 1000000000 raid \
method(raid) \
#

Last you need to specify how the previously defined partitions will be used in the RAID setup. Remember to use the correct partition numbers for logical partitions. RAID levels 0, 1, 5, 6 and 10 are supported; devices are separated using "#".

Parameters are:

<raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
<devices> <sparedevices>

d-i partman-auto-raid/recipe string \
1 2 0 ext3 / \
/dev/sda1#/dev/sdb1 \
. . \
1 2 0 swap - \
/dev/sda5#/dev/sdb5 \
. . \
0 2 0 ext3 /home \
/dev/sda6#/dev/sdb6 \
.

For additional information see the file partman-auto-raid-recipe.txt included in the 'debian-installer' package or available from D-I source repository.

This makes partman automatically partition without confirmation.

d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

B.4.7.3. Controlling how partitions are mounted

Normally, filesystems are mounted using a universally unique identifier (UUID) as a key; this allows them to be mounted properly even if their device name changes. UUIDs are long and difficult to read, so, if you prefer, the installer can mount filesystems based on the traditional device names, or based on a label you assign. If you ask the installer to mount by label, any filesystems without a label will be mounted using a UUID instead.

Devices with stable names, such as LVM logical volumes, will continue to use their traditional names rather than UUIDs.

FIGYELEM

Traditional device names may change based on the order in which the kernel discovers devices at boot, which may cause the wrong filesystem to be mounted. Similarly, labels are likely to clash if you plug in a new disk or a USB drive, and if that happens your system's behaviour when started will be random.

The default is to mount by UUID, but you can also choose "traditional" to use traditional device names, or "label" to try filesystem labels before falling back to UUIDs.

B.4.8. Az Alaprendszer telepítése

Jelenleg nincs sok előírható a telepítő e részéhez. Csak a kernel telepítéséhez vannak kérdések.
Configure APT to not install recommended packages by default. Use of this
option can result in an incomplete system and should only be used by very
experienced users.
#d-i base-installer/install-recommends boolean false

The kernel image (meta) package to be installed; "none" can be used if no
kernel is to be installed.
#d-i base-installer/kernel/image string linux-image-686

B.4.9. Az APT beállítása

A `/etc/apt/sources.list` beállítása és az alap beállítási opciók teljesen önműködőek a telepítő módtól és korábbi válaszoktól függően. További (ügynevezett helyi) tárák is megadhatók.

```
# You can choose to install non-free and contrib software.
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Uncomment this if you don’t want to use a network mirror.
#d-i apt-setup/use_mirror boolean false
# Select which update services to use; define the mirrors to be used.
# Values shown below are the normal defaults.
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

# Additional repositories, local[0-9] available
#d-i apt-setup/local0/repository string \n    http://local.server/debian stable main
#d-i apt-setup/local0/comment string local server
# Enable deb-src lines
#d-i apt-setup/local0/source boolean true
# URL to the public key of the local repository; you must provide a key or
# apt will complain about the unauthenticated repository and so the
# sources.list line will be left commented out.
#d-i apt-setup/local0/key string http://local.server/key
# If the provided key file ends in ".asc" the key file needs to be an
# ASCII-armoured PGP key, if it ends in ".gpg" it needs to use the
# "GPG key public keyring" format, the "keybox database" format is
# currently not supported.

# By default the installer requires that repositories be authenticated
# using a known gpg key. This setting can be used to disable that
# authentication. Warning: Insecure, not recommended.
#d-i debian-installer/allow_unauthenticated boolean true

# Uncomment this to add multiarch configuration for i386
#d-i apt-setup/multiarch string i386
```

B.4.10. Csomag választás

Az elérhető feladatok bármely kombinációja használható. Például:

- **standard** (standard tools)
- **desktop** (graphical desktop)
- **gnome-desktop** (Gnome desktop)
- **xfce-desktop** (XFCE desktop)
- **kde-desktop** (KDE Plasma desktop)
Feladatok nélküli telepítés is választható és más módon is utasítható a telepítés egy csomag-készletre. Ajánljuk, ez mindig tartalmazza a szabvány feladatot.

Ha egyéni csomagokat is telepítenél a feladatok által telepített csomagokon kívül, használd a pkgsel/include paramétert. E paraméter értéke csomagok egy vesszőkkel vagy szóközökkel elválasztott listája, mely lehetővé teszi, hogy a kernelnek is könnyen átadható legyen.

```plaintext
#tasksel tasksel/first multiselect standard, web-server, kde-desktop

# Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
# Whether to upgrade packages after debootstrap.
#d-i pkgsel/upload select none

# Some versions of the installer can report back on what software you have
# installed, and what software you use. The default is not to report back,
# but sending reports helps the project determine what software is most
# popular and should be included on the first CD/DVD.
#popularity-contest popularity-contest/participate boolean false
```

B.4.11. Boot betöltő telepítés

```plaintext
# Grub is the boot loader (for x86).
# This is fairly safe to set, it makes grub install automatically to the UEFI
# partition/boot record if no other operating system is detected on the machine.
#d-i grub-installer/only_debian boolean true

# This one makes grub-installer install to the UEFI partition/boot record, if
# it also finds some other OS, which is less safe as it might not be able to
# boot that other OS.
#d-i grub-installer/with_other_os boolean true

# Due notably to potential USB sticks, the location of the primary drive can
# not be determined safely in general, so this needs to be specified:
#d-i grub-installer/bootdev string /dev/sda
# To install to the primary device (assuming it is not a USB stick):
#d-i grub-installer/bootdev string default

# Alternatively, if you want to install to a location other than the UEFI
# partition/boot record, uncomment and edit these lines:
#d-i grub-installer/only_debian boolean false
#d-i grub-installer/with_other_os boolean false
#d-i grub-installer/bootdev string (hd0,1)
# To install grub to multiple disks:
#d-i grub-installer/bootdev string (hd0,1) (hd1,1) (hd2,1)

# Optional password for grub, either in clear text
#d-i grub-installer/password password r00tme
#d-i grub-installer/password-again password r00tme
# or encrypted using an MD5 hash, see grub-md5-crypt(8).
#d-i grub-installer/password-crypted password [MD5 hash]
```
Use the following option to add additional boot parameters for the
installed system (if supported by the bootloader installer).
Note: options passed to the installer will be added automatically.
#d-i debian-installer/add-kernel-opts string nousb

An MD5 hash for a password for `grub` can be generated using `grub-md5-crypt`, or using the command from the example in B.4.5. szakasz.

B.4.12. Finishing up the installation

During installations from serial console, the regular virtual consoles
(VT1-VT6) are normally disabled in /etc/inittab. Uncomment the next
line to prevent this.
#d-i finish-install/keep-consoles boolean true

Avoid that last message about the install being complete.
d-i finish-install/reboot_in_progress note

This will prevent the installer from ejecting the CD during the reboot,
which is useful in some situations.
#d-i cdrom-detected/eject boolean false

This is how to make the installer shutdown when finished, but not
reboot into the installed system.
#d-i debian-installer/exit/halt boolean true
This will power off the machine instead of just halting it.
#d-i debian-installer/exit/poweroff boolean true

B.4.13. Más csomagok előírása

A választott szoftvereketől függően, vagy a telepítő folyamat során
előjövő hibák esetén, más kérdések is előjöhetnek.
Természetesen ezek válaszai is előírhatók. Az összes lehetséges
kérdés listájához végezz egy telepítést majd
futtasd e parancsokat:
debconf-get-selections --installer > fájl
debconf-get-selections >> fájl

B.5. Haladó lehetőségek

B.5.1. Egyéni parancs futtatása telepítéskor

Az előíró eszközök egy nagyon erős és rugalmas lehetősége parancsok vagy szkriptek futtatása a telepítés egyes pontjain.

When the filesystem of the target system is mounted, it is available in /target. If an installation CD is used, when it is mounted it is available in /cdrom.

d-i preseeding is inherently not secure. Nothing in the installer checks
for attempts at buffer overflows or other exploits of the values of a
preconfiguration file like this one. Only use preconfiguration files from
trusted locations! To drive that home, and because it’s generally useful,
here’s a way to run any shell command you’d like inside the installer,
automatically.

This first command is run as early as possible, just after
preseeding is read.
d-i preseed/early_command string anna-install some-udeb
This command is run immediately before the partitioner starts. It may be
B.5.2. Előírás használata alap értékek módosítására

It is possible to use preseeding to change the default answer for a question, but still have the question asked. To do this the seen flag must be reset to "false" after setting the value for a question.

```bash
d-i foo/bar string value
d-i foo/bar seen false
```

The same effect can be achieved for all questions by setting the parameter preseed/interactive=true at the boot prompt. This can also be useful for testing or debugging your preconfiguration file.

Note that the „d-i” owner should only be used for variables used in the installer itself. For variables belonging to packages installed on the target system, you should use the name of that package instead. See the footnote to B.2.2. szakasz.

If you are preseeding using boot parameters, you can make the installer ask the corresponding question by using the „?=“ operator, i.e. foo/bar?=value (or owner:foo/bar?=value). This will of course only have effect for parameters that correspond to questions that are actually displayed during an installation and not for „internal” parameters.

For more debugging information, use the boot parameter DEBCONF_DEBUG=5. This will cause debconf to print much more detail about the current settings of each variable and about its progress through each package's installation scripts.

B.5.3. Előíró fájlok lánc-betöltése

Más előíró fájlok is csatolhatók egy előíró fájlból. E fájlok beállításai felülről ják a korábban betöltött fájlok beállításait. Ez lehetővé teszi például a helyek megfelelő általános hálózati beállítások elhelyezését egy fájlba és pontosabb beállításokat egyes konfigurációkhoz más fájlokba.

```bash
# More than one file can be listed, separated by spaces; all will be
# loaded. The included files can have preseed/include directives of their
# own as well. Note that if the filenames are relative, they are taken from
# the same directory as the preconfiguration file that includes them.
#d-i preseed/include string x.cfg

# The installer can optionally verify checksums of preprocessing files
# before using them. Currently only md5sums are supported, list the md5sums
# in the same order as the list of files to include.
#d-i preseed/include/checksum string 5d499872beccfeda2c4872f9171c3d

# More flexibly, this runs a shell command and if it outputs the names of
# preconfiguration files, includes those files.
#d-i preseed/include/command 
#    string if [ "'hostname'" = bob ]; then echo bob.cfg; fi

# Most flexibly of all, this downloads a program and runs it. The program
# can use commands such as debconf-set to manipulate the debconf database.
# More than one script can be listed, separated by spaces.
# Note that if the filenames are relative, they are taken from the same
# directory as the preconfiguration file that runs them.
#d-i preseed/run string foo.sh
```
Lehetséges lánc-töltés initrd vagy fájl előíró szakaszból, hálózati előírásba a preseed/url beállításával a korábbi fájlokban. Ez egy hálózati előírás végrehajtását adja a hálózat feléledésekor. Ezt óvatosan kell tenni, mert 2 önálló előírás fut, így például kétszer lefuthat a preseed/early parancs, másodszor a hálózat feléledése után.
C. függelék

Particionálás a Debian számára

C.1. A Debian partíciók és méretük eldöntése

Mint abszolút minimum, a GNU/Linux számára is legalább 1 partíció szükséges. Ekkor az operációs rendszer egésze, az alkalmazások és a személyes fájlok is egy partíción vannak. A többség szerint feltétlenül kell egy önálló cseré (swap) partíció, de ez nem feltétlen igaz. A „swap”, vagyis a cseréhely analógiájával élege egy fırka-hely, ahol a rendszer a lemezt, mint „virtuális memória” használhatja. A swap önálló partícióra helyezésével azt a Linux sokkal hatékonyabban használhatja. Az Linux rávezethető, hogy egy sima fájlt használjon erre a célra, de nem ajánlott.

A legtöbben a GNU/Linux-nek a minimálisnál több partíciót adnak. Több kisebb partíció használatára 2 jó ok is van. Ezek közül az első a biztonság. Ha valami fájlrendszer-sérülést okoz, általában csak 1 partíció érintett. Így csak a rendszer egy részét kell visszaállítani (a biztonsági mentésekkel, melyeket minden jó felhasználó tart). Egy úgynevezett „gyökér partíció” mindenképpen létrehozásra kerül. Ezen helyezkednek el a rendszer legfontosabb összetevői. Ha más partíció sérül, innen még mindig el tudod indítani a telepített GNU/Linux rendszert és helyreállítani a sérült adatokat. Ez is egy biztosíték arra, hogy a rendszert soha ne kelljen az alapoktól újratelepítened.

A másik fő ok sűrűbben fordul elő az üzleti életben, de valójában attól függ, mire használd a gépet. Például, ha egy levelező kiszolgálón kívülről is fogadsz leveleket, a levél-szemét könnyen betölthet egy partíciót. Ha a /var/mail egy önálló partícióra kerül egy ilyen gépen, a rendszer többi része még ekkor is rendesen működik majd.

Több partíció használatától csak az tarthat vissza, hogy néha nehéz előre megjósolni, mire lesz szükség. Ha egy partíció túl kicsire sikerül, akkor vagy újra kell telepíteni a rendszert, vagy folyamatosan átrakosgatod majd a tartalmát, hogy helyet szabadíts fel. Ezzel szemben, ha egy partíció túl nagy, esetleg kiesik hely, ami megfelelne mátra. A lemezhely olcsó manapság, de miért pazarolnánk?

C.2. A könyvtárfa

A Debian GNU/Linux a Fájlrendszer Hierarchia Szabvány-t követi a könyvtárak és fájlok elnevezésében. E szabvánnyal a felhasználók és programok számára megjósolható a fájlok és könyvtárak helye. A gyökér szintű könyvtárat a / jelenti. A gyökér szintjén minden Debian rendszer tartalmazza e könyvtárakat:

<table>
<thead>
<tr>
<th>Könyvtár</th>
<th>Tartalom</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Alapvető parancs binárisok</td>
</tr>
<tr>
<td>boot</td>
<td>A boot betöltő statikus fájljai</td>
</tr>
<tr>
<td>dev</td>
<td>Eszköz fájlok</td>
</tr>
<tr>
<td>etc</td>
<td>Gazdagép-specifikus rendszer beállítások</td>
</tr>
<tr>
<td>home</td>
<td>A felhasználók home könyvtárai</td>
</tr>
<tr>
<td>lib</td>
<td>Alapvető megosztott függvény-könyvtárak és kernel modulok</td>
</tr>
<tr>
<td>media</td>
<td>A külső adathordozók csatolási pontjai</td>
</tr>
<tr>
<td>mnt</td>
<td>Egy fájlrendszer ideiglenes csatolására szolgáló csatolási pont</td>
</tr>
<tr>
<td>proc</td>
<td>Virtuális könyvtár a rendszer adatokhoz</td>
</tr>
<tr>
<td>root</td>
<td>A 'root' felhasználó home könyvtára</td>
</tr>
<tr>
<td>run</td>
<td>Futási időben változó adatok</td>
</tr>
<tr>
<td>sbin</td>
<td>Alapvető rendszer binárisok</td>
</tr>
<tr>
<td>sys</td>
<td>Virtuális könyvtár a rendszer adatokhoz</td>
</tr>
</tbody>
</table>
Az alábbi lista a könyvtárakhoz és partíciókhoz kötődő legfontosabb szempontokat tartalmazza. A lemez használat nagyon eltérhet az adott rendszer összeállítástól és felhasználói módktól függően. Az ajánlások itt általános útmutatók és kiindulópontot adnak a particionáláshoz.

- **A** / gyökér partíciónak fizikailag tartalmaznia kell a /etc, /bin, /sbin, /lib és /dev könyvtárait, másképp nem indítható. Általában 250–350MB kell a gyökér partícióra.

- **/usr:** az összes felhasználói programot (/usr/bin), függvény-könyvtárakat (/usr/lib), dokumentációt (/usr/share/doc), stb. tartalmazza. Általában ez a legnagyobb partíció. Legalább 500MB helyet adj neki. Ezt a számot még növel vel a telepíténi tervezett csomagok számától és típusától függően. Egy mindent-bele típusú munkaállomáson vagy kiszolgálón akár a 4–6GB méretet is könnyen elérheti.

- **/var:** a változó adatok, mint hírek, email üzenetek, web lapok, adatbázisok, csomagkezelő gyorstár, stb. kerülnek ide. A könyvtár mérete nagyban függ a rendszer használatától, de a legtöbb felhasználó számára a csomagkezelő eszköz szabja meg. Ha egyszerre mindent telepíteni szeretnél, amit a Debian csak tud, a /var számára 2 vagy 3 GB hely is szükséges lehet. Ha darabokban telepíted a dolgokat (így például előbb a szolgáltatásokat és eszközöket, majd az X rendszt...) akár 300–500 MB is elég lehet. Ha a merevlemezen lévő hellyel nagyon spórolni kell és nem tervezel nagy rendszer-frissítéseket, akár még 30 vagy 40 MB méretre is lekicsinyíthető.

- **/tmp:** a programok által létrehozott átmeneti adatok általában ide kerülnek. 40–100MB általában elég. Egyes alkalmazások — például archívum kezelők, CD/DVD készítők és multimédia szoftverek — a /tmp könyvtárat kép fájlok átmeneti tárolására használhatják. Ha ilyen alkalmazások használatát tervezed, igazítsd a /tmp könyvtárban elérhető helyet ehhez.

- **/home:** a felhasználók személyes adataikat e könyvtár alkönyvtáraiba teszik. Mérete függ a felhasználók számától és attól, hogy milyen fájlokat tárolnak e saját könyvtáraikban. A telepített felhasználástól függően általában jó legalább 100MB helyet fenntartani mindegyiküknek, de igazítsd ezt az értékét igényeidhez. Tarts fent sokkal több helyet, ha sok multimédia fájl (képek, zenék, filmek) mentését tervezed saját könyvtáradba.

C.3. Ajánlott partíciós séma

For new users, personal Debian boxes, home systems, and other single-user setups, a single / partition (plus swap) is probably the easiest, simplest way to go. The recommended partition type is ext4.

Ha több felhasználó használhatja a rendszert és van hely, a legjobb séma, ha a /var, /tmp, és /home mind saját partícióra kerül a /partíciótól külön.

You might need a separate /usr/local partition if you plan to install many programs that are not part of the Debian distribution. If your machine will be a mail server, you might need to make /var/mail a separate partition. If you are setting up a server with lots of user accounts, it’s generally good to have a separate, large /home partition. In general, the partitioning situation varies from computer to computer depending on its uses.

A nagyon összetett rendszerekhez, lásd a Több lemez HOGYAN címet. Ez részletes leírást ad, melyet főleg az internet-szolgáltatók és kiszolgálók üzemeltetői hasznosítanak.

With respect to the issue of swap partition size, there are many views. One rule of thumb which works well is to use as much swap as you have system memory. It also shouldn’t be smaller than 512MB, in most cases. Of course, there are exceptions to these rules.

As an example, an older home machine might have 512MB of RAM and a 20GB SATA drive on /dev/sda. There might be a 8GB partition for another operating system on /dev/sda1, a 512MB swap partition on /dev/sda3 and about 11.4GB on /dev/sda2 as the Linux partition.

Az egyes feladatok által lefoglalt méretekkről, melyek közül egyeseket valószínűleg hozzáadnál a rendszer telepítése után, lásd a D.2. szakasz részt.
C.4. Eszköznevek Linuxban

A Linuxban is megtalálható lemez és partíció nevek eltérhetnek bizonyos más operációs rendszerekétől. Ismerned kell az itt használt neveket, amikor partíciókat hozol létre és csatolás. Itt az alap elnevezési rend:

- Az 1. lemez neve /dev/sda.
- The second hard disk detected is named /dev/sdb, and so on.
- Az 1. SCSI CD-ROM neve /dev/scd0, ami /dev/sr0 névvel is ismert.

Az egyes lemezek partíciói egy a lemez nevéhez fűzött tízes számrendszerbeli számmal ábrázoltak: az sda1 és sda2 a rendszer 1. SCSI lemez-meghajtójának 1. és 2. partícióját adják.

Itt egy valós példa. Tegyük fel, hogy van egy rendszer 2 SCSI lemezzel, az egyik a kettes, a másik a négyes SCSI címen. Az első lemez (a kettès címen) neve sda, a másodiké sdb. Ha az sda meghajtónak 3 partíciója van, neveik sda1, sda2 és sda3. Hasonlóan alakul az sdb lemez és partíciói.

Jó tudni, hogy ha 2 SCSI gazda busz adaptered (vezérlőd) van, a meghajtók sorrendje megkavaró lehet. Ilyenkor a legjobb figyelni a boot üzeneteket, a meghajtók modellje és/vagy kapacitása ismeretében.

Linux represents the primary partitions as the drive name, plus the numbers 1 through 4. For example, the first primary partition on the first drive is /dev/sda1. The logical partitions are numbered starting at 5, so the first logical partition on that same drive is /dev/sda5. Remember that the extended partition, that is, the primary partition holding the logical partitions, is not usable by itself.

C.5. Debian particionáló programok

A Debian fejlesztők számos particionáló programot alkalmaztak a különböző merevlemezekhez és számítógéparchitektúrákhoz. Itt az architektúrádhoz illő programok sora.

-)**partman** A Debian rendszer ajánlott particionáló eszköze. Ez a svájci bicska átméretez partíciókat, létrehoz fájlfedezéreken („formáz” a windowsos-nyelvűeknek) és csatolási pontokhoz rendeli őket.

-)**fdisk** Az eredeti Linux lemez-particionáló, tapasztaltaknak való.

 Légy óvatos, ha FreeBSD partícióid vannak. A telepítő kernelek támogatják ezeket a partíciókat, de ahogyan az fdisk megjeleníti (vagy nem) ezeket, az eszköznevek eltérhetnek. Lásd a Linux+FreeBSD HOGYAN leírást.

-)**cfdisk** Könnyen használható, teljes-képernyős lemez particionáló sokunknak.

 Tudni kell, hogy a cfdisk egyáltalán nem érti a FreeBSD partíciókat, és újra, az eszközök nevei eltérhetnek emiatt.

 E programok egyike indul a Lemezek particionálása (vagy hasonló) választásakor. Más particionáló eszköz is használható a VT2 által adott parancsorban, de nem ajánlott.

 Jelöld be az indító partíciót, mint „Bootable”.

C.5.1. Particionálás 64-bit PC gépen

If you are using a new harddisk (or want to wipe out the whole partition table of your disk), a new partition table needs to be created. The „Guided partitioning” does this automatically, but when partitioning manually, move the selection on the top-level entry of the disk and hit Enter. That will create a new partition table on that disk. In expert mode, you will then be asked for the type of the partition table. Default for UEFI-based systems is „gpt”, while for the older BIOS world the default value is „msdos”. In a standard priority installation those defaults will be used automatically.

MEGJEGYZÉS

When a partition table with type „gpt” was selected (default for UEFI systems), a free space of 1 MB will automatically get created at the beginning of the disk. This is intended and required to embed the GRUB2 bootloader.

Ha van egy létező rendszered, netán DOS vagy Windows és valamiért meg akarnád őrizni őket, miközben már a Debian rendszert telepíted, biztosítanod kell, akár a partíciók átméretezésével a szabad helyet a Debian telepítésének.

88
A telepítő támogatja a FAT és NTFS fájlrendszer átméretezését is; a telepítő particionálójába lépve válaszad a Kézi szerkesztés lehetőségét, egyszerűen jelölj ki egy létező partíciót és változtasd meg méretét.

While modern UEFI systems don't have such limitations as listed below, the old PC BIOS generally adds additional constraints for disk partitioning. There is a limit to how many „primary” and „logical” partitions a drive can contain. Additionally, with pre 1994–98 BIOSes, there are limits to where on the drive the BIOS can boot from. More information can be found in the Linux Partition HOWTO, but this section will include a brief overview to help you plan most situations.

Az „elsődleges” partíciók a PC lemezek eredeti particionáló sémája. Ebből csak 4 lehet. E korlátok átlépésére születtek a „kiterjesztett” és „logikai” partíciók. Egy elsődleges partíció kiterjeszttette állításával e partícióhoz le-foglalt teljes terület logikai partíciókra osztható. Kiterjeszttet partícióként 60 logikai partíció hozható létre; viszont meghajtónként csak 1 kiterjesztett partíció lehet.

A Linux a meghajtónként partíciók számát 255 partícióra korlátozza SCSI lemezeknél (3 használható elsődleges és 252 logikai) és 63 partícióra IDE meghajtón (3 használható elsődleges és 60 logikai). De a Debian GNU/Linux rendszer csak 20 eszköz rendel partíciókhoz, így telepítésre 20 partíciót használhatok míg nem hozol előbb létre eszközöket továbbiakhoz.

Nagy IDE lemez esetén, ha nem használás sem LBA címzést sem átlapoló meghajtókat (néha merevlemez-gyártók adják), az indító partíció (a kernel képet tartalmazó partíció) a merevlemez 1. 1024 cilinderén kell legyen (általában mintegy 524 MB, BIOS általi áthelyezés nélkül).

This restriction doesn’t apply if you have a BIOS newer than around 1995–98 (depending on the manufacturer) that supports the „Enhanced Disk Drive Support Specification”. Debian’s Lilo alternative mbr must use the BIOS to read the kernel from the disk into RAM. If the BIOS int 0x13 large disk access extensions are found to be present, they will be utilized. Otherwise, the legacy disk access interface is used as a fall-back, and it cannot be used to address any location on the disk higher than the 1023rd cylinder. Once Linux is booted, no matter what BIOS your computer has, these restrictions no longer apply, since Linux does not use the BIOS for disk access.

Nagy lemezekhez cilinder áthelyező technikát kell alkalmazni, mely a BIOS beállításban van, például LBA (logikai blokk címzés) vagy CHS áthelyező mód („Large”). A nagy lemezekről szóló tudnivalók a Nagy lemezek HOGYAN leírásban vannak. Cilinder áthelyező sémá esetén, ha a BIOS nem támogatja a nagy lemez-elérés kiterjesztéseket, az indító partíció az 1024. cilinder áthelyezett megfelelőjében kell legyen.

Az ajánlott mód ennek a teljesítésére egy kis (25–50MB elég lehet) partíció létrehozása az indító partícióra használt lemez elején és más partíciók létrehozása a fennmaradó területen. Az indító partíciót kötelező a /boot könyvtárba csatolni, mivel ez a Linux kernel(ek) helye. E konfiguráció bármilyen rendszeren működő fog, függetlenül az LBA vagy nagy lemez CHS áthelyezés használatától, vagy attól, hogy az elavult BIOS támogatja-e a nagy lemez-elérés kiterjesztéseket.
D. függelék

Vegyes tudnivalók

D.1. Linux eszközök

<table>
<thead>
<tr>
<th>Fájl</th>
<th>Leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>First hard disk</td>
</tr>
<tr>
<td>sdb</td>
<td>Second hard disk</td>
</tr>
<tr>
<td>sda1</td>
<td>1. partíció az 1. merevlemezen</td>
</tr>
<tr>
<td>sdb7</td>
<td>Az 2. merevlemez 7. partíciója</td>
</tr>
<tr>
<td>sr0</td>
<td>First CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>Second CD-ROM</td>
</tr>
<tr>
<td>ttyS0</td>
<td>0. soros port, ami DOS alatt COM1</td>
</tr>
<tr>
<td>ttyS1</td>
<td>1. soros port, ami DOS alatt COM2</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2 egér eszköz</td>
</tr>
<tr>
<td>gpmdata</td>
<td>Al-eszköz, a GPM (egér) démon ismétlő adatai</td>
</tr>
<tr>
<td>cdrom</td>
<td>Szimbolikus lánc a CD-ROM eszközre</td>
</tr>
<tr>
<td>egér</td>
<td>Szimbolikus lánc (symbolic link) az egér eszköz fájlra</td>
</tr>
<tr>
<td>null</td>
<td>Az erre az eszközre írtak eltűnnek</td>
</tr>
<tr>
<td>zero</td>
<td>Erről az eszkökről lehet végtelenül 0 értéket olvasni</td>
</tr>
</tbody>
</table>

D.1.1. Az egér beállítása

Egyes kernel moduloknak betöltve kell lennie az egér működéséhez. A legtöbb esetben a helyes modulok önműködően felismerésére kerülnek, de régi-stílusú soros és busz egereknél nem mindig1, melyek rendkívül ritkák, kivéve pár nagyon régi gépen. A különféle egér típusokhoz szükséges Linux kernel modulok összefoglalója:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmouse</td>
<td>PS/2 egerek (auto-detekáltak)</td>
</tr>
</tbody>
</table>

1A sorok egereknél általában 9-tűs D-alakú dugójuk van; a busz egereknél 8-tűs kerek dugójuk, nem keverendő egy PS/2 egér 6-tűs kerek vagy egy ADB egér 4-tűs kerek dugójával.
Egy egér meghajtó modult betöltéséhez könnyen használható a modconf parancs (a hasonló nevű csomagból), lásd a kernel/drivers/input/mouse részt.

D.2. Feladatokhoz szükséges hely

A szabvány amd64 telepítés az összes szabvány csomaggal és az alap kernellel 971MB méretű. Egy minimális alap telepítés a „Szabvány rendszer” kijelölésének megszüntetésével 769MB.

Az alábbi táblázat a tasksel programban lévő feladatok aptitude által adott méretét adja. Több feladat részben átfedi egymást, így 2 feladat teljes telepítési mérete kevesebb lehet, mint a számok sima összeadásából származó összeg.

<table>
<thead>
<tr>
<th>Feladat</th>
<th>Telepített méret (MB)</th>
<th>Letöltési méret (MB)</th>
<th>Telepítéshez szükséges hely (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asztali környezet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (default)</td>
<td>2790</td>
<td>786</td>
<td>3576</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4122</td>
<td>1212</td>
<td>5334</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2187</td>
<td>621</td>
<td>2808</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2271</td>
<td>653</td>
<td>2924</td>
</tr>
<tr>
<td>• MATE</td>
<td>2574</td>
<td>711</td>
<td>3285</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4197</td>
<td>1251</td>
<td>5448</td>
</tr>
<tr>
<td>Webkiszolgáló</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>SSH kiszolgáló</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Ha nem angolul telepítesz, a tasksel programmal automatikusan telepítésre kerül egy honosítási feladat, ha elérhető nyelvedhez. Az igényelt hely nyelvenként eltér; főleg a távol-keleti nyelvek esetében akár 350MB méretű is lehet, amúgy legalább 100MB méretet érdemes rá számolni.

D.3. A Debian GNU/Linux telepítése egy Unix/Linux rendszerből

E szakasz leírja, hogyan telepítsd a Debian GNU/Linux rendszeredet létező Unix vagy Linux rendszer alól a menüvezérelt telepítő nélkül, amit már leírtunk e kézikönyvben. E „kereszt-telepítő” HOGYAN leírást seregnyi felhasználónk kérte, akik Debian GNU/Linux rendszerre váltanak mégpedig üzenetünet nékle például Red Hat, Mandriva és SUSE disztribúciókról. A szakasz azért feltételezi legalább a legalapvetőbb *nix parancsként és fájlrendszer ismeretét. E szakaszban a § a felhasználó mostani rendszerében, a # a Debian chroot környezetben kiadványt jelöli.

A Debian telepítés végzésével átviheted rá létező felhasználói adataidat (ha vannak), és folyamatosan életben tartatod. Ezért ez egy „zéró leállású” Debian GNU/Linux telepítés. A különböző indító vagy telepítő médiával nem baráti hardverekkel is el lehet így bánni.
D.3. Kezdés

With your current *nix partitioning tools, repartition the hard drive as needed, creating at least one filesystem plus swap. You need around 769MB of space available for a console only install, or about 2271MB if you plan to install X (more if you intend to install desktop environments like GNOME or KDE Plasma).

Ezután hozd létre a fájlrendsereket a partíciókon. Például egy ext3 fájlrendszer létrehozásához a /dev/sda6 partíción (ez a példa gyökér partíciónk):

```
# mke2fs -j /dev/sda6
```

Egy ext2 fájlrendszerhez hagyd el a -j opciót.

Inicializáld és aktiváld a cserehelyet (cseréld a partíción számot tervezett Debian csere partícíódra):

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

Csatolj egy partíción mint /mnt/debinst (a csatolási pont, a leendő (/) fájlrendszer az új rendszeren). A csatolási pont név teljesen önkényes. alább hivatkozunk rá.

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

D.3.2. A debootstrap telepítése

A Debian telepítő által használt eszköz, mely a Debian alaprendszer telepítésének hivatalos módja a debootstrap. A wget és ar programokat használja, de amúgy csak a /bin/sh és alapi Unix/Linux eszközöket használja. Telepítsd a wget és ar programokat, majd töltsd le és telepítsd a debootstrap programot.

Vagy használd az alábbi eljárást kézi telepítésére. Készíts egy munka-könyvtárat a .deb kibontására:

```
# mkdir munka
# cd munka
```

A debootstrap bináris a Debian archívumban van (a gépednek megfelelő fájlt válassz). Töltsd le a debootstrap .deb fájlt innen: pool a munka könyvtárba és bontsd ki fájljait. Rendszergazda jog kell a fájlok telepítéséhez.

```
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /a-munka-útvonala/munka/data.tar.gz | tar xv
```

²Ezek a GNU mag-eszközök (coreutils) és sed, grep, tar és gzip parancsok.
D.3.3. Futtass a debootstrap programot

If you have a bullseye Debian GNU/Linux installation image mounted at /cdrom, you could substitute a file URL instead of the http URL:

```bash
# /usr/sbin/debootstrap --arch ARCH bullseye /
/mnt/debinst http://ftp.us.debian.org/debian
```

If the target architecture is different than the host, you should add the --foreign option.

D.3.4. Az alaprendszer beállítása

Now you’ve got a real Debian system, though rather lean, on disk. chroot into it:

```bash
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

If the target architecture is different from the host, you will need to first copy qemu-user-static to the new host:

```bash
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

After chrooting you may need to set the terminal definition to be compatible with the Debian base system, for example:

```bash
# export TERM=xterm-color
```

Depending on the value of TERM, you may have to install the ncurses-term package to get support for it.

If the target architecture is different from the host, you need to finish the multi-stage boot strap:

```bash
/debootstrap/debootstrap --second-stage
```

D.3.4.1. Eszközfájlok létrehozása

Ezen a ponton a /dev/ csak nagyon alap eszközfájlokat tartalmaz. A telepítés következő lépéseinek további eszközfájlok kellene lenni. Ezt többféle módon is megoldhatod, hogy melyik módszert választod, az függ a telepítéshez használt rendszerétől, hogy akarsz-e moduláris kernenl használni, és hogy dinamikus (például az udev-vel) vagy statikus eszközfájlokat szeretnél használni az új rendszerrel.

Néhány az elérhető lehetőségek közül:

- telepítsd a makedev csomagot és hozd létre a statikus eszközfájlok egy alaphalmazát(chroot után), így

```bash
# apt install makedev
# mount none /proc -t proc
# cd /dev
# MAKEDEV generic
```

- kézzel hozz létre csak bizonyos eszközfájlokat a MAKEDEV paranccssal

- bindeld (bind mount) a /dev-et a gazda rendszerből a célrendszer /dev-jéként; jó tudni, hogy néhány csomag postinst szkriptjei megpróbálhatnak létrehozni eszköz fájlokat, ezért ez a lehetőség csak óvatosan használhlandó

D.3.4.2. Partíciók csatolása

You need to create /etc/fstab.

```bash
# editor /etc/fstab
```

Here is a sample you can modify to suit:
/etc/fstab: static file system information.

#
file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX none swap sw 0 0
proc /proc proc defaults 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nosuid,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2

Use `mount -a` to mount all the file systems you have specified in your `/etc/fstab`, or, to mount file systems individually, use:

```bash
# mount /path  # e.g.: mount /usr
```

Current Debian systems have mountpoints for removable media under `/media`, but keep compatibility symlinks in `/`. Create these as needed, for example:

```bash
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```

You can mount the proc file system multiple times and to arbitrary locations, though `/proc` is customary. If you didn’t use `mount -a`, be sure to mount proc before continuing:

```bash
# mount -t proc proc /proc
```

Az `ls /proc` tele kell, hogy legyen. Ha üres, kívülről kell csatolnod:

```bash
# mount -t proc proc /mnt/debinst/proc
```

D.3.4.3. Időzóna beállítása

A `/etc/adjtime` fájl harmadik sorába „UTC”-t vagy „LOCAL”-t írva szabható meg, hogy a rendszer a hardver óráit az UTC vagy a helyi időre állítva értelmezi-e. Az alábbi paranccsal állítható ez be.

```bash
# editor /etc/adjtime
```

Itt egy minta:

```
0.0 0 0.0
0
UTC
```

Az alábbi paranccsal állítható be az időzóna.

```bash
# dpkg-reconfigure tzdata
```

D.3.4.4. Hálózat beállítása

To configure networking, edit `/etc/network/interfaces`, `/etc/resolv.conf`, `/etc/hostname` and `/etc/hosts`.

```bash
# editor /etc/network/interfaces
```

Here are some simple examples from `/usr/share/doc/ifupdown/examples`:
D.3. A DEBIAN GNU/Linux TELEPÍTÉSE EGY...

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

See the interfaces(5) manpage for information on what options are available.

The loopback interface isn’t really required any longer, but can be used if needed.

```
auto lo
iface lo inet loopback
```

To use dhcp:

```
auto eth0
iface eth0 inet dhcp
```

An example static IP setup: (network, broadcast and gateway are optional)

```
auto eth0
iface eth0 inet static
daress 192.168.0.42
  network 192.168.0.0
  netmask 255.255.255.0
  broadcast 192.168.0.255
  gateway 192.168.0.1
```

Enter your nameserver(s) and search directives in /etc/resolv.conf:

```
# editor /etc/resolv.conf
```

A simple example /etc/resolv.conf:

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Enter your system’s host name (2 to 63 characters):

```
# echo DebianHostName > /etc/hostname
```

And a basic /etc/hosts with IPv6 support:

```
127.0.0.1 localhost
127.0.1.1 DebianHostName
```

The following lines are desirable for IPv6 capable hosts:

```
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

If you have multiple network cards, you should arrange the names of driver modules in the /etc/modules file into the desired order. Then during boot, each card will be associated with the interface name (eth0, eth1, etc.) that you expect.

D.3.4.5. Az APT beállítása

Debootstrap will have created a very basic /etc/apt/sources.list that will allow installing additional packages. However, you may want to add some additional sources, for example for source packages and security updates:

```
debsrc http://ftp.us.debian.org/debian bullseye main

debs http://security.debian.org/ bullseye-security main
```
deb-src http://security.debian.org/ bullseye-security main

Make sure to run `apt update` after you have made changes to the sources list.

D.3.4.6. Honosítás és billentyűzet beállítása

To configure your locale settings to use a language other than English, install the `locales` support package and configure it. Currently the use of UTF-8 locales is recommended.

```
# apt install locales
# dpkg-reconfigure locales
```

To configure your keyboard (if needed):

```
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

A billentyűzet nem kerül beállításra a chroot környezetben, de az újraindítás után igen.

D.3.5. Kernel telepítése

A rendszer indításához kell egy Linux kernel és egy boot betöltő. Az elérhető elő-csomagolt kernelek ezzel találhatod meg:

```
# apt search linux-image
```

Ezután telepítsd a választott kernel csomagot a csomagneve használatával.

```
# apt install linux-image-arch-etc
```

D.3.6. A boot betöltő beállítása

To make your Debian GNU/Linux system bootable, set up your boot loader to load the installed kernel with your new root partition. Note that `debootstrap` does not install a boot loader, but you can use `apt` inside your Debian chroot to do so.

Check `info grub` for instructions on setting up the bootloader. If you are keeping the system you used to install Debian, just add an entry for the Debian install to your existing grub2 `grub.cfg`.

```
Installing and setting up grub2 is as easy as:
```

```
# apt install grub-pc
# grub-install /dev/sda
# update-grub
```

The second command will install `grub2` (in this case in the MBR of `sda`). The last command will create a sane and working `/boot/grub/grub.cfg`.

Jó tudni, hogy ez feltételezi, hogy egy `/dev/sda` eszközfájl létre lett hozva. Vannak más módok is a `grub2` telepítésre, de azok nem tartoznak e függelék hatókörén.

D.3.7. Remote access: Installing SSH and setting up access

In case you can login to the system via console, you can skip this section. If the system should be accessible via the network later on, you need to install SSH and set up access.

```
# apt install ssh
```

Root login with password is disabled by default, so setting up access can be done by setting a password and re-enable root login with password:

```
# passwd
# editor /etc/ssh/sshd_config
```

This is the option to be enabled:

```
PermitRootLogin yes
```
Access can also be set up by adding an ssh key to the root account:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

Lastly, access can be set up by adding a non-root user and setting a password:

```
# adduser joe
# passwd joe
```

D.3.8. Utolsó simítások

As mentioned earlier, the installed system will be very basic. If you would like to make the system a bit more mature, there is an easy method to install all packages with „standard” priority:

```
# tasksel install standard
```

Of course, you can also just use `apt` to install packages individually.

A telepítés után a letöltött csomagok a `/var/cache/apt/archives/` könyvtárban vannak. Ezek teljes törlésével felszabadítható egy kis hely például így:

```
# apt clean
```

D.4. A Debian GNU/Linux telepítése Parallel Line IP (PLIP) felett

E szakasz bemutatja, hogy telepítsük a Debian GNU/Linux rendszert hálózati tükörrel egy Ethernet kártya nélküli gépen, csak egy Null-Modem kábel (Null-Printer kábel) által csatolt átjáró géppel. Az átjáró gép Debian tükört elérő hálózaton van (például Interneten).

E példában beállítunk egy Internetre kötött átjárót használó PLIP kapcsolatot be-tárcsázós kapcsolaton (ppp0). A 192.168.0.1 és 192.168.0.2 IP címeket használjuk a PLIP csatolókhoz a cél és forrás rendszeren (természetesen, ha ezeket használjuk, más ne használja a hálózaton).

A telepítés alatt használt PLIP kapcsolat a telepített rendszer újraindítása után is elérhető (lásd: 7. fejezet).

Kezdés előtt ellenőrizd a párhuzamos kapuk BIOS beállításait (IO címek és IRQ) a forrás és cél rendszeren is. A legáltalánosabb értékek ezek: `io=0x378`, `irq=7`.

D.4.1. Követelmények

- A gép, melyet most így hívunk: `cél`, melyre a Debian rendszert most telepítjük.
- Rendszer telepítő média; lásd: 2.4. szakasz.
- Egy másik gép, mely az Internetre van kötve, neve `forrás`, mely az átjárót adja majd.

D.4.2. Forrás beállítása

Az alábbi hét parancs-füjl egy egyszerű példa a forrás gép átjárónak állítására az Internetre a ppp0 által.

```
#!/bin/sh

# Eltávolítsuk a futó modulokat a kernelből az ütközések elkerüléséért és
# beállítsuk kézzel.
modprobe -r lp parport_pc
modprobe parport_pc io=0x378 irq=7
modprobe plip

# A plip csatoló beállítása (nálam plip0, lásd: dmesg | grep plip)
ifconfig plip0 192.168.0.2 pointopoint 192.168.0.1 netmask 255.255.255.255 up
```
Átjáró beállítása

```bash
modprobe iptable_nat
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward
```

D.4.3. A cél telepítése

Indítsd a telepítő médiumat. Szakértő mód kell majd, írd be ezt: `expert` az indító jelnél. Ha paraméterek kellenek kernel modulokhoz, ezt is itt kell megtenni. Például a telepítő indításához és a parport_pc modul „io” és „irq” értékek beállításához add meg az alábbi az indító jelnél:

```bash
expert parport_pc.io=0x378 parport_pc.irq=7
```

Alább a telepítés egyes részeinél adandó válaszok.

1. Load installer components from installation media
 - Válaszd a `plip-modules` opciót a listából; így a PLIP meghajtók elérhetőek lesznek a telepítő rendszer számára.

2. Hálózati hardver érzékelése
 - Ha a cél gépen van hálózati kártya, megjelenik egy meghajtó modul lista az érzékelt kártya számára. Ha azt akarod, hogy a debian-installer plip modult használjon, töröld mindegyik kijelölést. Ha a cél gépen nincs hálózati kártya, a telepítő nem adja e listát.
 - Mivel nem volt hálózati kártya felismerés/választás, a telepítő kér egy hálózati meghajtó modul választására. Válaszd a `plip` modult.

3. Hálózat beállítása
 - Hálózat automatá-beállítása DHCP segítségével: Nem
 - IP cím: `192.168.0.1`
 - Pont-pont cím: `192.168.0.2`
 - Név kiszolgáló címek: a forráson is használt címek használhatóak (lásd a `/etc/resolv.conf` fájlt)

D.5. A Debian GNU/Linux telepítése PPP over Ethernet (PPPoE) használhatával

Pár országban a PPP Ethernet felett (PPPoE) egy általános protokoll a szélessávú (DSL vagy kábel) kapcsolatokhoz egy Internet-szolgáltatótól. Egy hálózati kapcsolat beállítását PPPoE használhatával alapban nem támogatja a telepítő, de nagyon könnyen használható be. E szakasz leírja, hogyan.

To have the option of setting up and using PPPoE during the installation, you will need to install using one of the CD-ROM/DVD images that are available. It is not supported for other installation methods (e.g. netboot).

A PPPoE és más telepítések szinte egyeznek. Az alábbi lépések a különbségek:

- Indítsd a telepítőt a `modules=ppp-udeb` indító paraméterrel³. Így a PPPoE beállító összetevő (`ppp-udeb`) önműködően betöltésre és futtatásra kerül.
- Kövesd a telepítő szokásos kezdő lépéseit (nyelv, ország és billentyűzet kiválasztása; további telepítő összetevők betöltése⁴)
- A következő lépés a hálózati hardver érzékelése a rendszeren lévő bármely Ethernet kártya azonosítására.

³Lásd a 5.1.7. szakasz linket további információkért az indító paraméter hozzáadásával kapcsolatban.
⁴A `ppp-udeb` a további összetevők egyikének kerül betöltése e lépésben. Közepes vagy alacsony (szakértő mód) elsőbbségű telepítés esetén, kézzel is kiválasztható a `modules` paraméter megadása helyett az indító jelnél.
• Ezután indul a PPPoE tényleges beállítása. A telepítő minden csatolón keres PPPoE koncentrátort (egy PPPoE kapcsolatot kezelő kiszolgáló típus).

Lehet, hogy elsőre nem talál. Ezt okozhatja lassú vagy terhelt hálózat vagy hibázó kiszolgáló. Általában másodikra sikerül; újrapróbáláshoz válaszd az Egy PPPoE kapcsolat beállítása és indítása pontot a telepítő fő menüjéből.

• A koncentrátort elérve, a felhasználó meg kell adja bejelentkezési adatait (a PPPoE felhasználónevet és jelszót).

• Ekkor a telepítő használja a megadott adatokat a PPPoE kapcsolat felépítéséhez. Helyes adatok esetén a PPPoE kapcsolat beállításra kerül és a telepítő képes használni az Internetre kapcsolódáshoz és onnan csomagok letöltésére (ha szükséges). Ha a bejelentkezési adatok rosszak vagy más hiba esetén a telepítő szünetel és a beállítás javítható a PPPoE kapcsolat beállítása és indítása ponittal.
E. függelék

Karbantartás

E.1. E dokumentumról

E kézikönyv a Sarge Debian Telepítőjéhez készült a Woody boot-floppies telepítő kézikönyv alapján, mely a korábbi Debian telepítő kézikönyvekre épült és a Progeny kézikönyv alapján, mely GPL alatt került kiadásra 2003-ban.

E dokumentum karbantarthatóságának érdekében, számos XML képességet használunk, például entitásokat és profil attribútumokat. Ezek a programozási nyelvek változóhoz és feltételeihez hasonlók. E dokumentum XML forrása tartalmaz gépenként eltérő adatokat is — a profil attribútumokat arra használjuk, hogy elválasszuk a szöveg egyes apró, gép-függő részeit.

E.2. E dokumentum támogatása

Ha gondjaid vagy javaslataid vannak e dokumentummal kapcsolatban, lehetőséged van hibajegyet küldeni az installation-guide csomaghoz. Lásd a reportbug csomagot vagy olvass bele a Debian Hibakezelő Rendszer (BTS) dokumentáció-jába. Légy szíves, ellenőrizd az installation-guide nyitott hibáit, hogy a hibákat megfelelőenről-e már. Ha igen, küldhetsz hozzá további segítséget egy ehhez hasonló címre: XXXX@bugs.debian.org, ahol XXXX a már-jelentett hiba száma.

Better yet, get a copy of the DocBook source for this document, and produce patches against it. The DocBook source can be found at the installation-guide project on salsa. If you're not familiar with DocBook, don't worry: there is a simple cheatsheet in the manuals directory that will get you started. It's like html, but oriented towards the meaning of the text rather than the presentation. Patches submitted to the debian-boot mailing list (see below) are welcomed. For instructions on how to check out the sources via git, see README from the source root directory.

Kérlek, ne közvetlenül e dokumentum szerzőinek írj. Van egy debian-installer vita-lista, mely e kézikönyvről is szól. E lista a debian-boot@lists.debian.org. A feliratkozásokhoz lásd a Debian Levelező Lista Feliratkozás oldalt; de böngészheted a Debian Levelező Lista Archívumokat is.

E.3. Kiemelt közreműködők

E dokumentumot eredetileg Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy, és Adam Di Carlo írta. Sebastian Ley írta az Telepítés Hogyan-t.

Miroslav Kufe dokumentálta az új képességek nagy részét Sarge Debian Telepítőjében. Frans Pop volt a fő szerkesztő és kiadás menedzser az Etch, Lenny és Squeeze kiadásoknál.

Nagyos-magyar sok Debian felhasználó és fejlesztő segítette e dokumentumot. Közülük külön meg kell említeni a következőket: Michael Schnitz (m68k támogatás), Frank Neumann (az Amiga telepítő kézikönyv eredeti szerzője), Arto Astala, Eric Delaunay/ Ben Collins (SPARC adatok), Tapio Lehtonen, és Stéphane Bortzmeyer különböző szövegek és szerkesztői munkák. Köszönet illeti Pascal Le Bail-t a pen-drive indítással kapcsolatos adatokért.

Rendkívül hasznos szövegek és adatok voltak egyebek közé Jim Mintha hálózati indítás HOGYAN-jában (nincs elérhető URL), a Debian FAQ-ban, a Linux/m68k FAQ-ban, a Linux for SPARC Processors FAQ-ban és a Linux/-
Alpha FAQ-ban. E bőséges anyagot tartalmazó, szabadon elérhető források karbantartóinak munkája elismerésre méltó.
A chroot telepítés fejezet e kézikönyvben részben (D.3. szakasz) Karsten M. Self dokumentumaiból készült.
A plip telepítő fejezet e kézikönyvben (D.4. szakasz) Gilles Lamiral PLIP-Install-HOWTO alapján készült.

E.4. Márkajegy tudnivalók

Minden védjegy az egyes védjegy birtokosok tulajdona.
F. függélék

GNU General Public License - GNU Általános Közösségi Licenc

MEGJEGYZÉS

This is an unofficial translation of the GNU General Public License into Hungarian.
It was not published by the Free Software Foundation, and does not legally state the
distribution terms for software that uses the GNU GPL — only the original English
text of the GNU GPL does that. However, we hope that this translation will help
Hungarian speakers to better understand the GNU GPL.

Ez a GNU General Public License egy nem-hivatalos magyar fordítása. Nem a Free
Software Foundation adta ki, és nem adja meg jogilag egy GNU GPL alatti szoft-
ver terjesztési feltételeit — csak a GNU GPL eredeti angol változata teszi ezt. De
reméljük e fordítás segít a magyar nyelvű felhasználóknak a GNU GPL megértésé-
ben.

2. verzió, 1991 június

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Bármiképpen használhatja és terjesztheti e licenc szó szerinti másolatát,
de nem módosíthatja azt.

F.1. Bevezetés

A legtöbb szoftver licencét arra tervezték, hogy megvonja szabadságodat a másolásától és terjesztésétől. Ezzel szem-
ben a GNU General Public License célja, hogy garantálja a szabadságod a szabad szoftver másolásában és terjesz-
tésében — ezáltal biztosítva a szoftver szabad felhasználhatóságát minden felhasználó számára. A General Public
License vonatkozik a Free Software Foundation legtöbb szoftverére és minden más programra, melyek szerzői en-
nek használatáról nyilatkoztak. (Néhány más Szabad Szoftver Alapítvány-i szoftver ehelyett a GNU Lesser General
Public License-t használja.) Te is használhatod ezt programjaidhoz.

Amikor szabad szoftverről beszélünk, akkor a szabadságra utalunk, nem az árra. GPL licenceineket arra terveztük,
hogy biztosítsuk szabadságod a szabad szoftver másolatainak terjesztésére (és költség felszámítására a szolgáltatásért,
aha kívánod), amelyek forráskódját megkapod vagy megkaphatod, ha akarod; amely szoftvert megváltoztathatsz vagy
darabjait használhatod új szabad programokban; és tudd azt, hogy megtetheted ezeket a dolgokat.

Jogaid védelmére, szükségesnek tartjuk korlátozások megtételét, melyek megtiltják, hogy valaki megtagadja Tő-
led ezeket a jogokat, vagy Téged jogaid lemondására kérjen. E korlátozások a Te kötelezettségeidet írják elő, ha a
szoftvereke másolatait terjeszted, vagy módosítod azokat.

Például, ha akár ingyen akár pénzért ilyen program másolatait terjeszted, minden jogodat meg kell adnod az
átvevőknek. Meg kell győződni róla, hogy űk is megkapják, vagy megkaphatják a forráskódot. És ismertetned kell
számukra ezeket a kikötéseket, hogy ők is megismerjék a jogaikat.

A jogaid két eszközzel védhük: (1) a szoftver szerzői jogi védelem alá helyezzük, és (2) átadjuk Neked ezt a licencet, amely jogszerű engedélyt ad a szoftver másolására, terjesztésére és/vagy módosítására.

Valamint, minden szerző és a saját magunk védelmében, biztosak akarunk lenni abban, hogy mindenki megérti: nincs szavatosság a szabad szoftverre. Ha a szoftver valaki módosította és továbbadta, az akárjak, annak átvévei tudják, hogy nem az eredetit birtokolják, és így semmilyen, mások által bevitt probléma nem vet rossz fényt az eredeti szerzők jó hírnevére.

Végül, minden szabad program állandó fenyegetettség alatt áll, és bármelyik átvételére szorul a programhoz közzététel. A feltételeket annak átvételére, amely szabadalmi engedélyt ad a programhoz, kell betartani.

A másolásra, terjesztésre és módosításra vonatkozó pontos feltételeket a következő oldalon olvashatjuk.

F.2. GNU GENERAL PUBLIC LICENSE - GNU Általános Közösségi Licenc

A MÁSOLÁS, TERJESZTÉS ÉS MÓDOSÍTÁS FELTÉTELEI

0. Ez a licenc vonatkozik minden olyan programra vagy más munkára amely tartalmaz egy a szerző jogok tulajdonosa által elhelyezett közleményt, amely azt tartalmazza, hogy a munka a General Public License-ben foglaltak betartásával terjeszthető. A következőkben „Program” alatt minden ilyen programot vagy munkát értünk, és „program alapuló munka” alatt vagy a Programot vagy bármilyen azon alapuló, szerzői jogok által védett munkát. Ez lehet tehát egy olyan munka, amely tartalmazza a Programot vagy annak egy részét, módosításosakkal és/vagy más nyelvekre fordítva, vagy módosítások nélkül. (A továbbiakban a fordítás minden korlátlan nélkül megegyezik a „módosítással”). Minden engedély Téged illet.

A másolásra, terjesztésre és módosításra kivül más tevékenységekre nem terjed ki e licenc: ezek e licenc hatályán kívül esnek. A program futtatására nézve semmilyen korlátot nem szabunk, a program kimeneteire csak akkor terjed ki ez a licenc, ha a kimenet tartalmára egy a Program alapuló munkának minősül (attól függően, hogy a módosított változtatot a program futtatásával hoztuk létre). Hogy ez igaz-e, attól függ, mit tesz a Program.

1. Másolhatod és terjesztheted a Program forráskódjának színt a szerzői jogok hatálya kívül esnek. A program futtatására nézve semmilyen korlátozás sincs, a program kimeneteire csak akkor terjed ki ez a licenc, ha a kimenet tartalmára egy a Program alapuló munkának minősül (attól függően, hogy a módosított változtatot a program futtatásával hoztuk létre). Hogy ez igaz-e, attól függ, mit tesz a Program.

2. Módosíthatod a Program másolatát vagy másolatait vagy annak egy részét, így kialakítva egy, a Programon alapuló munkát, és másolhatod és terjesztheted az ilyen módosítotatot és munkákat a megelőző, fenti pont követelményei szerint, feltéve, hogy eleget teszel az alábbi követelmények mindegyikének is:
 a. Úgy kell létrehoznod a módosított fájlokat, hogy szembetűnő bejegyzést viseljenek, kijelentve, hogy megváltoztattad a fájlokat, és közölve a változás dátumát.
 b. Úgy kell létrehoznod bármely munkát, melyet terjesztesz vagy publikálsz, mely egészében vagy részben tartalmaz vagy származik a Programból vagy annak részéről, hogy jogosítvá legyen teljes egészében a megjelenítésre szánt munkáid hatályát.

Ezeket a követelményeket a módosított munka egészére kell alkalmazni. Ha ennek a munkának meghatározható részei nem származnak a Programból, és indokolatlan tekintette lehetők a független és önmagukban elkülöníthető munkák, akkor ezen Jogosítványt és követelményeit nem kell alkalmazni azokra a részekre, melyeket elkülönített munkaként terjesztés. De ha ugyanekkor a részeket úgy fogalmazod, mint az egész programon alapuló munka egy
részét, az egész terjesztésednek meg kell felelnie ezen Jogosítvány követelményeinek, amely megengedi más jogosultaknak a kiterjesztését a teljes egészre, és így mindenkinek és minden részére, attól függetlenül, hogy ki írta azt.

Tehát nem célja ennek a szakasznak, hogy jogokat igényeljen vagy a teljes egészében az általad írt munkákra jogokat tartson fel, inkább az az a célja, hogy gyakorolja a programon alapuló közös munkák terjesztésének és származtatásának ellenőrzési jogát.

Mindemellett a Programmal (vagy a Programon alapuló munkával) a nem a Programon alapuló más munkák pusztta felhalmozása a tárolók vagy a forgalmazási résztvevők tömegében nem eredményezi a más munkák ezen Jogosítvány hatókörébe tartozását.

3. Másolhatod és terjesztheted a Programot (vagy a 2. szakasz alatti, azon alapuló munkát) tárgykódban vagy végrehajtható formában a fenti 1. és 2. szakasz követelményei szerint, feltéve, hogy elvégzéged a következők egyikét is:
 a. Ellátod azt a teljes, annak megfelelő, géppel olvasható forráskóddal, amely a fenti 1. és 2. szakasz követelményei szerint terjeszthető a szoftver cserére szokásosan használt hordozókon, vagy
 b. Ellátod azt egy, legalább három évig érvényes írásos ajánlattal, bármely harmadik félnek arról, hogy a díj nem több, mint a forráskód terjesztési fizikai közreműködési költsége a teljes megfelelő géppel olvasható forráskóddal, amely a fenti 1. és 2. szakasz követelményei szerint terjeszthető a szoftver cserére szokásosan használt hordozókon, vagy
 c. Ellátod azt azzal az információval, amelyet ajánlatként kaptál a megfelelő forráskód terjesztésére (ez a változat csak nem kereskedelmi forgalmazás esetén megengedett, és csak akkor, ha a programot tárgykódban vagy végrehajtható formában kaptad ilyen ajánlatként, a fenti, második alpontnak megfelelően).

A forráskód egy munka számára a munka benyújtott formáját jelenti módosulatának elkészítéséhez. Egy végrehajtható munka esetében teljes forráskóddal jelenti az összes modul forráskóddát, amelyet tartalmaz, plusz valamennyi interfész definiáló állományt, plusz a végrehajtható programba szerkesztés és beiktatás irányításához használt leírást. Azonban, speciális kivételként, a terjesztett forráskódnak nem kell tartalmaznia olyanat, amit rendes körülmények között annak az operációs rendszernek a részeként (szerkesztő, kernel, stb.) terjesztenek (akár forrás, akár bináris formában), amely alatt a végrehajtható rész fut anélkül, hogy maga a komponens a végrehajtható részévé válna.

Ha a végrehajtható rész vagy tárgykódot terjeszted megnevezett helyről történő másolási elérhetőséget ajánlása alapján készült, akkor a forráskód egyenértékű másolási elérhetőségének megfelelően ajánlása ugyannál. tehát a végrehajtható rész megfelelően ajánlja ezen Jogosítvány alapján, de nem kereskedelmi használattal jut, és csak akkor, ha a programot tárgykódban vagy végrehajtható formában kaptak ilyen ajánlatként, a fenti, második alpontnak megfelelően).

5. Nem kell elfogadnod e szabályzatot, hiszen nem írtad alá. Ezen kívül viszont semmi más nem adhat jogokat a Program vagy az azon alapuló munka továbbterjesztésére és módosítására. Ezeket a cselekedeteket a törvény bünteti, ha nem ennek a szerzői jogi szabályozásnak a kereteit között történtek. Mindezek miatt a Program (vagy a Programon alapuló munka) terjesztése vagy módosítása ezen dokumentum másolásra, terjesztésére és módosítására vonatkozó feltételeinek és szabályainak elfogadását jelenti.

7. Ha bírósági határozat, szabadalomértés miatt vagy bármely egyéb (nem csak szabadalom-kiadásokkal kapcsolatos) okból olyan feltételek állnak Rád (bírói rendelkezés, megállapodás, vagy egyéb alapján), amelyek elfentmondanak e Licenc feltételeinek, ezek nem mentenek fel e Licenc feltételeit alól. Ha nem tudsz úgy terjeszteni, hogy egyszerre eleget tegyél e Licencből eredő és bármely más ide tartozó kötelezettségének, akkor ennek következményeként a Programot egyáltalán nem terjesztheted. Például, ha egy szabadalmi Licenc nem engedi meg a Program jogdíj-mentes terjesztését senki által, aki közvetlenül vagy közvetetten rajtad keresztül másolathoz jutott, akkor az egyetlen lehetőség, hogy eleget tehesd ennek és e Licencnek az, ha teljesen elállsz a Program terjesztésétől.

Ha e szakasz bármely része érvénytelennek vagy érvényesítetlennek tartott sajátos körülmények között, a szakasz fennmaradó része, más körülmények között a szakasz egészége alkalmazandó.

E szakasznak nem az a célja, hogy rábírjon valamely szabadalom vagy tulajdoni jog megsértésére, vagy ilyen igény érvényének megtámadására. E szakasznak egyetlen célja megvédeni a szabad szoftverek terjesztési rendszerének sérültségét, ami a nyilvános Licenc gyakorlatában teljesül. Sok ember adott nagylelkű hozzájárulást számos e rendszerrel terjesztett szoftverhez e rendszer következetes alkalmazásában bizva: a szerző/adományozó döntés el, a szoftvert e rendszerben, vagy egy más rendszerben terjeszti, a jogosult írhatja elő e választást.
E szakasznak célja teljesen tisztázni, mit gondolunk e Licenc nyújtotta támasz jelentőségéről.

8. Ha a Program terjesztését és/vagy használatát egyes országokban szabadalmak vagy szerzői jogokkal védett kapcsolódási felületek korlátozzák, akkor az eredeti szerzői jog tulajdonos, aki a Programot e Licenc hatálya alá helyezte, hozzájelölhet egy kifejezett földrajzi terjesztési korlátozást kizárva ezen országokat, így a terjesztés csak az így ki nem zárt országokban engedélyezett. Ilyen esetben e Licenc úgy foglalja magába e korlátozást, mintha e Licenc törzsszövegében lenne írva.

11. NIivel a PROGRAM DÍJMENTES LICENCCUI. A PROGRAMRA NINCS SZAVATOSSÁG AZ ALKALMAZHATÓ TÖRVÉNY ALTA MEGENGEDETT MÉRTÉKIG. HA MÁS NÉLMÚRÁSBAN, A SZERZÔI JOG TULAJDONOSOK E5/VAGY MÁS FELEK A PROGRAMOT „ÚGY AHOGY VAN” ADJÁK, BÁRRMELYEN KIFEJEZETT FELELÔL EGY MÉTOSZÁGGAL NELKÜL, BELEÉRTVE, DE NEM KIZÁRÓLAG A FORGALOMKÉPESSÉGRE ÉS SAJÁTOS CELRA VALÔ HELYESSEG KIMONDATLAN SZAVATOSSÁGÁT. A TELJES KOCKÁZAT A PROGRAM MINŐSÉGÉRE ÉS TELJESÍTMÉNYÉRE A TIDÉN AMennyiben a PROGRAM HIányosnak Bizonyulna, TE VÁLLALOD A SZÜKSÉGES SZolgáltatás, Javítás És HELYESBÍTÉS KÖLTSÉGEIT.

12. KIZÁRóLAG HA AZ ALKALMAZHATÔ TÖRVÉNY VAGY ÍRÁSBeli Egyezség KÖTELEZ, VÀLIK BÁRMELY SZERZÔI JOG TULAJDONOS VAGY MÁS FÉL, AKI A FENT ENGEDÉLYEZETT MÔDON MODOSITOTT ÉS/VAGY TERJESZTETTE A PROGRAMOT „ÚGY AHOGY VAN” ADJÁK, BÁRRMELYEN KIFEJEZETT FELELÔL EGY MÉTOSZÁGGAL NELKÜL, BELEÉRTVE, DE NEM KIZÁRÓLAG A FORGALOMKÉPESSÉGRE ÉS SAJÁTOS CELRA VALÔ HELYESSEG KIMONDATLAN SZAVATOSSÁGÁT. A TELJES KOCKÁZAT A PROGRAM MINŐSÉGÉRE ÉS TELJESÍTMÉNYÉRE A TIDÉN AMennyiben a PROGRAM HIányosnak Bizonyulna, TE VÁLLALOD A SZÜKSÉGES SZolgáltatás, Javítás És HELYESBÍTÉS KÖLTSÉGEIT.

F.3. A licenc-feltételek alkalmazásának módja az új programokra

Ha új programot fejlesztesz, és azt szeretnéd, hogy legtöbb ember számára a lehetséges legyen, ezt a legjobban úgy érdethetsz, ha szabad szoftverrel és feltételek alapján.

Elhzej, csatold a következő megjegyzéseket a programhoz. A legjobb a forrásfájlok elejébe tenni őket a leghasznosabban átadni a garancia kizárását; és minden fájlnak legalább egy „copyright” sort kell tartalmaznia és egy a program nevét és általános célját megadó sor.

Copyright (C) ZÉV. a szerző neve

Ez a program szabad szoftver; terjesztheted és/vagy módosíthatod a GNU General Public License feltételei szerint, ahogy a Free Software Foundation közölte; akár a Licenc 2-es verziójára, akár (választásod alapján) későbbi verzió szerint.

E programot hasznossága reményében terjesztjük, de GARANCIA NÉLKÜL; ideértve az ELADHATÔSÁGRA vagy ADOTT CELRA MEGFELELÉS jogi garanciáját. Lásd a GNU General Public License-et további részleteket.

E programmal a GNU General Public License egy másolatát is megkeltett kapnod; ha nem, írj ide: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Add meg továbbá, hogyan lehet kapcsolatba lépni veled email-ben vagy levélben.
Ha a program interaktív, tégy egy ehhez hasonló rövid leírást a kimenetébe ha interaktív módban indul:

Gnomovision version 69, Copyright (C) 2ÉV. a szerző neve
A Gnomovision-t JÓTÁLLÁS NÉLKÜL adjuk; a részletekért gépeld be ezt: show w. Ez szabad szoftver, és hálásak vagyunk, ha terjeszted egyes feltételek mellett; gépeld be a show c-t a részletekért.

A feltételezett „show w” és „show c” parancs a General Public License megfelelő részeit mutatja. Természetesen az általad használt parancsok mások is lehetnek, mint a „show w” és „show c”; lehetnek egér-kattintások vagy menüpontok — ahogy a programba illik.

Ha a program írása céghez (ahol programozóként dolgozol) vagy iskolához kötődik, nem árt mellékelni a munkáltató vagy iskola „lemondó nyilatkozatát” is, amennyiben ez szükséges. Íme egy megfelelő példa; módosítsd a neveket:

A Jojó BT ezennel lemond minden a Gnomovision programhoz kötődő szerzői jogról (mely tárgykódot hoz létre), melyet Bütyük Jakab írt.

Táj Kund aláírása, 1 April 1989
Táj Kund, az Al elnöke

Az itt leírt General Public License tiltja a program beépítését tulajdonjogokkal korlátozott programokba. Ha a program egy függvénytár, úgy tűnhet, hasznosabb lehet linkelésének engedélyezése ilyen alkalmazásokkal. Ha ezt akarod, használd a GNU Lesser General Public License-t e licenc helyett.