Contents

1 ようこそDebianへ 1
 1.1 Debianとは？ 1
 1.2 GNU/Linuxとは？ 2
 1.3 DebianGNU/Linuxとは？ 2
 1.4 DebianGNU/kFreeBSDとは？ 3
 1.5 DebianGNU/Hurdとは？ 3
 1.6 DebianInstallerとは？ 3
 1.7 Debianの入手 4
 1.8 このドキュメントの最新版の入手 4
 1.9 この文書の構成 4
 1.10 文書への支援のお願い 5
 1.11 著作権およびソフトウェアライセンスについて 5

2 必要なシステム 6
 2.1 サポートするハードウェア 6
 2.1.1 サポートするアーキテクチャ 6
 2.1.2 CPUサポート 7
 2.1.3 ラップトップコンピュータ 7
 2.1.4 マルチプロセッサ 7
 2.1.5 グラフィックハードウェアのサポート 7
 2.1.6 ネットワーク接続機器 7
 2.1.6.1 ワイヤレスネットワークカード 7
 2.1.7 点字ディスプレイ 8
 2.1.8 ハードウェア音声合成 8
 2.1.9 周辺機器やその他のハードウェア 8
 2.2 ファームウェアが必要なデバイス 8
 2.3 GNU/Linuxに適したハードウェアの購入 9
 2.3.1 独占的・閉鎖的なハードウェアを避ける 9
 2.4 インストールに利用できるメディア 10
 2.4.1 CD-ROM/DVD-ROM/BD-ROM 10
 2.4.2 USBメモリ 10
 2.4.3 ネットワーク 10
 2.4.4 ハードディスク 10
 2.4.5 Un*x・GNUシステム 10
 2.4.6 サポートする記憶装置 10
 2.5 必要なメモリとディスクスペース 11

3 DebianGNU/Linuxのインストール前に 12
 3.1 インストールプロセスの概要 12
 3.2 既存データをバックアップしてください！ 13
 3.3 必要な情報 13
 3.3.1 ドキュメント 13
 3.3.1.1 インストールマニュアル 13
 3.3.1.2 ソフトウェアの文書 13
 3.3.2 ハードウェア情報の取得先 13
 3.3.3 ハードウェア互換性 14
 3.3.3.1 ライブシステムを使用したハードウェア互換性テスト 15
 3.3.4 ネットワークの設定 15
 3.4 必要な最低限のハードウェア 16
 3.5 マルチブートシステムでの事前パーティション分割 16
 3.6 インストール前に使うハードウェア・OSの設定 17
 3.6.1 BIOS/UEFI設定メニューの起動 17
 3.6.2 ブートデバイスの選択 17
 3.6.3 UEFIファームウェアを利用しているシステム 18
CONTENTS

5.4.1.1 共通の問題 39
5.4.1.2 調査および問題解決の方法 39
5.4.2 起動設定 40
5.4.3 ソフトウェア音声合成 40
5.4.4 64-bit PCへのインストールに共通の問題.. 41
5.4.4.1 PCMCIA設定中のシステムフリーズ ... 41
5.4.5 カーネルの起動時メッセージの意味 41
5.4.6 インストールで発生した問題の報告 41
5.4.7 インストールレポートの送信 42

6 Debian インストーラーの使用法 43
6.1 インストーラーの動作 43
6.1.1 グラフィカルインストーラーの使用法 44
6.2 コンポーネント入門 44
6.3 それぞれのコンポーネントの使用法 45
6.3.1 Debian インストーラーのセットアップとハードウェアの設定 45
6.3.1.1 利用可能なメモリの検査/低メモリモード ... 46
6.3.1.2 地域オプションの選択 46
6.3.1.3 キーボード選択 47
6.3.1.4 Debian Installer iso イメージの検索 47
6.3.1.5 ネットワークの設定 47
6.3.1.5.1 自動ネットワーク設定 47
6.3.1.5.2 手動ネットワーク設定 48
6.3.1.5.3 IPv4とIPv6 48

6.3.2 ユーザーとパスワードのセットアップ .. 48
6.3.2.1 root パスワードの設定 48
6.3.2.2 一般ユーザーの作成 49

6.3.3 時計とタイムゾーンの設定 49

6.3.4 パーティションの分割とマウントポイントの選択 49
6.3.4.1 サポートするパーティション分割オプション .. 49
6.3.4.2 ガイドパーティション分割 50
6.3.4.3 手動パーティション分割 52
6.3.4.4 マルチディスクデバイス（ソフトウェアRAID）の設定 52
6.3.4.5 論理ボリュームマネージャ（LVM）の設定 55
6.3.4.6 暗号化ボリュームの設定 56

6.3.5 基本システムのインストール 58
6.3.6 追加ソフトウェアのインストール 58
6.3.6.1 apt の設定 58
6.3.6.1.1 2枚以上のCD/DVD イメージでのインストール 59
6.3.6.1.2 ネットワークミラーの利用 59
6.3.6.1.3 ネットワークミラーの選択 60
6.3.6.2 ソフトウェアの選択・インストール . 60

6.3.7 システムを起動可能にする 61
6.3.7.1 他 OS の検出 61
6.3.7.2 ドライプへのGrub ブートローダのインストール 62
6.3.7.3 ブートローダなしで継続 62

6.3.8 インストールの完了 62
6.3.8.1 システム時計の設定 62
6.3.8.2 システムの再起動 62

6.3.9 トラブルシューティング 62
6.3.9.1 インストールログの保存 62
6.3.9.2 シェルの使用とログの参照 63

6.4 見つからないファームウェアの読込み込み .. 64
6.4.1 メディアの準備 65
6.4.2 ファームウェアとインストールしたシステム 65
6.4.3 インストールしたシステムの設定を完了する 66

6.5 カスタム化 66
6.5.1 代替 init システムのインストール 67
B.4.12 インストールの仕上げ 95
B.4.13 他パッケージのpreseed 95

B.5 高度なオプション 96
B.5.1 インストール中のカスタムコマンド実行 96
B.5.2 preseed を用いたデフォルト値変更 96
B.5.3 事前設定ファイルのチェーンロード 96

C Debian でのパーティション分割 98
C.1 Debian のパーティションとそのサイズを決める 98
C.2 ディレクトリツリー 98
C.3 お勧めするパーティションルール 100
C.4 Linux におけるデバイス名 100
C.5 Debian のパーティション分割プログラム 101
C.5.1 64-bit PC でのパーティション分割 101

D 雑多な事柄 103
D.1 Linux のデバイス 103
D.1.1 マウスのセットアップ 103
D.2 タスクに必要なディスクの空き容量 104
D.3 Unix/Linux システムからの Debian GNU/Linux のインストール 105
D.3.1 はじめに 105
D.3.2 debootstrap のインストール 106
D.3.3 debootstrap の実行 106
D.3.4 基本システムの設定 106
D.3.4.1 デバイスファイルの作成 107
D.3.4.2 パーティションのマウント 107
D.3.4.3 タイムゾーンの設定 108
D.3.4.4 ネットワークの設定 108
D.3.4.5 apt の設定 109
D.3.4.6 ロケールとキーボードの設定 109
D.3.5 カーネルのインストール 110
D.3.6 ブートローダのセットアップ 110
D.3.7 リモートアクセス: SSH のインストールとアクセス方法の設定 110
D.3.8 仕上げに 111
D.4 パラレルライン IP (PLIP) による Debian GNU/Linux のインストール 111
D.4.1 必要な物 111
D.4.2 source のセットアップ 111
D.4.3 target のインストール 112
D.5 PPP over Ethernet (PPPoE) を用いた Debian GNU/Linux のインストール 112

E 付記 114
E.1 この文書について 114
E.2 この文書への貢献 114
E.3 多大な貢献 114
E.4 商標表示 115

F GNU General Public License 116
F.1 Preamble 116
F.2 GNU GENERAL PUBLIC LICENSE 116
F.3 How to Apply These Terms to Your New Programs 119
List of Tables

3 Debian GNU/Linux のインストール前に
 3.1 インストールに役立つハードウェア情報 ... 14
 3.2 最低限必要なシステム (推奨値) .. 16
この文書は64-bit PC（「amd64」）アーキテクチャ用Debian GNU/Linux 12システム（コードネーム「bookworm」）のインストール説明書です。また、さらに詳しい情報へのポインタや、新しくDebianシステムを構築する方法にも言及しています。

日本語訳については、debian-doc@debian.or.jp（要 subscribe）で議論を行っています。また、Debian JP Project: メーリングリストに購読に関する簡単な説明があり、debian-doc Mailing List Archiveでは過去のメールを読むことができます。
 amd64 用 Debian GNU/Linux 12 のインストール

Debian を試していただきありがとうございます。Debian の GNU/Linux ディストリビューションは、他に類を見ないものであることを分かっていたことでしょう。Debian GNU/Linux は、世界中から質の高い「自由なソフトウェア」をよりすくろ、首尾一貫したディストリビューションとしてまとめられています。こうして集められたものは、個々のソフトウェア以上の力を発揮することででしょう。

多くの方は、このマニュアルを読まずに Debian をインストールしたいと思っていることでしょう。また、それが可能のように Debian インストーラーは設計されています。インストールガイド全体を読む時間がなければ、インストール Howto (基本的なインストールプロセスをご案内します) と、追加情報やうまくいかないときのための、マニュアルへのリンクを読むことをお勧めします。インストール Howto は、付録 A にあります。

そうは言っても、このマニュアルのほとんどを読んでくださることを望んでいますし、読むことでより多くの知識を得られ、よりインストールがうまくいくかやすくなるでしょう。
Chapter 1
ようこそ Debian へ

この章では、Debian プロジェクトと Debian GNU/Linux の概略を紹介します。Debian プロジェクトの歴史と Debian GNU/Linuxについてすでにご存知でしたら、この章を飛ばしても構いません。

1.1 Debian とは？
Debian は、有志の集まってできた団体で、フリーソフトウェアを開発し、フリーソフトウェアコミュニティの理想を推進することを目的としています。Debian プロジェクトは 1993 年に、比較的新しい Linux カーネルをもとにした、完全で一貫性あるディストリビューションの制作のために、Ian Murdock が開発者を広く募ったときに始まりました。献身的なファンたちの比較的小さな団体は、最初 Free Software Foundationによって支援を受け、GNUの哲学に影響されていましたが、数年後には 1000 人もの Debian 開発者を抱える組織になりました。

Debian 開発者は様々な活動に参加しています。例えば、Web や FTP サイトの管理、グラフィックデザイン、ソフトウェアライセンスの法律的な分析、文書の執筆、そしてもちろん、ソフトウェアパッケージのメンテナンスです。

私たちの哲学を伝え、Debian が支持する原則を信じている開発者を引き寄せるために、Debian プロジェクトは、私たちの価値の概略を述べ、Debian 開発者であるとはどういうことかという指針のために、多数の文書を発表しています:

- Debian 社会契約は、Debian のフリーソフトウェアコミュニティへの関与について述べたものです。この社会契約を守ることに同意する人は、誰でもメンテナになることができます。メンテナは誰でも、Debianに新しいソフトウェアを追加することができます——そのソフトウェアが私たちの条件に照らしてフリーであり、パッケージの品質が基準を満たしていれば。

- Debian フリーソフトウェアガイドライン (DFSG) は、フリーソフトウェアに関する Debian の基準を明確かつ簡潔に述べたものです。この DFSG は、フリーソフトウェア運動において非常に影響力のある文書で、オープンソースの定義のもととなったものです。

- Debian ポリシーマニュアルは、Debian プロジェクトの品質基準を詳しく定めたものです。

Debian 開発者は、ほかの多数のプロジェクトにも関与しています。それらのプロジェクトには、Debian 固有のものもあり、Linux コミュニティの一部や全体に関係するものもあります。以下に例を挙げます。

- Filesystem Hierarchy Standard (FHS) は、Linux のファイルシステムのレイアウトを標準化しようという試みです。これによって、ソフトウェア開発者はパッケージが様々な GNU/Linux ディストリビューションにどのようにインストールされるかを心配することなしに、プログラムのデザインに努力を集中することができます。

- Debian Jr. は、Debian を若年ユーザーに提供できるようなものにするための内部プロジェクトです。

より一般的な情報については、Debian FAQ を参照して下さい。
1.2 GNU/Linuxとは？

GNU/Linuxは、あなたのコンピュータの間に立ち、他のプログラムを実行させる一連のプログラムです。

オペレーティングシステムは、様々な基礎的なプログラムを含んでいます。それらによって、コンピュータは、ユーザーと交信したり指示を受け取り、ハードディスクやテープ、プリンタにデータを読み書きしたり、メモリの使い方を制御したり、他のソフトウェアを実行したりすることができます。オペレーティングシステムの最も重要な部分は、カーネルです。GNU/Linuxシステムにおいては、Linuxがカーネルです。システムの残りの部分は、他のプログラムでできており、その大部分はGNUプロジェクトによって書かれたものです。Linuxカーネルだけでは動作するオペレーティングシステムを構成できませんので、多くの人が日常的に「Linux」と呼ぶシステムのことを、私たちは「GNU/Linux」と呼ぶようにしています。

GNU/LinuxはUnixオペレーティングシステムを手本にしています。当初から、GNU/Linuxはマルチタスク、マルチユーザーシステムとして設計されました。この事実により、Linuxは他の有名なオペレーティングシステムに対し、充分差別化されています。しかし、GNU/Linuxはあなたが想像するよりもさらに異なっています。他のオペレーティングシステムとは対照的に、誰もGNU/Linuxを所有しません。その開発の多くは無償のボランティアによって行われています。

後に、GNU/Linuxになるものの開発は1984年に、フリーソフトウェア財団が、Unixライクなオペレーティングシステムの開発を始めたときに始まりました。

Linus Torvaldsは、フィンランド人の計算機科学の学生が1991年に、Usenetのcomp.os.minixニュースグループにMinixの代替カーネルの初期バージョンを公表したのが始まりです。Linux InternationalのLinux史のページを参照して下さい。

GNU/Linuxユーザーは、それらのソフトウェアの大きな選択の自由を持っています。例えば、ユーザーは、1ダースの異なるコマンドラインシェルや数種のグラフィカルデスクトップの中から選ぶことができる。この選択できるということが、しばしばコマンドラインやデスクトップを変更できるという考えに慣れていない、他のオペレーティングシステムのユーザーを当惑させています。

Linuxカーネルは、Linus Torvaldsというフィンランド人の計算機科学の学生が1991年に、Usenetのcomp.os.minixニュースグループにMinixの代替カーネルの初期バージョンを公表したのが始まりです。Linus InternationalのLinux史のページを参照して下さい。

Linus Torvaldsは、何人ものサブシステムのメンテナの協力を得て、数百人の開発者の作業を調整し続けています。Linusカーネルの公式ウェブサイトがあります。Linux-kernelメーリングリストの情報は、linux-kernelメーリングリストFAQで読むことができます。

1.3 Debian GNU/Linuxとは？

Debianの哲学や方法論と、GNUツール・Linuxカーネル・その他の重要なフリーソフトウェアとを組み合わせることにより、Debian GNU/Linuxは、ユニークなディストリビューションが形成されています。このディストリビューションは、多数のソフトウェアパッケージから構成されています。

Debianは、細部に注意を払うことで、高品質で安定したスケーラブルなディストリビューションとなっている。小さなファイアウォールから科学用途のデスクトップワークステーションやハイエンドネットワークサーバまで、様々な用途に合わせたインストールが可能です。

Debianは、技術的な優越性やLinuxコミュニティのニーズや期待への深いコミットメントによって、熟練したユーザー特に人気があります。Debianはさらに、現在Linuxが普通に持っている多くの特徴を導入しました。
例えば、Debianはソフトウェアの簡単なインストール・削除用にパッケージ管理システムを持った初めてのLinuxディストリビューションでした。さらに、再インストールせずにシステムの更新ができ、初めてのLinuxディストリビューションでした。

DebianはLinux開発のリーダーであり続けています。その開発プロセスは（完全なオペレーティングシステムを構築し維持するような非常に複雑なタスクであったとしても）オープンソース開発モデルが、どれほどうまくいくことができるかの例となっています。

DebianはGNU/Linuxディストリビューションと区別する最大の特徴は、パッケージ管理システムです。Debianシステムの管理者は、システムにインストールされるパッケージに関して、ひとつ一つのパッケージのインストールからオペレーティングシステム全体の自動アップデートまで、完全に制御することができます。個々のパッケージをアップデートしないように設定することもできます。あなたの自分がコンパイルしたソフトウェアについて、その依存関係を設定することもできます。

「トロイの木馬」や他の悪意あるソフトウェアからあなたのシステムを守るために、Debianのサーバは、アップロードされてきたパッケージが登録されたDebian開発者からのものかどうかを確かめます。また、Debianの各パッケージはより安全な設定となるように細心の注意が払われています。もしリリースされたパッケージにセキュリティ上の問題が発生すれば、その修正版は通常すぐに利用可能になります。Debianの簡単なアップデートオプションによって、セキュリティ修正はインターネットを通じて自動的にダウンロード・インストールすることができます。

あなたのDebianGNU/Linuxシステムについてサポートを受けたり、Debianの開発者たちと連絡したりする第一の、そして最良の方法は、Debianプロジェクトが運営する多数のメーリングリストを用いることです（この文章の執筆時点で322以上のメーリングリストがあります）。メーリングリストを簡単に講読するためには、Debianメーリングリスト講読ページを訪れて、フォームに必要事項を記入するとよいです。

1.4 Debian GNU/kFreeBSD とは？

Debian GNU/kFreeBSDはkFreeBSDカーネルを用いたDebian GNUシステムです。

このDebianの移植版は、現在のところ、i386とamd64アーキテクチャでのみ開発されていますが、その他のアーキテクチャにも移植される可能性があります。

Debian GNU/kFreeBSDはLinuxシステムではないので、Linuxシステム向けの情報を適用できない場合もあることに注意してください。

詳しくは、Debian GNU/kFreeBSD移植ページやdebian-bsd@lists.debian.orgメーリングリストを参照して下さい。

1.5 Debian GNU/Hurd とは？

Debian GNU/Hurdは、GNU Hurd (GNU Machマイクロカーネルの上で走る一群のサーバ)を用いたDebian GNUシステムです。

Hurdはまだ完成しておらず、日々の利用には不適ですが、作業は継続しています。現在のところ、Hurdはi386アーキテクチャでのみ開発されていますが、システムが安定していれば、他のアーキテクチャにも移植される予定です。

Debian GNU/HurdはLinuxシステムではなく、Linuxシステム向けの情報を適用できない場合もあることに注意してください。

詳しくは、Debian GNU/Hurd移植ページやdebian-hurd@lists.debian.orgメーリングリストを参照して下さい。

1.6 Debian Installer とは？

Debianインストーラ（’d-i’としても知られています）は基本的な動作を行うDebianシステムをインストールするためのソフトウェアシステムです。組込みシステム・ラップトップ・デスクトップ・サーバーマシンのような幅広いハードウェアをサポートしており、様々な目的に使われる膨大な量のフリーソフトウェアを提供します。

インストール作業は簡単な質問群に答えることで進行します。インストール作業での全設定をコントロールすることができるエキスパート・モードや、自動インストールを実行する拡張機能も提供されています。インストールしたシステムはそのまま使うことも、さらにカスタマイズすることもできます。インストールは多数のソースから実行できます: USB、CD/DVD/Blu-Ray、そしてネットワーク経由です。インストーラーは、80以上の言語で翻訳されたインストール画面をサポートしています。
インストーラーはboot-floppiesプロジェクトを起源としており、これはJoey Hessによって2000年に初めて言及されています。以来インストールシステムは継続してボランティアらによって開発されており、改善と機能追加が行われています。

Debianインストーラーのページ、Wiki、debian-bootメーリングリストなどで、より詳細な情報を確認できます。

1.7 Debianの入手

インターネットを通じてDebian GNU/LinuxをダウンロードしたりDebianの公式インストールメディアを購入したりするための情報については、入手方法についてのページを参照して下さいます。Debianのミラー一覧には、Debianの公式ミラーサイトがすべて載っていますので、もっとも近いサイトを簡単に探すことができます。

Debianは、インストール後に非常に簡単にアップグレードできます。このインストール手順では、システムの設定についてお助けします。一度インストールが済むかもしれません、必要に応じてこのようなアップグレードを行うようになります。

1.8 このドキュメントの最新版の入手

この文書には絶えず変更が加えられています。Debian GNU/Linuxシステムの12リリースに関する最新情報については、Debian12ページにて確認してください。このインストールマニュアルの最新版は、公式インストールマニュアルページからも利用できます。

1.9 この文書の構成

この文書は、初めてDebianをお使いになるユーザーのために書かれたマニュアルです。お手持ちのハードウェアの動作に関しては一般的な知識があることを前提としていますが、なるべく専門的な知識がなくてもお読みいただけるよう心がけています。

また熟練したユーザーであっても、この文書で、最低限インストールに必要な容量や、Debianインストールシステムでサポートされるハードウェアの詳細など、参考になる情報を得ることができるでしょう。熟練したユーザーの場合は、この文書のあちこちをかいつつまだお読みになることをお勧めします。

基本的にはこの文書は、実際に体験するインストールのプロセスに沿って、順番に説明するように構成されています。Debian GNU/Linuxのインストールの各作業段階と、それに関連するこの文書の各節は以下の通りになっています。

1. 第2章では、お手持ちのハードウェアがインストーラのシステム要件を満たしているかどうかを調べます。
2. 第3章では、既存のシステムをバックアップし、Debianのインストールに先だってシステム設計やハードウェアの設定を行います。もしマルチブートシステムを考えていたら、ハードディスク上に、Debian用パーティションを作るための空き領域を作っておく必要があるかもしれません。
3. 第4章では、あなたのインストール方法のためのインストールファイルを入手します。
4. 次の第5章では、インストールを起動します。またこの章では、起動中に問題があった際のトラブルシューティングの手順についても紹介します。
5. 第6章に従って実際のインストールを実行してください。ここでは言語選択、周辺機器のドライバモジュールの設定、(CD/DVDインストールイメージセットからインストールしていない場合)残りのインストールするファイルをDebianサーバから直接取得するようなネットワーク接続の設定、ハードディスクのパーティション分割、基本システムのインストールを行います。その後、インストールするタスクの選択を行います。(Debianシステムのパーティションセットアップについては、付録Cで背景を説明しています)
6. 第7章では、新しくインストールした基本システムを起動します。
7. 第8章は、システムのインストールが終了したら、技術的な問題が発生した場合、Debianに関する情報の探し方、カーネルの切り換えの方法を説明します。

最後に、付録Eはこの文書に関する情報や貢献の方法が載っています。
1.10 文書への支援のお願い

どんな支援、提案、(特に)パッチも非常にありがたいです。この文書の作業中の版は https://d-i.debian.org/manual/ にあります。そこでは、この文書の各アーキテクチャ向けの版や各言語版があります。

ソースも公開されています。貢献するための情報については、付録Eを参照してください。提案、コメント、パッチ、パッチ報告(パッチには installation-guide というパッケージ名を使って下さい。ただしパッチがすでに報告されていないかどうか、まずチェックしてください)を歓迎します。

1.11 著作権およびソフトウェアライセンスについて

この文書を読んでいる方は、多数の商用ソフトウェアにあるようなライセンス(購入したソフトウェアのコピー1部を、1台のコンピュータで使用できる)はご存知のことでしょう。しかし、このシステムはそのようなものとは違います。私たちは、あなたの通っている学校や仕事場にあるすべてのコンピュータにDebianGNU/Linuxをインストールすることを勧めます。また、友達に貸して、彼らのコンピュータにインストールするのを手伝ってあげましょう。さらには、わずかな制限にさえ気をつけば、何千部ものコピーを作って売ることも可能です。なぜなら、Debianはフリーソフトウェアに基づいているからです。

フリーソフトウェアとは、著作権を持っていないという意味ではありません。また、このソフトウェアを含むインストールメディアが、無償で配布されなければならないという意味でもありません。

フリーソフトウェアとは、ひとつには、個々のプログラムのライセンスにおいて、プログラムの利用や再配付の権利に、お金を払う必要がないことを意味しています。また誰でも、そのソフトウェアを拡張したり、改造したり、修正すること、さらにその成果を再配付することが可能であることも意味しています。

注意

Debianプロジェクトでは、ユーザーの実用性に関する妥協から、私たちのフリーソフトウェアに適合しないパッケージも利用できるようになっています。このパッケージは公式なディストリビューションの一部ではありませんが、Debianミラーレイアウトやアーカイブの内容については、DebianFAQにある「DebianFTPアーカイブ」の節をご覧ください。

このシステムに入っているプログラムの多くは、「GPL」と略されるGNU General Public Licenseにしたがって利用許諾されています。この GPL は、プログラムのコピーを配布するときには、必ずプログラムのソースコードを利用可能にしておくことを要求しています。これは、ユーザーがそのソフトウェアを変更できることを保証するものです。そのため、私たちは、Debianシステムに含まれるGPL準拠のプログラムのソースコード１をすべて収録しています。

Debianに収録されるプログラムの著作権やソフトウェアライセンスの形式には、他にも数種あります。それぞれのプログラムの著作権やライセンスは、一度システムをインストールすれば、/usr/share/doc/パッケージ名/copyrightファイルを探せば見つけることができます。

ライセンスや、Debianがmainディストリビューションにソフトウェアを収録する際に用いているフリーの基準に関してより詳細な情報をお求めの場合は、Debianフリーソフトウェアガイドラインをご覧ください。

最も重要な法律上の注意点は、このソフトウェアが無保証であることです。これは、このソフトウェアを作成したプログラムらがコミュニティの利益を考えたことです。ソフトウェアは、いかなる目的への利用に対しても保証されていません。しかし、ソフトウェアがフリーであるゆえに、ユーザーは必要に応じてソフトウェアを修正する権限を与えられます。また、このようにしてソフトウェアの拡張が誰かによってなされれば、その利益も享受できます。

１Debian ソースパッケージの探し方や展開の仕方やバイナリの作成方法に関する情報については、Debian FAQ の「Debianパッケージ管理システムの基本」をご覧ください。
Chapter 2

必要なシステム

この節では、Debianを始めるために必要なハードウェアに関する情報を扱います。また、GNUやLinuxでサポートされるハードウェアに関するより詳しい情報へのリンクも用意しました。

2.1 サポートするハードウェア

Debianは、Linux・kFreeBSDカーネルやGNUツールセットが必要とする以上のハードウェアを要求しません。それゆえ、Linux・kFreeBSDカーネル、libc、gccなどが移植されていて、Debianの移植版が存在すれば、どんなアーキテクチャやプラットフォームでもDebianを動作させることができます。すでにDebianGNU/Linuxでテストされている64-bitPCアーキテクチャシステムの詳細は、https://www.debian.org/ports/amd64/にある移植版のページを参照してください。

この節では、64-bitPCでサポートされるハードウェアの様々な設定のすべてに触れることは避け、一般的な情報とさらなる情報が見つけられる場所へのポインタを紹介します。

2.1.1 サポートするアーキテクチャ

Debian GNU/Linux 12は9の主要なアーキテクチャと、「フレーバー」と呼ばれる各アーキテクチャのバリエーションをサポートしています。

<table>
<thead>
<tr>
<th>アーキテクチャ</th>
<th>Debianでの名称</th>
<th>サブアーキテクチャ</th>
<th>フレーバー</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel x86ベース</td>
<td>i386</td>
<td>デフォルトのx86マシン</td>
<td>デフォルト</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xen PVドメインのみ</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armeⅩ</td>
<td>Marvell Kirkwood及びOrion</td>
<td>marvell</td>
</tr>
<tr>
<td>ハードウェアFPUがあるARM</td>
<td>armhf</td>
<td>複数プラットフォーム対応</td>
<td>armmp</td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bit MIPS（リトルエンディアン）</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS（リトルエンディアン）</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8以降のマシン</td>
<td>generic</td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td>VM-readerやDASDからのIPL</td>
<td></td>
</tr>
</tbody>
</table>

この文書はLinuxカーネルを用いた64-bitPCアーキテクチャへのインストールを扱います。Debianがサポートしている他のアーキテクチャに関する情報を探しているなら、Debian移植版のページをご覧ください。
2.1.2 CPUサポート

AMD64とIntel 64プロセッサの両方をサポートしています。

2.1.3 ラップトップコンピュータ

技術的観点から言えば、ラップトップコンピュータは普通のPCです。だから、PCシステムに関する情報はすべて、同じようにラップトップに適用できます。最近のラップトップコンピュータヘイストークすると、蓋を閉じて自動的にサスペンドしたり、wifiインターフェースを無効にする特殊なハードウェアボタン（「機内モード」）も大抵うまく動作します。とはいえ、ハードウェアメーカーが、特殊なハードウェアや閉鎖的なハードウェアを使用している場合、そのラップトップ固有の機能がサポートされていない可能性があります。特定のラップトップがGNU/Linuxでうまく動作するかどうかを知るためには、Linuxラップトップページをご覧ください。

2.1.4 マルチプロセッサ

このアーキテクチャでは、マルチプロセッササポート（「対称型マルチプロセッシング」やSMPと呼ばれている）が利用できます。Debian12の標準カーネルイメージはSMP-alternativesをサポートするようコンパイルされています。これにより、プロセッサ数（やプロセッサコア数）を検出し、単一プロセッサシステムの場合には、自動的にSMPを無効にします。

もともと、複数のプロセッサがあるコンピュータはハイエンドサーバシステムのみのものでしたが、近年では「マルチコア」と呼ばれるコンピュータの登場により、どこでも当たり前のものになりました。これには、1つの物理的なチップに、「コア」と呼ばれる複数のプロセッサユニットが搭載されています。

2.1.5 グラフィックハードウェアのサポート

Debianのグラフィックインターフェースのサポートは、X.OrgによるX11システムやカーネルでサポートされているかどうかで決まります。デスクトップ環境はX11を利用するのに対し、基本的なフレームバッファのグラフィックはカーネルによって提供されます。3Dハードウェアアクセラレーションやハードウェアアクセラレーション対応だった、高性能なグラフィックカードの機能が有効かどうかは、システムで使用する実際のグラフィックハードウェアと、ある状況下では、追加「ファームウェアファイル」ファイルのインストール（項2.2参照）に依存します。

モダンPCでは、グラフィカル表示は大抵の場合は特に設定不要で動作します。非常に多くのハードウェアでも、3Dアクセラレーションも設定せずに動作しますが、それでもいくつかのハードウェアではきちんと動作するにはファームウェアのバイナリファイルを必要とします。簡易なグラフィック表示にすらグラフィックカード用の追加ファームウェアのインストールが必要な場合があった、という報告もいくつか挙がっています。

サポートされているグラフィックハードウェアやポインティングデバイスに関する、より詳細な情報はhttps://wiki.freedesktop.org/xorg/にあります。Debian12はX.Orgバージョン7.7を採用しています。

2.1.6 ネットワーク接続機器

Linuxカーネルがサポートしているネットワークインターフェースカード（NIC）なら、インストールシステムでもほとんどサポートしています。ドライバモジュールは、通常自動的に読み込まれます。これにはラップトップにある、ほとんどのPCI/PCI-ExpressカードとPCMCIA/Expressカードが含まれます。

ISDNはサポートしていますが、インストール中には使用できません。

2.1.6.1 ワイヤレスネットワークカード

一般的にワイヤレスネットワークは、よくサポートされており、公式Linuxカーネルでサポートしているワイヤレスアダプタの数は増加していますが、多くはファームウェアの読み込みが必要です。

ファームウェアが必要な場合、インストールはファームウェアのロードを促します。インストール中ファームウェアのロードについての詳細は、項6.4をご覧ください。

公式LinuxカーネルでサポートされていないワイヤレスNICもDebianGNU/Linuxで動作しますが、インストールの間はサポートされていません。
CHAPTER 2. 必要なシステム

2.2. ファームウェアが必要なデバイス

ワイヤレス問題があり、その他の NIC がインストール中に使用できない場合でも、フルサイズの CD-ROM・DVD イメージを使用して、Debian GNU/Linux をインストールできます。ネットワークを設定しないようにし、CD/DVD にあるオペレーティングシステムのみをインストールしてください。インストールが完了後（リブート後）に、必要なドライバとファームウェアをインストールし、ネットワークを手動で設定してください。

いくつかの場合、必要なドライバが Debian パッケージとして利用できないことがあります。その場合、インターネットから利用できるソースコードがあるかどうか探し、自分でドライバをコンパイルする必要があります。どのように行うかはこのマニュアルでは扱いません。利用できる Linux のドライバがない場合、Windows のドライバを利用できる ndiswrapper パッケージが最後の楽園になります。

2.1.7 点字ディスプレイ

点字ディスプレイのサポートは、brltty で見られる基本的なサポートにより決定されます。brltty で動作するほとんどのディスプレイは、シリアルポートや USB、bluetooth で接続します。点字ディスプレイの詳細は、brltty ウェブサイトにあります。Debian GNU/Linux 12 では、brltty のバージョン 6.3 を提供しています。

2.1.8 ハードウェア音声合成

ハードウェア音声合成デバイスのサポートは、speakup でサポートしているかどうかで決定されます。speakup は、統合基板やシリアルポートに接続された外部デバイスのみサポートしています（USB やシリアル-USB 変換、PCI アダプタはサポートしていません）。ハードウェア音声合成デバイスのサポートについての詳細は、speakup のウェブサイトにあります。Debian GNU/Linux 12 では、speakup のバージョン 3.1.6 を提供しています。

2.1.9 周辺機器やその他のハードウェア

Linux は、マウス、プリンタ、スキャナ、PCMCIA/CardBus/ExpressCard、USB デバイスなどの様々なハードウェアに幅広く対応しています。しかし、システムのインストールに、これらのデバイスが必要なわけではありません。

USB ハードウェアはいまいち動きません。非常に古い PC システムでは、USB キーボードの追加設定が必要かもしれません（項 3.6.6 をご覧ください）。昨今の PC では、USB のキーボードやマウスは、特に設定せずに動作します。

2.2 ファームウェアが必要なデバイス

デバイスドライバの可用性とは別に、いくつかのハードウェアでは、デバイスを使用できるようになる前に、いわゆるファームウェアやマイクロコードを、デバイスに読み込む必要があるものもあります。もっとも一般的なのはネットワークインタフェースカード（特にワイヤレス NIC）ですが、例えば USB デバイスやハードディスクコントローラーでも、ファームウェアが必要なものがあります。

多くのグラフィックカードでは、基本機能は追加ファームウェア無しで利用可能なもの、先進的な機能を使用するためにはシステムにファームウェアをインストールしなければなりません。いくつかのケースではインストールが成功したにも関わらず、インストール後に再起動した際に画面がブランクあるいは文字化けした状態になってしまうことがあります。このような現象が起きた場合であったりしても、ログインを試行可能な回避策があります（項 6.4.3 を参照してください）。

動作にファームウェアを必要とする古いデバイスでは、ファームウェアファイルは、メーカーによってデバイスの EEPROM/フラッシュチップに永続的に置かれています。今日では、ほとんどの新しいデバイスがこの方法でファームウェアを埋め込むのではなく、ホストの OS がシステムブート時に、毎回ファームウェアファイルを、デバイスにアップロードしなければならなくなっています。

多くの場合、Debian GNU/Linux プロジェクトで使用する基準において、non-free（非フリー）であるため、main ディストリビューションや、インストールシステムに含むことができません。デバイスドライバそのものがディストリビューションに含まれ、Debian GNU/Linux が法的にファームウェアを配布できるのであれば、アーケイブの non-free セクションに独立したパッケージとして、利用できることがしばしばあります。

しかし、そのようなハードウェアを、インストール中に使用できないわけではありません。Debian GNU/Linux 5.0 からは、debian-installer は USB メモリなどのリムーバブルメディアから、ファーム
ウェアを含む、ファームウェアファイルやパッケージの読み込みをサポートしています。インストール中に、ファームウェアファイルやパッケージをどのように利用するのか、といった詳細情報は、項6.4を参照してください。

debian-installerがファームウェアファイルを要求し、そのファームウェアファイルがない、または非フリーのファームウェアファイルをシステムにインストールしたくないといった場合は、ファームウェアをロードせずに継続を試せます。特定の状況下で必要になるはずなので、ドライバが追加ファームウェアを要求する場合があるので、ほとんどのシステムで、デバイスはファームウェアがなくても動作します（例：tg3ドライバを使用する特定のネットワークカードで発生）。

2.3 GNU/Linuxに適したハードウェアの購入

Debianや他のGNU/Linuxディストリビューションをプリインストールしたシステムを出荷しているベンダもあります。多少余分なお金がかかるかもしれませんが、ある程度の安心を購入できることになります。このハードウェアはGNU/Linuxでしっかりサポートされていることが確信できるわけです。

もしWindowsがバンドルされたマシンを賃貸すれば、Windowsに付属するソフトウェアライセンスを注意深く読むましょう。このライセンスを拒否して、購入元のベンダから払い戻しを受けることができるかもしれません。「windows refund」についてインターネットを検索すると、これについて有用な情報が手にはいるかも知れません。

Linuxがバンドルされたシステムを購入する場合でも、中古のシステムを購入する場合でも、そのハードウェアがLinuxでサポートされているか確認することが重要です。前述の参考資料の中に、そのハードウェアが挙げられているかどうかを確認してください。もしバンドル先の販売員には、Linuxシステムを購入することを伝えましょう。また、Linuxに友好的なハードウェアベンダを支援しましょう。

2.3.1 独占的・閉鎖的なハードウェアを避ける

あるハードウェアメーカーは、どのようにドライバを書いたらよいかをまったく教えてくれません。また、フリーソフトウェアの中心要素のひとつである、ドライバのソースコード公開を妨げるNDA（非公開の同意）を結ばない限り、ドキュメントを見せてくれないメーカーもあります。そういったデバイスの、有用なドキュメントへのアクセス権がないため、Linuxでは、単に動作しないという事になります。

多くの場合、そんなデバイスと、OSや、そのデバイスドライバがどのように通信するのかを説明した、標準（またはデファクトスタンダード）があります。そのような標準（あるいはデファクトスタンダード）の他に従うすべてのデバイスは、ひとつの汎用デバイスドライバで動作し、デバイス固有のドライバは必要ありません。ある種のハードウェア（例：USB「ヒューマンインターフェースデバイス」、つまりキーボードやマウスなどや、USBフラッシュディスク、メモリーカードリーダのようなUSBマスストレージデバイス）では非常にうまく動作し、実際に市場に流通しているデバイスはすべて標準に準拠しています。

他の分野では、たとえばプリンタは、残念ながらそうではありません。多くのプリンタが、標準（またはデファクトスタンダード）制御言語で対処し、いくつものOSで問題なく動作できるようにしている一方、少数ですが、ドキュメントがないプロプライエタリな制御コマンドしか理解せず、自由なOSでは使用できないか、メーカーが提供したクローズソースドライバしか使用できないプリンタがあります。

デバイス購入時にそのハードウェア用のクローズソースソフトドライバがベンダーにより提供されていても、そのデバイスの現実的な寿命はドライバが利用できるかどうかで制限されます。最近は製品サイクルが短くなり、消費者向けデバイスが生産終了となってから短期間で生産者によるドライバ更新が利用できないになることは珍しくありません。システムアップグレード後にクローズソースドライバが動作しなくなってしまうと、完動していたデバイスがドライバのサポートが行われないという理由により使用できないものになり、その場合にできるのは何もありません。そういうことがあるため、閉鎖的なハードウェアの購入はそれを利用するOSを問わず初めから避けるべきです。

私たちがそのハードウェア向けのフリードライバを提供するために必要な、ドキュメントその他の資料を公開するように閉鎖的なハードウェアの生産者に働きかけることにより、この状況の改善を支援することができます。
2.4 インストールに利用できるメディア

本節では、Debianをインストールするのに、どのメディアを使用するかを決めるのに、参考になるでしょう。全体をメディアに費やした章（第4章）があり、そこではメディアごとに利点と欠点を挙げています。その章から、このページに、もう一度戻ってくるかもしれませんね。

2.4.1 CD-ROM/DVD-ROM/BD-ROM
光学ディスクからのインストールは、ほとんどのアーキテクチャでサポートされています。ohci1394やsbp2ドライバでサポートしているFireWireデバイスと同様、PCではSATAやIDE/ATAPI、USBおよびSCSIの光学ドライブをサポートしています。

2.4.2 USBメモリ
USBメモリとしてよく知られるUSBフラッシュディスクは広く利用されるようになっている安価なストレージデバイスです。いまのコンピュータシステムではほとんどのインストールと、インストール中の質問に対する答えに応じてインストール周辺のデバイスをサポートしています。いまのコンピュータシステムの多く、特にネットワークや薄いノートは光学ドライブをまったく持たず、こういったシステムに新しいOSをインストールする場合、USBメディアからのブートは標準的な手段となっています。

2.4.3 ネットワーク
インストールに必要なファイルをインストール中に取得するのに、ネットワークを使用できます。ネットワークを使用するかどうかは、あなたが選択したインストール方法と、インストール中の質問への答えに依存します。インストールシステムは、ネットワークへのほとんどの接続法（PPPoEを含む。ISDNやPPPは不可）でのHTTPとFTPのどちらかをサポートしています。ディスクレスインストールをすることもできます。CD/DVDやUSBメモリ等のローカルメディアを一切必要とせず、インストールシステムをネットワーク越しに起動することもできます。ネットワーク内に既にDHCPおよびTFTPサービスが動作している場合は、そうすることで大量のデータの展開が簡単、迅速にできるようになります。必要となる基盤の準備には、ある程度技術的な経験が必要されるため、この方法は初心者には勧めません。

ネットワーク越しに起動を行い、すべてのローカルファイルシステムをNFSでマウントしてディスクレスインストールをすることも一つの選択です。

2.4.4 ハードディスク
ハードディスクからインストールシステムを直接ブートするのは、多くのアーキテクチャで使えるもうひとつの方法です。ハードディスク上にあるインストーラをロードするため、他のOSが必要になります。この方法は、他のインストール方法が利用できないという、限定的な場合には便利です。

2.4.5 Unix・GNUシステム
他のUnix系システムが稼働していれば、このマニュアルで説明しているdebian-installerを使用せずに、Debian GNU/Linuxをインストールに使用できます。このインストール方法なら、他の方法ではサポートしないハードウェアや、ダウンタイムを用意できないユーザにとって便利です。この方法は、他のインストール方法のない、慣れたユーザにとってのみ、おすすめします。

2.4.6 サポートする記憶装置
Debianのカーネルは、なるべくどのシステムでも実行できるように構築されています。一般的にDebianのインストールシステムは、PATAとしても知られるIDEドライブ、SATAやSCSIコントローラドライバ、USB、FireWireをサポートしています。サポートしているファイルシステムは、FAT、Win-32拡張FAT（VFAT）、NTFSです。
2.5 必要なメモリとディスクスペース

通常のインストールを行うには、少なくとも780MBのRAMと920MBのハードディスク領域が必要です。これは、本当に最小限の値だということに注意してください。現実的な値は、項3.4をご覧ください。

インストーラは通常自動でメモリ節約トリックを有効にしてそのような低メモリシステム上でも動作しますが、あまりテストが行われていないアーキテクチャではそれが働かないかもしれません。ただそれでも手動でlowmem=1やlowmem=2というブートパラメータを追加することで有効にできます（項6.3.1.1と項5.3.2もご覧ください）。

Installation on systems with less memory\(^1\) or disk space available may be possible but is only advised for experienced users.

\(^1\)Installation images that support the graphical installer require more memory than images that support only the text-based installer and should not be used on systems with less than 780MB of memory. If there is a choice between booting the text-based and the graphical installer, the former should be selected on such systems.
Chapter 3

Debian GNU/Linux のインストール前に

本章は、インストーラを起動する前の、Debianをインストールする準備について扱います。ここでは、データのバックアップ、ハードウェアに関する情報収集、必要な情報の特定といったことを含みます。

3.1 インストールプロセスの概要

はじめに、再インストールについて述べておきます。Debianで、システムの完全な再インストールが必要になる状況は、非常にまれです。おそらく、もっともありそうなケースはハードディスクの機械的な故障でしょう。

多くの普通のオペレーティングシステムが、重大な故障が起きたり、OSの新バージョンへのアップグレードの際に、完全インストールを要求するかもしれません。完全な新インストールを要求しても、使用するプログラムを新OSで適切に動かすために再インストールしなければなりません。

Debian GNU/Linuxでは、うまく行かない場合、OSを取り替えるのではなく修理できるケースの方がはるかに多いでしょう。アップグレードでは大量のインストールは必要ありませんし、常にその場でアップグレードできます。またOSのリリースが続いても、プログラムにはほとんど常に互換性があります。プログラムの新バージョンが、より新しい依存するソフトウェアを要求する場合、Debianパッケージングシステムは、必要なソフトウェアをすべて自動的に識別し、確実にインストールします。再インストールが必要ないように力尽くしてきており、再インストールをしなくてはならないというのは、最後の手段であるというのがポイントです。インストーラは、既に存在するシステムに対して、再インストールするように設計されていません。

ここでは、インストールプロセスの中で行う処理を一段階ずつまとめておきましょう。

1. インストールするハードディスクにある、既存のデータや文書のバックアップ。

2. インストールを開始する前に、コンピュータの情報と必要な文書を集める。

3. インストーラソフトウェアと、それにマシンで必要になる、特殊なドライバファイルやファームウェアファイルについて、場所の確認・ダウンロード。

4. CD・DVD・USBメモリといったブートメディアをセットアップや、インストーラを起動できるネットワークブートインフラの準備。

5. インストールシステムを起動する。

6. インストールする言語を選択する。

7. 可能なら、イーサネットネットワーク接続を有効にする。

8. 必要なら、インストールする領域を確保するため、ターゲットハードディスクにある、既存パーティションのリサイズ。

9. Debianをインストールするパーティションを作成し、マウントする。

10. 自動で行われる基本システムのダウンロード・インストール・セットアップを監視する。

11. 追加のソフトウェアを選んでインストール。

12. Debian GNU/Linux と既存システムを起動するブートローダをインストールする。
13. 新しいシステムを初めて起動する。

64-bit PC では、グラフィカル版インストールシステムを使用するという選択肢があります。グラフィカルインストールについては、項5.1.8をご覧ください。

インストール中に問題があったら、どのステップのどのパッケージでつまずいたかを知るお手伝いをします。このインストール前の、そんな主役ソフトウェア俳優をご紹介します。

インストーラの debian-installer は、このマニュアルの主役です。ハードウェアを検出して適切なドライバをロードし、dhcp-client を使用してネットワーク接続を設定し、基本システムパッケージをインストールするのに debootstrap を実行し、さらに追加ソフトウェアをインストールする tasksel を実行します。このプロセスで多くの俳優が、より小さな役を演じますが、初めて新しいシステムを起動する時に、debian-installer はそのタスクを終えることになります。

システムをお好みに調整するには、tasksel を使用して Web サーバやデスクトップ環境といった、様々なソフトウェアの定義済みセットを選択・インストールできます。

インストール時の重要な選択肢に、X Window System とグラフィカルデスクトップ環境の 1 つからなる、グラフィカルデスクトップ環境をインストールするかどうかがあります。「デスクトップ環境」タスクを選択しない場合、比較的基準的な、コマンドライン駆動システムになります。デスクトップ環境は、テキストモードのみのシステムと比べて、かなり大きなディスク領域を必要とし、また、多くの Debian GNU/Linux システムは、グラフィカルユーザインタフェースを特に必要としないサーバであるため、デスクトップ環境タスクはオプションとなっています。

X Window System は、debian-installer とは完全に分かれているので、実際には非常に複雑なことに注意してください。X Window System のトラブルシュートは、このマニュアルでは扱いません。

3.2 既存データをバックアップしてください!

インストールを始める前に、現在使用しているシステムのすべてのファイルをバックアップしてください。今回初めて、最初から入っていたもの以外の OS をインストールするのであれば、おそらくディスクのパーティション分割をやり直して Debian GNU/Linux 用の領域を作る必要があるでしょう。ディスクのパーティション分割作業は、どんなプログラムを使ったとしても、ディスク上のすべてのデータを消してしまう危険があります。Debian GNU/Linux のインストールに用いられるプログラム群は、極めて信頼性が高く、何年も使用されてきたものです。しかし、これらは強力な機能を持つことですので、誤動作が起こったときの被害も大きくなります。バックアップを取った後でも、質問に答える前に充分注意し、よく考えて行動してみてください。ほんの数分間余計に配慮することで、何時間もの不要な作業を避けることができるかもしれません。また、システムをマルチブートシステムにする（複数のオペレーティングシステムを共存させる）場合には、既にインストールされているオペレーティングシステムの配置メディアが手元にあることを確かめてください。通常は必要ないとはいえ、システムをブートするために、OS のブートローダーを再インストールする必要があったり、最悪の場合、完全に OS をインストールし、以前のバックアップをリストアする必要がある可能性もあります。

3.3 必要な情報

3.3.1 ドキュメント

3.3.1.1 インストールマニュアル

現在ご覧になっている文書は、Debian の次期リリース用インストールガイドの開発版です。これは様々な形式と様々な言語で利用できます。

3.3.1.2 ハードウェアの文書

しばしば、ハードウェアの設定や使用についての有用な情報を含んでいます。

- Debian Wiki ハードウェアページ

3.3.2 ハードウェア情報の取得先

多くの場合、インストーラはハードウェアを自動的に検出することができます。しかし、準備としてインストール前にハードウェアに習熟することをお勧めします。
ハードウェアの情報は次のようなところから集められます。

- 各ハードウェアに付属してきたマニュアル。
- システムのBIOS/UEFI設定画面。この画面を表示させるには、コンピュータの起動時に何らかのキーの組合せを押します。この組合せについてはマニュアルを見てください。DeleteキーやF2キーの場合が多いようですが、いくつかのメーカーは、別のキーを使用することもあります。大抵、コンピュータの起動時に、設定画面に入るキーを表示します。
- 各ハードウェアのケースや箱。
- Windowsのコントロールパネルの「システム」ウィンドウ。
- 他のOSのシステムコマンドやシステムツール、ファイルマネージャの表示など。こちらからは、RAMやハードドライブのメモリに関する情報が得られることが多いです。
- あなたの部門のシステム管理者や、インターネットサービスプロバイダ。こちらからは、ネットワークや電子メールに関する設定情報が得られます。

<table>
<thead>
<tr>
<th>ハードウェア</th>
<th>必要な情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソフトウェア</td>
<td>ドライバの台数</td>
</tr>
<tr>
<td>ハードウェア</td>
<td>システムでの接続順序</td>
</tr>
<tr>
<td>ハードディスク</td>
<td>IDE(PATAとしても知られる)、SATA、SCSIのどれか</td>
</tr>
<tr>
<td>ハードディスク</td>
<td>利用できる空き領域</td>
</tr>
<tr>
<td>ハードディスク</td>
<td>パーティション</td>
</tr>
<tr>
<td>ハードディスク</td>
<td>他のOSがインストールされているパーティション</td>
</tr>
<tr>
<td>ネットワークインタフェース</td>
<td>利用可能なネットワークインタフェースのタイプ/モデル</td>
</tr>
<tr>
<td>プリンタ</td>
<td>メーカーと型番</td>
</tr>
<tr>
<td>ビデオカード</td>
<td>タイプ/モデルとメーカー</td>
</tr>
</tbody>
</table>

3.3.3 ハードウェア互換性

製品の多くは、問題なくLinuxで動作します。またLinuxでサポートするハードウェアも日々進歩しています。しかし、それでもまだLinuxは、ある種のOSほどには多種多様なハードウェアに対応していません。

Linuxに収録されているドライバはほとんどの場合特定の製造者の一部の「製品」や「商標」向けではなく、あるハードウェア/チップセット向けに書かれています。一見異なるように見える製品/商標が同一のハードウェア設計を基にしています。チップ製造者が自社チップを基に「リファレンス設計」と呼ばれる製品を提供し、それが複数の異なるデバイス製造者により利用され、多くの異なる製品や商標名で売られることは珍しくありません。

これには利点と欠点があります。利点は、製品が同一チップセットを基にしている限りは製品や製造者が異なっていても、一つのチップセットに一つのドライバで動作することです。欠点はある製品/商標で実際にはどのチップセットが使われているのか判定するのが常に簡単では限らないことです。残念なことに、デバイス製造者は製品のベースとなるハードウェアを変更してもその製品名や製品のバージョン番号を変えることが時々、そこで別々に売られている場合、異なる製品名が同一の製品が二つある場合、異なる二種のチップセットを基にしているため異なるドライバを使う必要があったり、一方には使えるドライバが何もないということもあります。

USBやPCI/PCI-Express/ExpressCard用のドライバが基にしているチップセット情報を調べるにはデバイスIDを確認するかが良い方法です。USB/PCI/PCI-Express/ExpressCardデバイスには全て、「ベンダー」および「製品ID」というものがあり、同一チップセットを基にしている製品であればこれは通常同じ組み合わせになります。

Linuxシステムでは、このIDはUSBデバイスではlsusbコマンド、PCI/PCI-Express/ExpressCardデバイスではlspci -nnコマンドで読み取ることができます。ベンダーおよび製品IDは通常“1d6b:0001”のように二つの16進数をコロンで区切った形式になっています。
3.3 必要な情報

lsusbの出力例: 「Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub」の場合、1d6bがベンダーIDで0002が製品IDです。

インサネットカードに対するlspci-nnの出力例: 「03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06).」IDは最初にある10ecがベンダー、8168が製品のIDです。

また別の例として、あるグラフィックスカードでは次のよう出力になります: 「04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] neeATIRV710 [Radeon HD 4350] [1002:954f]」。

Windowsシステムでは、デバイスのIDはWindowsデバイスマネージャの「詳細」タブで確認できます。ベンダーIDには先頭にVEN_、製品IDには先頭にDEV_が付けられます。Windows7システムではデフォルトでは表示されていないため、実際にIDを確認するにはデバイスマネージャの詳細タブのプロパティから「ハードウェアID」を選択する必要があります。

ベンダー/製品ID、「Linux」、「ドライバ」を検索語としてインターネットで検索すると多くの場合そのチップセット向けドライバの対応状態に関する情報が得られるでしょう。ベンダー/製品IDを検索してあまり有効な検索結果が得られなかった場合は、多くの場合lsusbやlspciでも提供されるチップのコード名（ネットワークカードの例では「RTL8111」/「RTL8168」、グラフィックスカードの例では「RV710」）を検索することで手がかりが得られるかもしれません。

3.3.3.1 ライブシステムを使用したハードウェア互換性テスト

Debian GNU/Linuxは一部のアーキテクチャで「ライブシステム」というのも利用できます。ライブシステムは設定済みですぐに使える圧縮形式のシステムで、CDやDVDのような読み込み専用メディアから起動して使えます。ディスクートでの使用では、コンピュータ上への恒久的な変更は一切行いません。ライブシステム内でユーザ設定を変更したりプログラムを追加でインストールすることはできますが、全てコンピュータのRAM上でのみ発生します。つまり、コンピュータの電源を落としてライブシステムを起動し直すと、全てがデフォルトにリセットされます。手持ちのハードウェアがDebian GNU/Linuxでサポートされているか確認する最も簡単な方法はデバイスラブシステムを使って試してみることです。

ライブシステムの使用にはいくつか制限があります。まず、ライブシステム内での変更は全てコンピュータのRAMに保持する必要があることで、そのため十分なRAMのあるシステムでないと機能しません。巨大なソフトウェアパッケージを追加でインストールすることはメモリの制約のために失敗するかもしれません。もう一つの制限はハードウェア互換性テストに関するもので、公式のDebian GNU/Linuxライブシステムにはフリーなものしか含まれません。つまり、フリーでないファームウェアファイルは一切含まれません。そういったフリーでないパッケージを手作業でシステムにインストールすることはもちろんですが、debian-installerのように必要なファームウェアファイルを自動的に検出するようなものは一切ないため、フリーでないものが必要であれば全て手作業によってインストールしなければなりません。

利用可能なDebianライブイメージの種類についての情報はDebianライブイメージのウェブサイトにあります。

3.3.4 ネットワークの設定

コンピュータが固定ネットワークに接続されているならば（つまり、PPP接続ではなくEthernetやそれと同等な接続の場合）、ネットワーク管理者に以下の情報の確認をお願いください。

- ホスト名 (自分で決めるかもしれません)
- ドメイン名
- コンピュータのIPアドレス
- ネットワークのネットマスク
- ネットワークにゲートウェイがある場合、経路を含むデフォルトゲートウェイシステムのIPアドレス
- DNS (Domain Name Service)サーバとして使用するネットワーク上のホスト

接続するネットワークを、DHCP (Dynamic Host Configuration Protocol) を用いて設定する場合、DHCPサーバがインストールプロセスの間、コンピュータに直接提供するので、この情報は必要ありません。
3.4 必要な最低限のハードウェア

コンピュータのハードウェアに関する情報が集まったら、そのハードウェアが今から行おうとしているインストールの条件に足るものであるか否かをチェックしましょう。

やむを得ない場合は、以下に載っているリストよりは性能の劣るハードウェアでなんとかしなければならないこともあるでしょう。しかし、これらのお勧めを無視した場合は、結局不満を感じる可能性が高くなってしまうと思います。

デスクトップシステムには最低Pentium4,1GHzをお勧めします。

Table 3.2 最低限必要なシステム（推奨値）

<table>
<thead>
<tr>
<th>インストールタイプ</th>
<th>RAM（最小）</th>
<th>RAM（推奨）</th>
<th>ハードディスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>デスクトップなし</td>
<td>256メガバイト</td>
<td>512メガバイト</td>
<td>2ギガバイト</td>
</tr>
<tr>
<td>デスクトップあり</td>
<td>1ギガバイト</td>
<td>2ギガバイト</td>
<td>10ギガバイト</td>
</tr>
</tbody>
</table>

The minimum values assumes that swap will be enabled and a non-liveCD image is used. The 「No desktop」 value assumes that the non-graphical (text-based) installer is used.

実際には必要な最小メモリはこの表に挙げたものよりも少なくなります。スワップを有効にすれば、最小350MBでDebianをインストールできます。必要なディスクスペースに同じことが言え、特にインストールするアプリケーションを選択する場合には必要ディスクスペースについての追加情報は、項D.2をご覧ください。

旧式ないしローエンドシステムでも、グラフィカルデスクトップ環境を実行できますが、GNOMEやKDE Plasmaといったデスクトップ環境よりも、リソースを消費しないウィンドウマネージャをインストールするのをお勧めします。代替品には、xfce4、icewm、wmakerが含まれますが、他にも選択できます。

インストール時に必要なメモリやディスクの量は、どのようなサーバとして使用するかによって異なるため、一般的な量の提示は事実上不可能です。

これらのサイズには、通常存在するユーザファイル、メール、データなどは含まれていないことにご注意ください。自分のファイルやデータに必要な容量は、気前良く確保しておくに越したことはありません。

Debian GNU/Linux システムを円滑に操作するのに必要なディスクスペースについては、お勧めするシステム要件で考慮されています。特に、/var パーティションには、ログファイルのような一般的な内容に加え、Debian 特有の状態情報が多く置かれます。dpkg のファイル（インストールされたパッケージすべてに関する情報）は、簡単に40MBを消費します。また apt は、インストールする前にダウンロードしたパッケージをここに置きます。/var には最低200MBを割り当てておくべきで、グラフィカルデスクトップ環境をインストールする場合には、もっと割り当てるべきでしょう。

3.5 マルチブートシステムでの事前パーティション分割

「ディスクのパーティション分割」とは、ディスクをセクションに分けることです。各セクションは他のセクションから独立しています。この作業は必要にかかっても、家の中に壁を作るようなものです。ある部屋に家具を入れても、それは他の部屋には影響しないというわけです。

システム上に既にオペレーティングシステム (Windows 9x, Windows NT/2000/XP/2003/Vista/7, OS/2, MacOS, Solaris, FreeBSD, …) が入っていてディスク全体を使っているときに同じディスクにDebianを入れたい場合には、ディスクのパーティション分割をやり直す必要があります。DebianはWindowsやMacOSのパーティションにはインストールできません。他のUnixシステムとはパー
3.6 インストール前に行うハードウェア・OS の設定

この節では、Debianのインストールに先立って必要となるハードウェアの設定について見ていきま
す。通常この作業では、システムのBIOS/UEFI/システム用ファームウェアの設定をチェックし、場合
によってはその設定を変更することになります。「BIOS/UEFI」や「システムファームウェア」は、ハードウェアが利用する中核的なソフトウェアで、電源投入後のブートプロセスの間に起動される、最
も重要なものです。

3.6.1 BIOS/UEFI 設定メニューの起動

BIOS/UEFIはマシンのブートに必要となる基本的機能を提供し、OSがハードウェアにアクセスできる
ようにするものです。これからインストールしようとしているマシンでも、BIOS/UEFIを設定できるよ
ようなメニューがついていると思います。BIOS/UEFI設定メニューに入ると、コンピュータの電源
を入れてからキーを（一つまたは組み合わせて）押しておきます。まず一回の起動時にどのキー
を押して設定画面に入るのか指示するメッセージが表示されてしまうでしょう。

3.6.2 ブートデバイスの選択

BIOS/UEFI設定メニューで起動可能なOSをどのデバイスから順に探すのか選択できるようになっています。通常、内蔵ハードドライブやCD/DVD-ROMドライブ、USBメモリや外付けUSBハードディ
スクのようなUSB大容量デバイスが選択できるでしょう。いまのシステムではPXE経由ネットワーク
からの起動ができるようになっているものもよくあります。

選択したインストール用メディア（CD/DVD ROM、USBメモリ、ネットワーク経由）によりますが、
適切な起動デバイスが有効になっていなければここで有効化してください。
ほとんどのBIOS/UEFIで、システム起動時に起動メニューを呼び出してコンピュータがそのシステム起動時に「press F12 for boot menu」のような短いメッセージを BIOS/UEFIが表示します。実際にこのメニューに入るために使うキーはシステムにより様々ですが、よく使われるキーは F12やF11、F8があります。このメニューからデバイスを選択した場合は BIOS/UEFIのデフォルトの順を変更できません。つまり、内蔵ハードディスクを通常第一の起動デバイスに設定している状態でUSBメモリから一度だけ起動することができます。

BIOS/UEFIがその時限りの起動デバイス選択メニューを提供していない場合は、BIOS/UEFIの設定を変更して debain-installerを起動するデバイスを第一の起動デバイスにする必要があります。

残念ながら一部のコンピュータにはBIOS/UEFIの動作がおかしいものがあるかもしれません。BIOS/UEFI設定メニューにしかるべきオプションがあってUSBメモリが第一の起動デバイスに選択されていてもUSBメモリから.debian-installerの起動ができないかもしれません。こういったシステムの一部ではUSBメモリを起動デバイスとして使うことができません。BIOS/UEFI設定のデバイスタイプをデフォルトの「USBハードディスク」や「USBメモリ」から「USB ZIP」や「USB CDROM」に変更することによりBIOSを騙してUSBメモリから起動することができるものもあります。特にisohybridインストールイメージをUSBメモリで使う場合（4.3.1参照）、USBハードディスクモードでUSBメモリから起動しないBIOSでは、デバイスタイプを「USB CDROM」に変更すると起動できることがあります。BIOS/UEFIで「USB legacy support」を有効にする必要があるかもしれません。

BIOS/UEFIを操作してUSBメモリから直接起動することができない場合でも、まだUSBメモリにコピーしたISOを使うという選択があります。項4.4を使ってdebian-installerを起動し、インストールのISOイメージを探してハードドライブを走査した後でUSBデバイスを選択し、インストール用イメージを選びます。

3.6.3 UEFIファームウェアを利用しているシステム

UEFI（「Unified Extensible Firmware Interface」）は新しい種類のシステムファームウェアで、現代的なシステムの多くで採用され、他の用途もありますが、伝統的なPC BIOSの置き換えを意図しています。

現在UEFIを採用しているほとんどのPCシステムでファームウェアのいわゆる「互換性サポートモジュール」（CSM、Compatibility Support Module）を備えています。これは伝統的なPC BIOSとて全く同一のインターフェイスをオペレーティングシステムに提供するため、伝統的なPC BIOS向けに書かれたソフトウェアを変更せずにそのまま使えます。UEFIは完全な後方互換性を維持せずに古いPC BIOSを使って完全に置き換えることもできます。UEFIを採用しているとCSMを備えていないシステムも既に多数存在します。

UEFIを備えたシステムでオペレーティングシステムをインストールする際に留意しておくべきことはいくつかあります。ファームウェアがオペレーティングシステムを読み込む方法がBIOS（やUEFIのCSMモード）とネイティブUEFIとでは根本的に異なります。伝統的なBIOSではハードディスクのパーティションテープをハードディスク上に記録する方法です。伝統的なBIOSではDOSパーティションテーブルを用います。ネイティブUEFIでは「GUIDパーティションテーブル」（GPT、GUID Partition Table）と呼ばれる、異なるパーティション方式を採用しています。これらのディスクで実用的な目的に利用できるのは2つのうちの1つだけであり、そのために1つのディスクで異なるオペレーティングシステムのマルチブートを実現する場合は同じ種類のパーティションテーブルをその全オペレーティングシステムで使いこなさないといけません。GPTで実現したディスクからのブートはネイティブUEFIモードでのみ可能ですが、ハードディスク容量増大によりGPTの採用が増えます。一般的になっています。これは伝統的なDOSパーティションテーブルでは容量が約2テラバイト以上のディスクには対応できないのに対してGPTでは無制限に容量拡張ができます。BIOS（やUEFIのCSMモード）とネイティブUEFIとの他の大きな違いとしてブートローダーが保存する位置とそのコードの形式があり、そのため異なるシステムでは異なるブートローダーが必要です。

UEFIシステムのCSDでdebian-installerをブートする場合には後者が重要になります。これはdebian-installerがBIOSから起動されたからネイティブUEFIシステムから起動されたのか確認して対応するブートローダーをインストールするためです。通常これは単純にうまく機能しますが、マルチブート環境では問題が起きる可能性があります。一部のUEFIシステムではCSDを利用した場合、脱着可能機器のデフォルトのブートモードが、ハードディスクからブートしたときに実際に利用されるものとは異なる可能性があるためです。そのため、別のインストール済みオペレーティングシステムをハードディスクからブートする際に使用するモードには異なるモードでインストールをUSBメモリからブートした場合、適切でないブートローダーがインストールされ、インストール完了後システムがブート可能になるかもしれません。システムによってはブートディスクをファームウェアのブートメニューから選択する際に各デバイスについて別の選択を提示し、CSMからブートするのかネイティブ
3.6 インストール前に行うハードウェア・OSの設定

3.6.4 セキュアブート

UEFIに関連する他の話題としてはいわゆる「セキュアブート」機構があります。セキュアブートとはUEFI実装の機能で、暗号的に特定の鍵により署名済みのコードの読み込み、実行だけをファームウェアに許可します。結果として（潜在的に悪意のある）署名されていないあるいは未知の鍵により署名されたブートコードを全て阻止します。現在的にはセキュアブートを採用しているほとんどのUEFIシステムでデフォルトで受け付ける鍵はWindowsブートローダの署名に利用されているMicrosoftの鍵だけです。Debianは「shim」というMicrosoftにより署名されたブートローダを同梱しているので、セキュアブートが有効化されているシステムでも正しく動作はずです。

3.6.5 Windowsの「高速起動」/「高速スタートアップ」機能の無効化

Windowsは（Windows8では「高速起動」、Windows10では「高速スタートアップ」と呼ばれる）システム起動にかかる時間を短縮する機能を提供しています。技術的には、この機能を有効化するとWindowsはシャットダウンを指示したときに実際のシャットダウンやその後の実際のコールドプートを行わず、代わりにディスクへの部分サスペンドのようなことを行う「ブート」時間を短縮します。Windowsがそのマシンの唯一のオペレーティングシステムである限りこれは問題にはなりませんが、Windowsと同一のファイルシステムに別のオペレーティングシステムがアクセスするデュアルブート環境では問題となりデータの消失の可能性があります。その場合、「ブート」後にはファイルシステムの実際の状態がWindowsがそうであると信じている状態とは異なる可能性があり、そのファイルシステムへの書き込みアクセスがさらに起こるとファイルシステムの破損を引き起こす可能性があります。したがって、デュアルブート環境でファイルシステムの破損を避けるためには「高速起動」/「高速スタートアップ」機能をWindows内で無効化する必要があります。

さらに、ユーザが以前無効にしていても、その後Windows Update機構が（時々）自動でこの機能を再度有効化することが知られています。この設定を定期的に再チェックすることをお勧めします。

別のオペレーティングシステムやdebian-installerのブートを選択するためのUEFI設定のアクセスが許可されていても「高速スタートアップ」を無効化する必要があるかもしれません。一部のUEFIシステムにはキーボードコントローラやUSBハードウェアを初期化しないことによって「ブート」時間を短縮しているファームウェアがあります。その場合はWindowsをブートしてこの機能を無効化し、ブート順を変更できるようにする必要があります。

3.6.6 気をつけるべきハードウェアの問題

USB BIOSサポートとキーボードPS/2形式のキーボードがなく、USBのものだけ場合、ある種の非常に古いPCでは、ブートローダーメニューでキーボードを使用するため、BIOS設定でlegacy keyboard emulationを有効にする必要があります。だが、今日のシステムでは問題になりません。ブートローダーメニューでキーボードが使用できない場合、マザーボードのマニュアルを調べ、「Legacy keyboard emulation」や「USB keyboard support」といったBIOS設定に入れてください。
Chapter 4

システムインストールメディアの入手

4.1 公式 Debian GNU/Linux インストールイメージ

現在、Debian GNU/Linux をインストールする最も簡単な方法は、公式 Debian インストールイメージセットを使うことです。ベンダからこの CD/DVD セットを購入できます（CD ベンダページをご覧ください）。高速なネットワーク接続と CD/DVD 書き込み装置があれば、Debian ミラーからインストールイメージをダウンロードしてもかまいません（詳細説明は Debian CD ページと Debian CD FAQ をご覧ください）。そのような光学インストールメディアを持っていて、マシンをこれらから起動でき、昨今の PC であるなら、第5章の項目までスキップできます。よく使用するファイルが CD に納まっていた場合、CD/DVD 写込み装置とネットワーク接続があれば、デスクトップ環境のすべてをインストールできます。

昨今の標準としては、CD は少々容量に制限があり、グラフィカルデスクトップ環境のすべてを、先頭の CD だけですべてインストールできなかったため、いくつかのデスクトップ環境では、CD でのインストールに、ダウンロード用のネットワーク接続から追加 CD から残りのファイルの取得が必要となります。

もう一点、留意しておいてください: あなたが使っているインストールメディアが必要なパッケージを含んでいない場合、その後動作している新たな Debian システムからこれらのパッケージをインストールできます（インストール完了後になります）。特定のパッケージを見つけるためにどのインストールメディアにあるかを知る必要がある場合は、https://cdimage-search.debian.org/ をご覧ください。

あなたのマシンが光学メディアからの起動をサポートしていない場合（非常に古い PC システムにしか関係しません）、CD/DVD セットを持っているのであれば、最初のシステムインストーラの起動にハードディスク、USB メモリ、ネットワーク、ディスクからイメージを手動起動といった別の方法が使えます。これらの場合の設定や必要なパッケージがディスクに収録されており、Debian ネットワークアーケイブのディスクのフォルダ構成は同じです。そのため、以降で必要に分類されたそれぞれのファイルの、アーカイブファイルパスが変われば、インストールメディアのあるディレクトリやサブディレクトリからファイルを探せます。

いったんインストーラが起動すれば、ほかの必要なファイルはすべてディスクから取得できます。

インストールメディアセットを持っていない場合は、インストーラのシステムファイルをダウンロードして、ハードディスク、USB メモリ、接続されたコンピュータのいずれかに保存します。そしてそこからインストーラを起動します。

4.2 Debian ミラースーツからファイルのダウンロード

もっとも近い（そしておそらくもっとも速い）ミラースーツを探すには、Debian ミラースーツ一覧を参照してください。

4.2.1 どこでインストールファイルを探すか

様々なインストールファイルが各 Debian ミラーサーバの debian/dists/bookworm/main/installer-amd64/-current/images/ にあります。各イメージとその用途が、MANIFEST に記載されています。
4.3 USBメモリでの起動用ファイルの準備

To prepare the USB stick, we recommend to use a system where GNU/Linux is already running and where USB is supported. With current GNU/Linux systems the USB stick should be automatically recognized when you insert it. If it is not you should check that the usb-storage kernel module is loaded. When the USB stick is inserted, it will be mapped to a device named /dev/sdX, where the ‘X’ is a letter in the range a-z. You should be able to see to which device the USB stick was mapped by running the command lsblk before and after inserting it. (The output of dmesg (as root) is another possible method for that.) To write to your stick, you may have to turn off its write protection switch.

重要項目
イメージはパーティションではなくディスクデバイス全体を指定する必要があります。例えば /dev/sdb1ではなく /dev/sdbとなります。イメージの書き換えるunetbootinのようなツールは使わないでください。

重要項目
ほとんどのユーザは、インストールイメージを単にUSBメモリに書き込むだけでうまく行くでしょう。下記の選択肢はもっと複雑なので、主に特殊なニーズがあるユーザ向けです。

Todoso, use cfdisk or any other partitioning tool to create an additional partition on the stick. Then create a (FAT) filesystem on the partition, mount it and copy or unpack the firmware onto it, for example with:

```bash
# cp debian.iso /dev/sdX
# sync
```
CHAPTER 4. システムインストールメディアの準備

4.3. USBメモリでの起動用ファイルの準備

```
# mkdosfs -n FIRMWARE /dev/sdX3
# mount /dev/sdX3 /mnt
# cd /mnt
# tar zxvf /path/to/firmware.tar.gz
# cd /
# umount /mnt
```

注意

If you have chosen the mini.iso to be written to the USB stick, the second partition doesn’t have to be created, as - very nicely - it will already be present. Unplugging and replugging the USB stick should make the two partitions visible.

4.3.2 USBメモリへのファイルの手動コピー

Prior to isohybrid technology being used for Debian installation images, the methods documented in the chapters below were used to prepare media for booting from USB devices. These have been superseded by the technique in項4.3.1, but have been left here for educational and historical purposes and in case they are useful to some user.

An alternative to the method described in項4.3.1 is to manually copy the installer files, and also an installation image to the stick. Note that the USB stick should be at least 1 GB in size (smaller setups are possible using the files from netboot, following項4.3.3).

There is an all-in-one file hd-media/boot.img.gz which contains all the installer files (including the kernel) as well as syslinux and its configuration file.

注意

これは便利ですが、この方法にはひとつの大きな欠点があることに注意してください。USBメモリの容量がもっと大きかったとしても、デバイスの論理サイズが1 GBに制限されます。他の用途にも使用したい場合は、全容量を確保し直すため、USBメモリをパーティション分割し直し、新しいファイルシステムを作成する必要があります。

Simply extract this image directly to your USB stick:

```
# zcat boot.img.gz > /dev/sdX
```

After that, mount the USB memory stick (mount /dev/sdX /mnt), which will now have a FAT filesystem on it, and copy a Debian ISO image (netinst or full CD; see項4.1) to it. Unmount the stick (umount /mnt) and you are done.

4.3.3 USBメモリへのファイルの手動コピー—柔軟な方法

もっと柔軟なものがよかったり、何が起きているか知りたいのなら、以下に説明するUSBメモリにファイルを置く方法を使用すべきです。この方法の利点は、（USBメモリの容量が十分大きければ）任意のISOイメージ、DVDイメージをコピーするという選択肢までもがあるということです。

4.3.3.1 Partitioning and adding a boot loader

デバイス全体ではなく、USBメモリの最初のパーティションをセットアップする方法を示します。

USBメモリからブートしてカーネルを起動するには、USBメモリにブートローダーを配置します。どのブートローダーも動作しますが、FAT16パーティションを使用し、テキストファイルを編集するだけです。
で再度設定できるので、syslinuxを使用するのが便利です。FATファイルシステムをサポートするオペレーティングシステムなら、ブートローダの設定を変更するのに利用できます。

First, you need to install the syslinux and mtools packages on your system.

注意

Since most USB sticks come pre-configured with a single FAT16 partition, you probably won’t have to repartition or reformat the stick. If you have to do that anyway, use cfdisk or any other partitioning tool to create a FAT16 partition now\(^a\), and then install an MBR using:

```
# cat /usr/lib/syslinux/mbr/mbr.bin > /dev/sdX
```

Now create the filesystem using:

```
# mkdosfs /dev/sdX1
```

Take care that you use the correct device name for your USB stick. The mkdosfs command is contained in the dosfstools Debian package.

\(^a^\)Don’t forget to activate the ‘bootable’ flag.

Having a correctly partitioned USB stick (now), you need to put syslinux on the FAT16 partition with:

```
# syslinux /dev/sdX1
```

Again, take care that you use the correct device name. The partition must not be mounted when starting syslinux. This procedure writes a boot sector to the partition and creates the file ldlinux.sys which contains the boot loader code.

4.3.3.2 Adding the installer files

There are two different installation variants to choose here: The hd-media variant needs an installation ISO file on the stick, to load installer modules and the base system from. The netboot installer however will load all that from a Debian mirror.

According to your choice, you have to download some installer files from the hd-media or netboot subdirectory of `debian/dists/bookworm/main/installer-amd64/current/images/` on any Debian mirror:

- vmlinuz or linux (kernel binary)
- initrd.gz (initial ramdisk image)

You can choose between either the text-based version of the installer (the files can be found directly in hd-media or netboot) or the graphical version (look in the respective gtk subdirectories).

Then mount the partition (mount `/dev/sdX1 /mnt`) and copy the downloaded files to the root directory of the stick.

Next you should create a text file named `syslinux.cfg` in the root directory of the stick as configuration file for syslinux, which at a bare minimum should contain the following line:

```
default vmlinuz initrd=initrd.gz
```

Change the name of the kernel binary to 「linux」if you used files from netboot.

For the graphical installer (from gtk) you should add `vga=788` at the end of the line. Other parameters can be appended as desired.

さらにパラメータを追加するために、ブートプロンプトを有効にするには、prompt 1 の行を追加してください。

If you used files from hd-media, you should now copy the ISO file of a Debian installation image onto the stick. (For the netboot variant this is not needed.)
4.4 ハードディスク起動ファイルの準備

このインストーラはハードディスクパーティションに配置したファイルから起動できます。別のOSから起動することもできますし、BIOSから直接ブートローダを起動することもできます。最近のUEFIシステムであればブートローダも必要なくカーネルを直接UEFIパーティションから起動できます。

この方法を使えば、完全な「ネットワークのみ」のインストールを行うことができます。これは、CD/DVDメディアを探して焼いたりといったリムーバブルメディアに関する厄介ごとすべてを避けられる。

4.4.1 GRUBを使用したLinuxからのハードディスクインストーラ起動

本節ではGRUBを使用して、Linuxを追加したり既存のLinuxを交換する方法について説明します。

起動時に、カーネルだけでなくディスクイメージをメモリに読み込むのをGRUBはサポートしています。このRAMディスクはカーネルがrootファイルシステムとして使えます。

以下のファイルを、Debianアーカイブからあなたのハードディスクの適当な場所にコピーしてください。例えば/boot/newinstall/などです。

- vmlinuz (カーネルバイナリ)
- initrd.gz (RAMディスクイメージ)

起動のためだけにハードディスクを使用する予定で、ネットワークからすべてダウンロードするなら、netboot/debian-installer/amd64/initrd.gzファイルと対応するカーネルnetboot/-
debian-installer/amd64/linuxをダウンロードするよいでしょう。これはインストーラを起動するハードディスクのパーティションを、切り直すことができます。（注意して行ってください）

他の手段としては、インストール中にハードディスクの既存のパーティションを変更しない予定であれば、hd-media/initrd.gzファイルとそのカーネルhd-media/vmlinuzをダウンロードできます。同様に、ハードディスクにインストールイメージ（ファイル名が.isoで終わっているか要確認）をコピーしてください。インストーラをハードディスクから起動でき、ネットワークを使用せずにインストールイメージからインストールできます。

最後に、ブートローダを設定するため、項5.1.5に進んでください。

4.4.2 loadlinを使用したDOSからのハードディスクインストーラ起動

この節では、loadlinを使用して、DOSからインストーラを起動するようハードディスクを準備する方法を説明します。

以下のディレクトリを、Debianインストールイメージからc:にコピーしてください。

- /install.amd (カーネルバイナリとRAMディスクイメージ)
- /tools (loadlinツール)

4.5 TFTPネットブート用ファイルの準備

インストール対象のマシンがLANに接続されている場合、TFTPを用いると、そのマシンをネットワーク越しに他のマシンから起動できます。インストールシステムを別のマシンから起動するには、その「別のマシン」の特定の場所に起動ファイルを置き、またインストール対象のマシンの起動をサポートするよう設定しなければなりません。

TFTPサーバをセットアップする必要があり、そして多くのマシンではDHCPサーバ、またはBOOTPサーバのセットアップも必要です。

BOOTPはIPプロトコルのひとつです。クライアントに対して、使うべきIPアドレスと、ブートイメージをネットワークのどこから取得するかを伝えます。DHCP(Dynamic Host Configuration Protocol)は、BOOTPとの後方互換性を保ちつつ、より柔軟に拡張させたものです。システムによってはDHCPでしか設定できないこともあります。
Trivial File Transfer Protocol (TFTP) は、ブートイメージをクライアントに提供するために用います。理論的には、どんなサーバでも、どんなプラットフォームでも、これらのプロトコルを実装してさえいれば利用できます。この節では、SunOS 4.x, SunOS 5.x (Solaris), GNU/Linux での例を示します。

注意
Debian GNU/Linux のサーバでは、tftpd-hpa を推奨します。syslinux ブートローダの作者によって作られ、それ故にほとんど問題を起こしそうにありません。atftpd のよい代替です。

4.5.1 DHCP サーバの設定
フリーソフトウェアのDHCP サーバのひとつに、ISCのdhcpdがあります。Debian GNU/Linuxでは、isc-dhcp-serverパッケージをお勧めします。以下に、設定ファイルの例を示します。（/etc/dhcpd.confを参照）

```
option domain-name "example.com";
option domain-name-servers ns1.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";
subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option routers 192.168.1.1;
}
host clientname {
  filename "/tftpboot.img";
  server-name "servername";
  next-server servername;
  hardware ethernet 01:23:45:67:89:AB;
  fixed-address 192.168.1.90;
}
```

この例では、servername というサーバがひとつあり、DHCP サーバ、TFTP サーバ、ネットワークゲートウェイの仕事すべてを行っています。domain-name オプション、サーバ名、クライアントのハートウェアアドレスは、必ず変更する必要があります。filename オプションはTFTP 経由で取得するファイルの名前です。
dhcpdの設定ファイルの編集を終えたら、/etc/init.d/isc-dhcp-server restartでdhcpdを再起動してください。

4.5.1.1 DHCP 設定でのPXE起動の有効化
ここではTFTP のPre-boot Execution Environment (PXE) 法を用いた、dhcp.confの例を示します。

```
option domain-name "example.com";
default-lease-time 600;
max-lease-time 7200;
allow booting;
allow bootp;

# The next paragraph needs to be modified to fit your case
subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option broadcast-address 192.168.1.255;
}
```
CHAPTER 4. システムインストールメディアの… 4.5. TFTP ネットブート用ファイルの準備

the gateway address which can be different
(access to the internet for instance)
option routers 192.168.1.1;
indicate the dns you want to use
option domain-name-servers 192.168.1.13;
}

group {
 next-server 192.168.1.13;
 host tftpclient {
 # tftp client hardware address
 hardware ethernet 00:10:DC:27:6C:15;
 filename "pxelinux.0";
 }
}

PXE プートでは、クライアントのファイル名 pxelinux.0 は、カーネルイメージではなくブートローダーであることに注意してください（後述の項 4.5.4 をご覧ください）。マシンが起動するのに UEFI を利用している場合、以下のように UEFI マシンに適したブートローダーを指定する必要があります

``` bash
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

ここで次に /etc/bootptab を作成します。このファイルの書式は、printcap, termcap, disktab ファイルなどでお馴染みの、例のわかりにくい形式になっています。詳細は bootptab マニュアルページを見てください。CMU bootpd では、クライアントのハードウェア (MAC) アドレスを知っておかなければなりません。/etc/bootptab の例を示します。

``` text
client:
  hd=/tftpboot:
  bf=tftpboot.img:
  ip=192.168.1.90:
  sm=255.255.255.0:
  sa=192.168.1.1:
  ha=0123456789AB:
```

少なくともクライアントのハードウェアアドレスを指定している「ha」オプションは変更する必要があるでしょう。「bf」オプションはクライアントが TFTP で取得するファイルを指定しています。詳細は項 4.5.4 を参照してください。

対照的に、ISC dhcpd を使っての BOOTP の設定は実に簡単です。dhcpd では、BOOTP クライアントはやや特殊な DHCP クライアントとして取り扱われます。アーキテクチャー上、DHCP によるクライアントの起動には複雑な設定が必要になります。これに該当してしまったら、項 4.5.1 の節をお読みください。そうでなければ、おそらく /etc/dhcp/dhcpd.conf にある、クライアントの含まれるサブネットの設定ブロックに、allow bootp というディレクティブを追加し、/etc/init.d/isc-dhcp-server restart で dhcpd を再起動するだけです。

4.5.2 BOOTP サーバの設定

GNU/Linux で使える BOOTP サーバは 2 つあります。ひとつは CMU の bootpd です。もう 1 つは実際は DHCP サーバですが、ISC の dhcpd です。Debian GNU/Linux では、bootp パッケージと isc-dhcp-server パッケージにそれぞれ入っています。

CMU bootpd を使う場合は、まず /etc/inetd.conf ファイルの該当行をアンコメント (または追加)する必要があります。Debian GNU/Linux では update-inetd --enable bootps を実行し、続いて /etc/init.d/inetd reload とすれば OK です。BOOTP サーバが Debian で動かない場合は、以下のようにします。

``` bash
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

ここで次に /etc/bootptab を作成します。このファイルの書式は、printcap, termcap, disktab ファイルなどでお馴染みの、例のわかりにくい形式になっています。詳細は bootptab マニュアルページを見てください。CMU bootpd では、クライアントのハードウェア (MAC) アドレスを知っておかなればなりません。/etc/bootptab の例を示します。

``` text
client:
  hd=/tftpboot:
  bf=tftpboot.img:
  ip=192.168.1.90:
  sm=255.255.255.0:
  sa=192.168.1.1:
  ha=0123456789AB:
```

少なくともクライアントのハードウェアアドレスを指定している「ha」オプションは変更する必要があるでしょう。「bf」オプションはクライアントが TFTP で取得するファイルを指定しています。詳細は項 4.5.4 を参照してください。

対照的に、ISC dhcpd を使っての BOOTP の設定は実に簡単です。dhcpd では、BOOTP クライアントはやや特殊な DHCP クライアントとして取り扱われます。アーキテクチャー上、DHCP によるクライアントの起動には複雑な設定が必要になります。これに該当してしまったら、項 4.5.1 の節をお読みください。そうでなければ、おそらく /etc/dhcp/dhcpd.conf にある、クライアントの含まれるサブネットの設定ブロックに、allow bootp というディレクティブを追加し、/etc/init.d/isc-dhcp-server restart で dhcpd を再起動するだけです。
4.5.3 TFTPサーバの立ち上げ

TFTPサーバの準備をする際に、まず、tftpdが有効であることを確認してください。

tftpd-hpaの場合には、サービスを走らせるのに2種類の方法があります。システムのinetdデーモンにより必要に応じて起動する方法と、独立したサーバとして起動する方法です。どちらにするかは、パッケージのインストール時や再設定時に選択できます。

注意
歴史的にTFTPサーバは、イメージを提供するディレクトリに/tftpbootを使
用します。しかしDebian GNU/Linuxのパッケージでは、Filesystem Hierarchy
Standardを満たす別のディレクトリを使用する可能性があります。例えば、
tftpd-hpaでは/srv/tftpをデフォルトで使用します。必要に応じて、本節の
設定例を調整してください。

Debianで利用できるintftpdの代替はすべて、デフォルトでTFTPリクエストをシステムログに出力します。いくつかは、出力を冗長にする-v引数をサポートしています。プート時に問題がある場合、エラーの原因を診断する出発点として、ログメッセージをチェックすることをお勧めします。

4.5.4 TFTPイメージを適切な場所に配置する

次に行うことは、項4.2.1の記述にある、必要なTFTPプートイメージを、tftpdのプートイメージディレクトリに置く作業です。tftpdが特定のクライアントの起動に用いるファイルへのリンクを、ここに作成してください。残念ながら、ファイルの名前はTFTPクライアントによって決まり、強制力のある標準は存在しません。

PXE起動では、必要なことがすべてnetboot/netboot.tar.gz tarballの中にセットアップされています。単にこのtarballを、tftpdプートイメージディレクトリに展開してください。pxelinux.0を、起動するファイル名としてtftpdへ渡すよう、dhcpサーバが設定されていることを確認してください。UEFIマシンについては、(debian-installer/amd64/bootnetx64.efiのような)適切なEFIプートイメージ名を渡す必要があります。

4.6 自動インストール

複数のコンピュータにインストールするため、完全自動インストールが可能です。このためのDebianパッケージは、fai-quickstart（インストールサーバとして使用可能）とDebianインストーラそのものです。詳細情報はFAI homepageをご覧ください。

4.6.1 Debianインストーラを用いた自動インストール

Debianインストーラは、preconfigurationファイルによる自動インストールをサポートしています。preconfigurationファイルは、ネットワークやリムーバブルメディアから読み込まれ、インストール中の質問に対する回答を、埋めていくのに使われます。

編集できる動作サンプルを含むpreseedの完全なドキュメントは、付録Bにあります。

4.7 インストールファイルの整合性の検証

ダウンロードしたファイルの整合性をDebianミラー上にあるSHA256SUMSまたはSHA512SUMSファイルで提供しているチェックサムに対して検証できます。これらのファイルはインストールイメージ自体と同じ場所にあります。次の場所を見てください。

- CDイメージのチェックサムファイル
- DVDイメージのチェックサムファイル
- BDイメージのチェックサムファイル
- 他のインストールファイルのチェックサムファイル
ダウンロードしたインストールファイルのチェックサムを計算するには、それぞれ

```
sha256sum filename.iso
```

もしくは

```
sha512sum filename.iso
```

を使い、そして表示されたチェックサムを対応するファイル SHA256SUMS もしくは SHA512SUMSで比較してください。

Debian CD FAQ にはこのトピックのもっと有用な情報（例えばスクリプト check_debian_iso で上の手順を半自動化できます）があり、説明や上のチェックサムファイル自体の整合性の検証方法もあります。
Chapter 5
インストールシステムの起動

5.1 64-bit PC でのインストールの起動

警告
システムに他のオペレーティングシステムがあり、共存 (デュアルブート) させる場合、インストーラを起動する前に、確実にシャットダウンしてください。他のオペレーティングシステムがハイパネーション (ディスクへのサスペンド) した状態で、オペレーティングシステムをインストールすると、再起動時に、サスペンドしたオペレーティングシステムの状態を、失ったり障害を与える可能性があります。

注意
グラフィカルインストーラで起動する方法は、項5.1.8をご覧ください。

5.1.1 USBメモリからの起動
USB からブートできるコンピュータの場合はおそらくこれが最も簡単なインストール方法です。さて、項3.6.2と項4.3の内容すべてを準備しました。それではUSB コネクタにUSB メモリを差し込んで、コンピュータを再起動してください。システムが起動し、USBメモリを作成するのに柔軟な方法で有効していない、などということがなければ、グラフィカルなブートメニューが(それをサポートしているハードウェアでは) 表示されるはずです。ここで様々なインストールオプションを選択するか、単にEnterを押してください。

5.1.2 光学ディスク (CD/DVD) からの起動
光学ディスクのセットが既に手元にあり、かつインストールするマシンがそれらから直接起動できるようならツイています! 単に項3.6.2 の説明に従って、光学ディスクから起動できるようシステムを設定したあと、ディスクをドライブに入れて再起動し、次の章に進んでください。
光学ドライブに特殊なドライバが必要で、インストール初期にはアクセスできないかもしれませんるので注意してください。光学ディスクが使えないハードウェアで起動する標準的な方法を知るには、本章に戻って、動くであろう別のカーネルや別のインストール方法について読んでください。
光学ディスクから起動できなくても、希望するDebianシステムコンポーネントやパッケージを、おそらくそのようなディスクからインストールできるでしょう。単純に別のメディアを使って起動し
インストールシステムの起動

5.1. 64-BIT PC でのインストールの起動

OS、基本システム、任意の追加パッケージをインストールする場合、インストールシステムを光学ドライブに向けてください。

起動に問題があれば、項5.4 をご覧ください。

5.1.3 Windows からの起動

Windows からインストーラを起動するには、

・ 項4.1 や項4.3 で記述しているようなインストールメディアを得るか、

光学インストールメディアを使用する場合、ディスクを挿入するとプレインストールプログラムが自動的に起動します。自動的に起動しない場合や、USB メモリを使用する場合、デバイスにアクセスし、setup.exe を実行し、手動で起動できます。

プログラム起動後は、いくつか予備的な質問がなされた後、再起動して Debian GNU/Linux インストーラを起動する準備が整います。

5.1.4 loadlin を用いた DOS からの起動

(Windows ではなく) DOS で起動する。これを行うには、リカバリディスクか診断ディスクから起動します。

インストール CD を使用する場合は、カレントのドライブを CD-ROM ドライブに変更してください。例えば

d:

とするか、あるいは項4.4.2 で説明したようにハードディスクをまず準備して、必要であればカレントドライブを変更します。

cd \install\amd

などとして使いたいフレーバーのサブディレクトリに入れてください。グラフィカルインストーラの方を使いたい場合は、gtk サブディレクトリに移動してください。

cd gtk

続いて、install.bat を実行してください。カーネルが読み込まれインストールシステムが起動します。

5.1.5 GRUB を用いた Linux からの起動

ハードディスクからインストーラを起動するには、項4.4 に記述している必要なファイルを、まずダウンロードして配置しなければなりません。

GRUB2 では、/boot/grub/grub.cfg の非常に重要な次の 2 点を設定します。

・ 起動時に、initrd.gz インストーラをロードする。

・ RAM ディスクをルートパーティションとして使う cmlinux カーネルを設定する。

例えばインストーラのエントリは以下のようになります。

```bash
menuentry 'New Install' {
    insmod part_msdos
    insmod ext2
    set root='(hd0,msdos1)'
    linux /boot/newinstall/vmlinuz
    initrd /boot/newinstall/initrd.gz
}`"
5.1.6 TFTP での起動

ネットワークからの起動には、ネットワーク接続とTFTPネットワークプートサーバが(自動化でのネットワーク設定には恐らくDHCP, RARP, BOOTPも)必要です。

ネットワーク起動をサポートするためのサーバ側の準備については、項4.5で説明します。
i386でのTFTPプートはいろいろな方法があります。

5.1.6.1 PXEをサポートするNIC・マザーボード

ネットワークインターフェースカードやマザーボードが、PXEプート機能を提供しているかもしれません。これはIntel™による、TFTPブートの再実装です。そうであれば、ネットワークから起動できるようにBIOS/UEFIを設定することができます。

5.1.6.2 ネットワーク BootROM があるNIC

ネットワークインターフェースカードが、TFTPブート機能を提供しているかもしれません。
どのように行ったか私たち(debian-boot@lists.debian.org)に教えてください。この文書に参加をお願いします。

5.1.6.3 Etherboot

etherboot projectでは、TFTPブートを行うブートディスケットとブートROMを提供しています。

5.1.7 ブート画面

インストーラを起動する際に、Debianのロゴと以下のようなメニューを表示する、フレンドリーなグラフィック画面を表示します。

Debian GNU/Linux installer boot menu

<table>
<thead>
<tr>
<th>Graphical install</th>
<th>Install</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced options</td>
<td>&gt;</td>
</tr>
<tr>
<td>Accessible dark contrast installer menu</td>
<td>&gt;</td>
</tr>
<tr>
<td>Help</td>
<td></td>
</tr>
<tr>
<td>Install with speech synthesis</td>
<td></td>
</tr>
</tbody>
</table>

注意

このグラフィカル画面はコンピュータのブート方法 (BIOSかUEFI)によって微妙に異なるかもしれませんが表示されるオプションは同一です。

インストール方法によっては「グラフィカルインストール(Graphical install)」オプションは利用できないかもしれません。2つのアーキテクチャを収録したイメージでは各インストールオプションの64ビット版がすぐに追加されるため、オプションの数は約2倍になります。

通常のインストールでは、「Graphical install」か「Install」のどちらかのエントリを選択し、キーボードの方向キーを使うか先頭の(強調されている)文字を入力し、Enterを押してインストーラを起動してください。「Graphical Install」のエントリがデフォルトで選択されています。

「Advanced options」エントリでは、インストーラをエキスパートモードやレスキューモード、自動インストール例などで起動できる、第2メニューにアクセスできます。

インストーラやカーネルに起動パラメータを追加する必要がある場合は、Tab (BIOS プート)またはe (UEFI プート) を、次にdown arrowを3回、それからendを押してください。これで、選択したメニュー選択のブートコマンドに入り、要望に合わせて変更できます。ヘルプ画面(後述)では、いくつか共通で使用可能なオプションを列挙しています。オプションを指定してインストーラをプートするには、Enter (BIOS プート)またはF10 (UEFI プート)を押してください。Escを押すと、プートメニューに戻り、行った変更を取り消します。
CHAPTER 5. インストールシステムの起動 5.1. 64-BIT PCでのインストーラの起動

「Help」エントリを選択すると、有効なヘルプ画面の概要をすべて表示する、最初のヘルプ画面が現れます。ヘルプ画面を表示した後で、ブートメニューに戻るには、ブートプロンプトで「menu」と入力し、Enterを押してください。ヘルプ画面にはすべて、次のようなブートコマンドを入力できるブートプロンプトがあります。

Press F1 for the help index, or ENTER to boot:

このブートプロンプトでは、Enterを押してインストーラをデフォルトオプションで起動するか、特定のブートコマンドや追加で起動パラメータを入力するかのどちらかを行えます。いくつかの有用だと思われる起動パラメータは、様々なヘルプ画面で見つかります。ブートコマンドラインにパラメータを追加する場合、最初のパラメータの前にまず、ブート方法(デフォルトはinstall)と空白を必ず入力してください(例: install fb=false)。

注意
この時点では、キーボードをデフォルトのアメリカ英語レイアウトとして扱います。このため、あなたのキーボードが異なる(言語特有の)レイアウトの場合、パラメータを入力する際に画面に表示される文字は、あなたが期待するものと異なる場合があります。Wikipediaには、使用する正しいキーを見つけるために参照に使用できる、USキーボードレイアウトの図があります。

5.1.8 グラフィカルインストーラ

グラフィカルバージョンのインストーラは64-bit PCを含めた、限られたアーキテクチャでのみ利用できるようになっています。グラフィカルインストーラとテキストベースのインストーラは基本的に同一のプログラムを異なるフロントエンドと組み合わせているため、機能は本質的に同一です。

機能は同等ではありませんが、グラフィカルインストーラには大きな利点がいくつかあります。最大の利点はサポートしている言語が多いためで、つまりテキストベースの「newt」フロントエンドで表示できない文字セットを導入することができ、使い勝手についてもマウスを使うという選択肢や場合によっては複数の質問を1画面で表示できる等、いくつか有利な点があります。

すべてのCD/DVDイメージおよびhd-mediaによるインストール方法でグラフィカルインストーラを利用できます。グラフィカルインストーラのブートは関連するオプションをブートメニューから単に選択するだけです。グラフィカルインストーラの「Advanced options」メニューからExpertおよびrescueモードを選択できます。以前のブート方法installgui、expargui、rescueguiもブートプロンプトから使用します。これはブートメニューで「Help」オプションを選択すると表示されます。

netboot可能なグラフィカルインストーライメージもあります。また、特別な「mini」ISOイメージ
インストールシステムの起動

5.2 アクセシビリティ

あるユーザにとっては、目が不自由であるといった理由により、それぞれに見合った支援が必要なことがあります。USB点字ディスプレイは自動認識します（シリアル-USB変換機で接続されているシリアルディスプレイでは自動認識しません）。しかし、他多くのアクセシビリティ機能は手動で有効にする必要があります。サポートするマシンの下は、キーストロークを受ける準備ができるとブートメニューがビープ音を放つます。BIOSシステムでは1回、UEFIシステムでは2回鳴ります。その後、アクセシビリティ機能を有効にするために、起動パラメータを付加できます（項5.1.7もご覧ください）。

5.2.1 インストーラフロントエンド

Debianインストーラは質問方法にアクセシビリティの異なる複数のフロントエンドをサポートしています：特に挙げるとtextでは平文のテキストを使い、一方newtではテキストベースのダイアログボックスを使います。ブートプロンプトで選択できます。詳しくは項5.3.2のDEBIAN_FRONTENDをご覧ください。

With the newt front-end (used mostly with braille), one mostly just selects answers with arrow keys and presses Enter to validate the choice. Pressing Tab or Shift - Tab allows to switch between dialog elements, and notably to access the Go Back button, which brings back again to previous questions. Some dialogs contain check boxes, which can be ticked on and off by pressing Space.

With the text front-end (used mostly with speech), one mostly selects answers by typing their number followed by pressing Enter. One can also not type anything and just press Enter to simply accept the default value. Typing < and pressing Enter brings back again to previous questions. When a selection of choices has to be made (e.g. during task selection), one can type ! to express an empty selection.

5.2.2 USB点字ディスプレイ

USB点字ディスプレイは自動認識するはずです。その後テキスト版インストーラでは、自動的に選択され、ターゲットシステムに、点字ディスプレイのサポートを自動的にインストールします。あとはブートメニューでEnterを押すだけです。一度brittyが起動すると、設定メニューから点字テーブルを選択できます。点字デバイスのキーインコードは、brlttyのウェブサイトに掲載があります。

mini ISOイメージは項4.2で説明しているようにDebianミラーからダウンロードできます。netboot/gtk/mini.isoを探してみてください。
5.2.3 シリアル接続点字ディスプレイ
シリアル接続点字ディスプレイは、（ある種のものを破損する可能性があるため）安全に自動検出できません。そのため、起動パラメータにbrltty=driver, portと追加し、brlttyでどのドライバ及びポートを使用するべきか教える必要があります。driverをあなたの端末用の2文字のドライバコードに置き換え（BRLTTYマニュアル参）portは、ディスプレイを接続するシリアルポート名に置き換えてください。デフォルトはttyS0、ttyUSB0をシリアル-USB接続変換を使う時に一般的に使用します。2つのパラメータを提供することで使用する点字テーブルの名前を選択できます（BRLTTYマニュアル参）。driverは、起動パラメータを教える必要があります。ポートは、後で設定メニューで変更することに注意してください。4つのパラメータを提供することでprotocol=fooのように一部の珍しいモデルで必要となるパラメータを点字ドライバに渡せます。点字デバイスのキーバインドは、brlttyのウェブサイトにドキュメントがあります。

5.2.4 ソフトウェア音声合成
ソフトウェア音声合成のサポートは、グラフィカルインストーラがあるインストーライメージで利用できます。つまり、netinstすべて、CD・DVDイメージ、netbootのgtk版で利用できます。ソフトウェア音声合成サポートを有効にするには、起動パラメータでs Enterと入力します。その後、テキストパスインストーラが自動的に選択され、ターゲットシステムに、ソフトウェア音声合成サポートを自動的にインストールします。複数のサウンドカードが検出された場合、任意のサウンドカードからの音声が聞こえた時点でEnterを入力することを促されます。

5.2.5 ハードウェア音声合成
ハードウェア音声合成デバイスのサポートは、グラフィカルインストーラがあるインストーライメージで利用できます。つまり、netinstすべて、CD・DVDイメージ、netbootのgtk版で利用できます。そのため、ブートメニューで「Graphical install」エントリを選択する必要があります。

5.2.6 基板デバイス
いくつものアクセシビリティデバイスは、マシンの内部に接続した実際の基板で、ビデオメモリから直接テキストを読む。動作させるには、vga=normal fb=false起動パラメータを用いて、フレームバッファのサポートを無効にしなければなりません。しかし、これにより使用できる言語が減ってしまいます。

5.2.7 高コントラストテーマ
視覚の弱いユーザのために、インストーラは、より見やすい高コントラストの配色を採用したテーマを使用できます。これを有効にするには、起動画面にてdショートカットを押して「Accessible high contrast」を使うか、または起動パラメータにtheme=darkを追加してください。
5.2.8 拡大
視認の弱いユーザ向けに、グラフィカルインストーラでは非常に基本的な拡大機能をサポートしています: Control-+ と Control–のショートカットでそれぞれフォントサイズを拡大、縮小します。

5.2.9 Expert モード、Rescue モード、自動化インストール
Expert モードや Rescue モード、自動化インストールの選択はアクセシビリティのサポートも利用できるようになっています。それぞれの選択肢にアクセスするには最初にブートメニューで a を入力して「Advanced options」とサブメニューに進む必要があります。BIOS システムを使う場合 (プートメニューを一度だけビープ音を鳴らします) は Enter を押されていません。それから、オプションとして s を押すと (UEFI システムではなく BIOS システムの場合は、ここでも続けて Enter を押さないといけません)、音声合成が有効になります。それから様々なショートカットが使えるようになります: x は expert モードでのインストール、r は rescue モード、a は自動化インストールです。
繰り返しますが、BIOS システムを使っている場合はそれぞれ続けて Enter を押さないといけません。

自動化インストールを選択することで、preseed を使用して完全に自動で Debian をインストールできます。preseed のソースはアクセシビリティ機能開始後に入力できます。preseed 自体については付録 B で言及しています。

5.2.10 インストールしたシステムのアクセシビリティ
インストールしたシステムのアクセシビリティについての文書は、Debian Accessibility wiki ページで利用できます。

5.3 起動パラメータ

5.3.1 ブートコンソール
起動の際にシリアルコンソールを使うと、通常カーネルはこちらを自動検出します。ただし、シリアルコンソールから起動させたいコンピュータに、ビデオカード (フレームバッファ) とキーボードもついている場合には、カーネルに console=device という引数を渡す必要があると思います。device は利用したいシリアルデバイスで、通常 ttyS0 のようになります。
通信速度やパリティといった、シリアルポート用のパラメータを指定する必要があるかもしれません。例えば console=ttyS0,9600n8。他の速度としては 57600 や 115200 が代表的です。このオプションを必ず「---」に続けて指定するようにしてください。そうすることで (インストーラでそのブートローダがサポートされている場合) ブートローダでの設定がインストールしたシステムにコピーされるようになります。
インストーラが使用する端末タイプと、端末エミュレータが一致するのを保証するため、パラメータ TERM=type を追加できます。インストーラは以下の端末タイプしかサポートしないことに注意してください。linux, bterm, ansi, vt102, dumb です。debian-installer でのシリアルコンソールのデフォルトは、vt102 です。上記の端末タイプを提供しない IPMI や QEMU/KVM のように仮想化ツールを使用している場合、内部で screen セッションを開始できます。これにより、vt102 によく似た screen 端末タイプに変換できます。
5.3.2 Debian Installer パラメータ

インストールシステムは、おそらく便利だと思われる、追加起動パラメータをいくつか認識します。多くのパラメータは、カーネルコマンドラインオプションの制限を避けたり、パラメータの入力を簡単にするため、「短縮形」を持っている。パラメータに短縮形がある場合、(通常の) 長い形式の後にかっこで囲っています。本マニュアルの例は、通常、短縮形も使用しています。

```
debconf/priority(priority)
```

このパラメータには、表示するメッセージのもっとも低い優先度を設定します。

デフォルトのインストールでは、priority=highを使用します。優先度が「高」のものと、「重要」のもののメッセージを表示し、「標準」や、「低」のメッセージはスキップします。問題にぶつかった場合、インストールが必要な優先度に調整します。

起動パラメータにpriority=mediumを追加すると、インストールメニューが表示され、インストールについて、さらに多くの制御を行うことができます。priority=lowを使った場合は、すべてのメッセージを表示します (expert起動法と等価)。priority=criticalの場合は、インストールシステムは重要なメッセージだけを表示し、大騒ぎせずに正しい設定をしようとします。

```
DEBIAN_FRONTEND
```

この起動パラメータはインストーラで使うユーザインターフェースを制御します。現在有効な設定は以下の通りです。

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=gtk

デフォルトのフロントエンドはDEBCONF_FRONTEND=newtです。シリアルコンソールでインストールするには、DEBIAN_FRONTEND=textとすべきでしょう。専用に調整されている種類のインストールメディアでは限られたフロントエンドしか選択できないようになっている場合がありますが、newtフロントエンドとtextフロントエンドは、デフォルトインストールメディアのほとんどで利用可能です。サポートしているアーキテクチャでは、グラフィカルインストーラがgtkフロントエンドを使用します。

```
BOOT_DEBUG
```

この起動パラメータに2を設定すると、インストールの起動プロセス中に詳細なログを出力します。3を設定すると、起動プロセスの要所でデバッグ用のシェルが利用できます。

```
log_host,log_port
```

これによりインストーラは、ローカルファイルと同様に、指定したホストとポートを持つリモートのsyslogに対して、ログメッセージを転送します。指定しない場合、ポートのデフォルト値を、標準syslogポートの514とします。

```
lowmem
```

インストーラが、利用可能なメモリを元に算出するデフォルト値よりも、より高レベルな低メモリ(lowmem)レベルに制限するのに使用できます。有効な値は、1か2です。項6.3.1.1をご覧ください。

```
noshell
```

インストーラがtty2,tty3の対話シェルを提供しないようにします。物理的セキュリティが限られている、無人インストールの際に便利です。

```
debian-installer/framebuffer(fb)
```

いくつかのアーキテクチャでは、多くの言語でインストールを行うために、カーネルフレームバッファを使用します。フレームバッファが問題となるシステムの場合、パラメータvga=normal fb=falseによってこの機能を無効にできます。btermやboglに関するエラーメッセージや、真っ暗な画面、インストールが始まると数分後にフリーズがおきたら問題の兆候です。

2現在のカーネル(2.6.9以降)では、コマンドラインオプションを32個と環境オプションを32個使用できます。それを越えると、カーネルはパニックしてしまいます。また、カーネルコマンドライン全体で255文字という制限もあります。いずれも、制限を超えた場合は暗黙のうちに切り詰められる可能性があります。
CHAPTER 5. インストールシステムの起動

5.3. 起動パラメータ

debian-installer/theme（theme）テーマ（theme）はインストーラのユーザインターフェースがどのように見えるか（色、アイコンなど）を決定します。どのテーマが利用できるかはフロントエンドによって異なります。現在、newt と gtk のフロントエンドには、（デフォルトの見た目のほかに）目を不自然な方向にデザインされた「dark」テーマのみがあります。起動時のパラメータに、theme=dark と指定してテーマを設定してください（このためのブートメニューのキーボードショートカット d もあります）。

netcfg/disable_autoconfig デフォルトで debian-installer は、IPv6 オートネゴシエーションや DHCPにより、ネットワークの設定を自動検出します。検出に成功すると、確認する機会がなく検出値を変更できません。自動設定が失敗する場合のみ、手動ネットワーク設定を行えます。

ローカルネットワークに IPv6 ルータや DHCP サーバがあるのに、それを回避したい場合（例: 誤った値を返す等）、ネットワークの自動設定をせず（v4, v6 とも）、手動で情報を入力するには、netcfg/disable_autoconfig=true パラメータを使用できます。

hw-detect/start_pcmcia PCMCIA サービスが原因で問題が発生する場合、false を設定することで、起動しないようにすることができます。いくつかのラップトップコンピュータには、そういう行儀悪さがあることが知られています。

disk-detect/dmraid/enable（dmraid）インストーラで、Serial ATA RAID (ATA RAID, BIOS RAID, fake RAID とも呼ばれる) のサポートを有効にする場合 true にセットします。このサポートは現在実験中であることご注意ください。追加情報は Debian Installer Wiki にあります。

preseed/url（url）preconfiguration ファイルをダウンロードする URL を指定します。これでは自動インストールで使用します。項 4.6 を参照してください。

preseed/file（file）自動インストールで読み込む preconfiguration ファイルの PATH を指定します。項 4.6 を参照してください。

preseed/interactive preseed 中に質問を表示する場合には、true を設定します。事前設定ファイルのテストやデバッグに便利でしょう。これは、起動パラメータに渡すパラメータには影響を及ぼしませんが、特殊な文法が使えるようになります。詳細は、項 B.5.2 をご覧ください。

auto-install/enable（auto）通常 preseed の前に行われる質問を、ネットワークの設定が終わるまで遅らせます。自動インストールでこのパラメータを使用する際には、項 B.2.3 をご覧ください。

finish-install/keep-consoles シリアル端末や管理コンソールからインストール中に、通常の仮想コンソール（VT1 から VT6）は、通常 /etc/inittab で無効にされています。これを回避するには true をセットしてください。

cdrom-detect/eject デフォルトで debian-installer は、再起動の前にインストールに使用した光学メディアを、自動的に排出します。自動的にそのようなメディアから起動しないようなシステムでは、これは必要ありませんし、特定の状況下では、困ることになる可能性もあります。例えば、光学ドライブがメディアを再び差し込むことができず、手で挿入するようユーザがなければいけないので、手で挿入するようユーザがなければいけないので、手で挿入するようユーザがなければいけないのに、行うユーザがそこにいないなど。大半のストレートライン、ストレートライ、キャディタイプのドライブは、自動的にメディアをリロードできません。

false に設定すると、自動排出を無効にできます。また、システムの初期インストール後に、光学ドライブから自動起動しないことを保証する必要があります。

base-installer/install-recommends（recommends）このオプションを false にすると、インストール中でも、またインストール後でも、「推奨」パッケージを自動的にインストールしないように、パッケージ管理システムを設定します。項 6.3.5 をご覧ください。

これにより、より無駄のないシステムを得られます。通常可能であると期待する機能が欠落するかもしれないことに注意してください。完全な機能が必要な場合には、推奨パッケージを手でインストールすることになるでしょう。そのためこのオプションは、経験豊富なユーザにしか有用ではないでしょう。

debian-installer/allow_unauthenticated デフォルトでは、既知の gpg キーで認証されたリポジトリが、インストーラには必要です。この認証を無効にするのに true を設定してください。警告: 危険です。お勧めしません。

rescue/enable 通常のインストールではなく、レスキューモードを実行する場合、true にセットしてください。項 8.6 をご覧ください。

37
5.3.3 起動パラメータで質問に答える

例外的に、インストール中の質問に起動パラメータで答を与えることができます。これは、特殊な状況でのみ便利です。この方法の概要は、項B.2.2にあります。特殊な例を以下に示します。

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale)
インストール中に言語を選択するには、言語、国、ロケールを指定する方法は二つあります。

最初の、最も簡単な方法はlocaleパラメータを渡すことだけです。言語やロケールの値から導かれます。例えば、言語にドイツ語、ロケールにde_CHとします（インストールしたシステムのデフォルトロケールはde_CH.UTF-8にセットされます）。制限は、言語、国、ロケールのすべての組み合わせを、この方法で得られるわけではないということです。

ふたつ目の柔軟な選択肢は、languageとcountryを別々に指定することです。この場合、特定のデフォルトロケールをインストールしたシステムに指定するため、任意のlocaleを加えられます。例: language=en country=DE locale=en_GB.UTF-8

anna/choose_modules (modules) デフォルトではロードされないインストーラコンポーネントを、自動的に読み込むのに使用します。追加コンポーネントの例として、openssl-client-udeb（インストール中にscpコマンドを使用できる）や、ppp-udeb（項D.5をご覧ください）が便利です。

etcfg/disable_autoconfig IPv6 オートネゴシエーションやDHCPを無効にし、静的ネットワーク設定を強制するには、trueと設定します。

mirror/protocol (protocol) デフォルトでインストーラは、Debianのミラーサイトからファイルをダウンロードするのにhttpプロトコルを使用し、通常の優先度ではインストール中にftpに変更できません。このパラメータでftpを設定すると、インストーラがftpを使用するように強制できます。一覧からftpミラーを選択できず、ホスト名を手入力しなければならないことに注意してください。

tasksel:tasksel/first (tasks) KDEデスクトップタスクのような、タスク一覧に表示されないタスクを選択するのに使用します。さらなる情報は項6.3.6.2をご覧ください。

5.3.4 カーネルモジュールへのパラメータを渡す

カーネル内にコンパイルされているドライバの場合、カーネルのドキュメントに記載されている方法でパラメータを渡せます。しかし、ドライバがモジュールとしてコンパイルされておりインストールしたシステムの起動時に、インストール時のモジュールの読み込みが若干異なる場合、通常の方法ではモジュールにパラメータを与えることができません。代わりに、インストーラが認識できる特殊な文法を使って適切な設定ファイルにパラメータを格納しなければなりません。パラメータは自動的にインストールしたシステムに伝播します。

モジュールにパラメータを与える必要が生じるときは、通常の状況で考えるとパラメータを手動で設定しなければなりません。モジュールの読み込み時に適切なパラメータが設定され、インストール時に適切な値が設定されるようにシステムに設定してあります。使用するモジュールやモジュールの使用方法により、パラメータの設定が必要となる場合があります。

モジュールにパラメータを設定する文法は以下のようになります。

module_name.parameter_name=value

1つないし複数のモジュールに、複数のパラメータを渡す場合は繰り返してください。例えば、古い3ComのネットワークインターフェースカードでBNC（coax）を使用し、IRQ 10を設定する場合は、以下のようにします。

3c509.xcvr=3 3c509.irq=10

5.3.5 カーネルモジュールのブラックリスト化

時には、カーネルやudevが自動的にモジュールを読み込むのを防ぐために、ブラックリストに載せる必要があるかもしれません。目的の1つには、特定のモジュールや、あなたのハードウェアで問題を起こす場合がある場合に適用されます。またカーネルで、同じデバイスに対して複数の異なるドライバがある場合に

module_name.inmod=on
5.4 インストールシステムの起動 5.4. インストールプロセスのトラブルシューティング

5.4.1 光学メディアの信頼性

時々、特に古いドライブの場合、光学ディスクからのインストールに失敗するかもしれません。また、インストールはそのディスクから起動してもそのディスクを認識しなかったり、インストール中、ディスクから読み込みでエラーを返す可能性もあります。

この問題の原因は様々なことが考えられます。一般的な問題を挙げて、一般的な対処方法を提供することしかできません。後はあなた次第です。

まずはじめに試すのは、以下の2点です。

• ディスクが起動しない場合、正しく挿入されているか、汚れていないかを確認してください。

• インストールがディスクを認識しない場合、次にインストールメディアの検出とマウントを試してください。非常に古いCD-ROMドライブの、DMAに関する問題は、この方法で解決することが知られています。

これでも動作しない場合、以下の節にあることを試してみてください。ほとんどの(でもすべてではない)提案はCD-ROMとDVDで有効です。

光学ディスクからインストールできなければ、他のインストール方法も試してみてください。

5.4.1.1 共通の問題

• 古いCD-ROMドライブの中には、昨今のCDライタで使用するような、高速で焼いたディスクからの読み込みをサポートしていない物があります。

• 非常に古いCD-ROMドライブの中には、「ダイレクトメモリアクセス」(DMA)が有効だと、正しく動作しない物があります。

5.4.1.2 調査および問題解決の方法

光学ディスクが起動に失敗したら、以下のことを試してください。

• BIOS/UEFIが光学ディスクからの起動をきちんとサポートしているか(非常に古いシステムでのみ問題あり)、BIOS/UEFIでそのようなメディアからの起動を有効にしているかをチェックしてください。

• ISOイメージをダウンロードした場合、イメージをダウンロードしたのと同じ場所にあるMD5SUMSに記載されているmd5sumと同じかどうかチェックしてください。

```
md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705c6b92
debian-testing-i386-netinst.iso
```

次に、焼いたディスクのmd5sumと一致するかどうかチェックしてください。以下のコマンドで行います。ディスクから正しいバイト数を読み込むのにイメージのサイズを利用します。

```
dd if=/dev/cdrom | \\
> head -c `stat --format=%s debian-testing-i386-netinst.iso' | \\
> md5sum
da20391b12f7ff22ef705c6b92
debian-testing-i386-netinst.iso
```
インストーラの起動が成功した後で、ディスクを検出しない場合、単純にリトライするだけで解決することもあります。光学ドライブが複数ある場合、他のドライブに変えてみてください。それでも動作しなかったり、ディスクを認識しても読み込みエラーが発生する場合は、以下のことを試してみてください。Linuxの基礎知識が必要です。コマンドを実行するには、まず第2仮想コンソール（VT2）に切り替え、シェルを有効にしてください。

- エラーメッセージをチェックするのにVT4に切り替えたり、/var/log/syslogの内容を（エディタのnanoを使用して）表示してください。その後、dmesgの出力でもチェックできます。
- 光学ドライブを認識したかをdmesgの出力でチェックしてください。以下のよう見えます。

```bash
ata1:00:00: ATAPI: MATSHITADVD-RAU UJ-822S, 1.61, max UDMA/33
ata1:00: configured for UDMA/33
scsi 0:0:0:0: CD-ROM MATSHITA DVD-RAU UJ-822S 1.61 PQ: 0 ANSI: 5
sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray
```

以上のように見えなければ、ドライブを接続したコントローラを認識できないか、おそらくまったくサポートされていないかもしれません。コントローラに必要なドライバが使われているか、modprobe を用い、手で読み込むのを試せます。

- /dev/ にある光学ドライブのデバイスノードをチェックしてください。上の例では、/dev/sr0 になっています。/dev/cdrom にもあるかもしれません。
- 光学ディスクがすでにマウントされていないか、mount コマンドでチェックしてください。マウントされていなければ、手でマウントしてください。

```bash
$ mount /dev/hdc /cdrom
```

上記のコマンド後に、エラーメッセージができるかチェックしてください。

- DMA が有効か、以下のようにチェックしてください。

```bash
$ cd /proc/ide/hdc
$ grep using_dma settings
```

using_dma の後、初めの列にある「1」は、有効という意味です。その場合以下のように無効にしてください。

```bash
$ echo -n "using_dma:0" >settings
```

確実に、光学ドライブに一致するデバイスのディレクトリで操作してください。

- インストール中に何か問題があれば、インストーラメインメニューの下の方にある、インストーラメディアの整合性チェックを行ってください。ディスクが確実に読める場合、このオプションを一般的テストとして使用できます。

### 5.4.2 起動設定

ブートプロセスの最中にカーネルがハングしたり、搭載されている周辺機器やドライプが正確に認識されていないなどの問題が起こったら、まず項5.3の説明に従って起動パラメータを確認してください。

場合によっては、デバイスのファームウェアがないために動作しないことがあります（項2.2や項6.4を参照）。

### 5.4.3 ソフトウェア音声合成

ソフトウェア音声合成が動作しない場合、ほとんどの場合、サウンドカードに問題があります。通常はインストーラにドライバが含まれていないか、ミクサーレベル名が異常値になっていて、デフォルトでミュートされています。その場合、以下のコマンドを、同じハードウェアでサウンドが動作することがわかかる書籍のシステム（Live CDなど）で実行し、その結果をバグ報告してください。
CHAPTER 5. インストールシステムの起動

5.4. インストールプロセスのトラブルシューティング

- dmesg
- lspci
- lsmod
- amixer

5.4.4 64-bit PC へのインストールに共通の問題

インストールの際の共通の問題がいくつかあり、これはインストーラに渡すブートパラメータで解決したり、確実にバイパスして回避したりできます。

カーネルの起動時に画面が不思議な絵（例：真っ白、真っ黒、色付きピクセル屑）を表示し始める場合、あなたのシステムは、フレームバッファモードに適切に変わらない問題のあるビデオカードがついているかもしれません。その場合、フレームバッファコンソールを無効にするため、起動パラメータに fb=false を使用できます。コンソールの機能が制限されているため、インストール中には特定の言語しか使えません。詳細は項5.3をご覧ください。

5.4.4.1 PCMCIA設定中のシステムフリーズ

DELL の非常に古いラップトップモデルのいくつかは、PCMCIA デバイス検出でいくつかハードウェアアドレスをアクセスしようとすると、クラッシュすることが知られています。他のラップトップコンピュータでも、同様の問題が起きるかもしれません。そのような問題に遭遇し、インストール中にPCMCIA サポートが必要な場合、hw-detect/start_pcmcia=false という起動パラメータで、PCMCIAを無効にできます。インストールが完了した後で PCMCIA を設定し、問題が起きるリソース範囲を除外できます。

その他に、インストーラをエキスパートモードで起動することができます。その後、ハードウェアが必要とするリソース範囲オプションを、入力するように促されます。例えば、上記の Dell のラップトップコンピュータを持っている場合、ここで exclude port 0x800-0x8ff と入力するといいです。さらにいくつかの共通のリソース範囲オプションのリストが PCMCIA HOWTO のシステムリソースの設定にあります。インストーラにこの値を入力する場合、もしあればカンマを省略しなければならないことに注意してください。

5.4.5 カーネルの起動時メッセージの意味

ブートシーケンスの途中で、can’t find something（〜が見つからない）、something not present（〜が存在しない）、can’t initialize something（〜を初期化できない）、this driver release depends on something（このドライバには〜が必要だ）などのメッセージがたくさん出力されることがあります。これらのメッセージのほとんどは無害です。これらが出力される理由は、インストールシステムのカーネルが、いろいろな周辺デバイスをできるだけ多くに対応しようとしているからです。そのため、OS が実際には存在しない周辺機器を探すことになるので、文句を吐きます。システムがしばらく止まったように見えます。これはデバイスが反応するのを待っているために起こるものです（実際にはそのデバイスは存在しないので、止まってみえるわけです）。システムの起動に要する時間が増えがたいほど長い場合は、後で自前のカーネルを作ることもできます（項8.5参照）。

5.4.6 インストールで発生した問題の報告

最初の起動段階は通過したのに、インストールが完了できなかった場合は、メニューからデバッグログを保存を選択するといいかもしれません。インストーラからのシステムエラーログや設定情報をストレージメディアに格納したり、web プラウザでダウンロードしたりできるようになります。この情報は、何か間違っていっているもの修正するか、といった手がかりを示しているかもしれません。バグ報告を送る際に、バグ報告にこの情報を付けることができます。

その他のインストールメッセージは、インストール中では /var/log/ で、インストールしたシステムが起動した後では /var/log/installer/ にあるはずです。
5.4.7 インストールレポートの送信

まだ問題がある場合には、インストールレポートをお送りください。また、インストールが成功したときのインストールレポートもお送りください。そうすると、たくさんのハードウェア設定情報を手に入れることができます。

あなたのインストールレポートは、Debianバグ追跡システム（BTS）で公開され、公開メーリングリストに転送されることに留意してください。必ず、公開されても問題ないe-mailアドレスを使用してください。

動作するDebianシステムがある場合、インストールレポートを送る最も簡単な方法は以下のようにになります。installation-reportとreportbugパッケージをインストール(apt install installation-report reportbug)し、項目8.4.2で説明しているようにreportbugを設定して、reportbug installation-reportsを実行してください。

代わりに、インストールレポートを記入する際には、以下のテンプレートも使用できます。テンプレートの空欄を埋めた上で、installation-reports疑似パッケージのバグ報告として、submit@bugs.debian.org宛にお送りください。

Package: installation-reports

Boot method: 〈インストーラの起動方法は？CD?/DVD? USB メモリ? ネットワーク？〉
Image version: 〈イメージをダウンロードした URL 全体がベストです〉
Date: 〈インストールした日時〉

Machine: <マシンの説明（例 IBM Thinkpad R32）>
Processor: 
Memory: 
Partitions: <df -T1の結果；生のパーティションテーブルが望ましいです>

Output of lspci -nn and lspci -vnn:

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [ ] = didn’t try it

Initial boot: [ ]
Detect network card: [ ]
Configure network: [ ]
Detect media: [ ]
Load installer modules: [ ]
Detect hard drives: [ ]
Partition hard drives: [ ]
Install base system: [ ]
Clock/timezone setup: [ ]
User/password setup: [ ]
Install tasks: [ ]
Install boot loader: [ ]
Overall install: [ ]

Comments/Problems:

<インストールに関すること。初期インストール時に抱いた感想、コメント、アイデアなどがあればそれらもお書きください>

バグ報告の際には、カーネルがハングした直前に表示されたカーネルメッセージを添えて、何が問題なのかを説明してください。また、問題が起きるまでにシステムに対して行ったことも記述してください。
Chapter 6

Debian インストーラーの使用法

6.1 インストーラーの動作

For this architecture the debian-installer supports two different user interfaces: a graphical one and a text-based one. The graphical interface is used by default unless you select an 「Install」 option in the boot menu. For more information about booting the graphical installer, please refer to 項5.1.8.

Debian Installerは各インストールタスクを実行するために、たくさんの特定用途コンポーネントから成ります。各コンポーネントは、必要ならユーザーに質問をして、そのタスクを実行します。この質問には優先度が設定されており、この優先度はインストーラーの起動時に設定することができます。

デフォルトのインストールでは、不可欠な(優先度が高い)質問しかありません。これにより、ユーザーむの入力をほとんど行わず、高度な自動インストールを行うことができます。コンポーネントは自動的に順番に実行されます。どのコンポーネントを実行するかは、主に使用するインストール法やハードウェアに左右されます。インストーラーは、質問しない事項についてはデフォルト値を使用します。

問題がある場合はエラー画面を表示し、インストーラーメニューに、代替アクションを選ぶように表示するかもしれません。いずれも問題なければ、ユーザーゆーはインストールメニューを目にする事なく、単に順番に各コンポーネントの質問に答えて行くだけでしょう。重大なエラー通知は優先度を「重要」に設定されているため、常に表示されます。

インストーラーが使用するデフォルト値は、debian-installerの起動時にパラメータで渡して指定できます。たとえば、強制的に静的ネットワーク設定をしたい場合(デフォルトでは可能ならIPv6オートネゴシエーションとDHCPを利用)、ブートパラメータにnetcfg/disable_autoconfig=trueを加えられます。利用できるオプションは項5.3.2を参照してください。

パワーユーザーは、メニュー駆動インタフェース(自動で順に各ステップを実行するインストーラーではなく、ユーザーが各ステップを制御する)の方が、満足するかもしれません。手動(メニュー駆動)でインストーラーを使用するには、起動時にpriority=mediumを加えてください。

ハードウェアをインストールする際に、オプションをカーネルモジュールへ渡す必要がある場合、「エキスパート」モードでインストーラーを使用する必要があります。これは、インストーラーを起動するコマンドにexpertを使用する、あるいは起動引数にpriority=lowを加えることで行います。エキスパートモードではdebian-installerをフルコントロールできます。

In the text-based environment the use of a mouse is not supported. Here are the keys you can use to navigate within the various dialogs. The Tab or right arrow keys move 「forward」, and the Shift-Tab or left arrow keys move 「backward」between displayed buttons and selections. The up and down arrow select different items within a scrollable list, and also scroll the list itself. In addition, in long lists, you can type a letter to cause the list to scroll directly to the section with items starting with the letter you typed and use Pg-Up and Pg-Down to scroll the list in sections. The space bar selects an item such as a checkbox. Use Enter to activate choices.

ダイアログには、追加ヘルプ情報があるものがあります。ヘルプがある場合、画面の最下行に表示されています。F1キーを押してアクセスできます。

エラーメッセージとログは第4コンソールにリダイレクトされます。このコンソールへは左Alt-F4(左Altキーを押しながらF4キーを押す)で、メイインメニューにexpertを使用する、あるいは起動引数にpriority=lowを加えることで行います。エキスパートモードでは debian-installerを使用してアクセスできます。
6.1.1 グラフィカルインストーラーの使用法

グラフィカルインストーラーは基本的にはテキストベースのインストーラーと同様に動作するため、インストールプロセスを通じてこのマニュアルの案内を利用できます。

マウスよりもキーボードを使いたい場合には、2つのことを知っておく必要があります。省略されている一覧（例えば大陸内の国の選択に利用されています）を展開するのに + や - キーを利用できます。項目を複数選択できる質問（例えばタスクの選択）では選択後にタブで Continue ボタンに移動する必要があります。Enter を押した場合は Continue が作動するのではなく選択が切り替わります。

ダイアログに追加ヘルプ情報がある場合は、Help ボタンが表示されます。ヘルプ情報にはこのボタンを作動させるか F1 キーを押してアクセスできます。

別のコンソールに切り替えるには X ウィンドウシステムと全く同じように Ctrl キーも使う必要があります。例えば VT2（第一のデバッグ用シェル）に切り替えるには Ctrl-左 Alt-F2 を使います。グラフィカルインストーラー自体は VT5 で実行されているので、左 Alt-F5 を使うと戻れます。

6.2 コンポーネント入門

ここではインストール-コンポーネントを各コンポーネントの簡単な説明を添えて一覧します。特定のコンポーネントを使用するにあたり、知る必要があるかもしれない詳細は項 6.3 にあります。

main-menu インストーラーの操作中にユーザーにコンポーネントのリストを見せ、選択されたコンポーネントを起動します。main-menu では質問の優先度が「中」に設定されています。そのため、優先度が「高」や「重要」（デフォルトは「高」）に設定されている場合は、メニューを見ることはないでしょう。一方、あなたの入力が必要なエラーが起きた場合、その問題を解決するために、質問の優先度が一時的に格下げされるかもしれません。その場合、メニューが表示される可能性があります。

現在実行しているコンポーネントから抜けるために、Go Back ボタンを繰り返し選択してメインメニューに戻れます。

localechooser インストール中・インストールしたシステムの、地域オプション（言語、国、ロケール）の選択を行います。インストーラーは選択した言語でメッセージを表示しますが、その言語でのメッセージの翻訳が完了していない場合は、英語で表示します。

console-setup キーボード（レイアウト）のリストを表示します。お持ちのキーボードモデルに一致するものを選択してください。

hw-detect システムのほとんどのハードウェアを自動検出します。これには、ネットワークカード、ディスクドライブ、PCMCIA が含まれます。

cdrom-detect Debian インストールメディアを探しマウントします。

netcfg インターネットへの通信ができるように、コンピュータのネットワーク接続を設定します。

iso-scan ハードディスクにある ISO イメージ (.iso ファイル) を探します。

choose-mirror Debian アーカイブミラーのリストを表示します。インストールするパッケージの取得元を選択できるでしょう。

cdrom-checker インストールメディアの整合性チェック。これにより、インストールイメージが壊れていないか自分で保証できます。

lowmem lowmem はシステムの搭載するメモリが少ないかを確認し、少なければ debian-installer の不必要な部分を、メモリから（いくつかの機能を犠牲にして）削除する様々なトリックを行います。

anna Anna's Not Nearly APT. (Anna はちょっと APT（適切じゃない）選択したミラーサーバーやインストールメディアから、パッケージを取得してインストールします。

user-setup root パスワードの設定や、root 以外のユーザーの追加を行います。

clock-setup システム時計を更新して、時計を UTC にあわせるかどうかを決定します。

tzsetup あらかじめ選択した場所を元に、タイムゾーンを選択します。
CHAPTER 6. DEBIAN インストーラーの使用法

6.3 それぞれのコンポーネントの使用法

partman システムの内蔵ディスクを分割し、選択したパーティションのファイルシステムを作成し、マウントポイントにそのファイルシステムをマウントすることができます。完全自動モードやLVMサポートといったさらに面白い機能があります。これはDebianでの好ましいパーティション分割ツールです。

partitioner システムのディスクを分割することができます。あなたのコンピュータのアーキテクチャに最適な、パーティション分割プログラムが選ばれます。

partconf パーティションのリストを表示します。また、選択したパーティションにファイルシステムを作成します。

partman-lvm LVM (Logical Volume Manager)の設定について、ユーザの補助を行います。

partman-md ソフトウェアRAID (Redundant Array of Inexpensive Disks)の設定をユーザに許可します。このソフトウェアRAIDは、新しいマザーボードに見られる、安いIDE(疑似ハードウェア)RAIDコントローラにより通常優秀です。

base-installer 再起動時に、コンピュータがDebian GNU/Linuxとして動作するための、もっとも基本的なパッケージセットをインストールします。

apt-setup インストーラーを起動したメディアを元に、ほとんど自動でaptの設定を行います。

pkgsel 追加ソフトウェアをインストールするのにtaskselを使用します。

os-prober コンピュータに現在インストールされているOSを検出し、この情報を(bootloaderのスタートメニューに発見したOSを加える機能を提供する)bootloader-installerへ渡します。これは、起動時にどのOSで起動するかを、ユーザが簡単に決める方法です。

bootloader-installer 様々なブートローダインストーラーがそれぞれ、ハードディスクにブートローダプログラムをインストールします。これは、USBメモリやCD-ROMを使用しないでLinuxを起動するのに必要です。ブートローダの多くは、コンピュータが起動することに代替オペレーティングシステムを選ぶことができます。

shell メニューから、もしくは第2コンソールでshellを実行できます。

save-logs 後でDebian開発者へ、インストーラーソフトウェアの障害を正確に報告するために、障害に遭遇した際の、USBメモリ、ネットワーク、ハードディスク、その他メディアに情報を記録する方法を提供します。

6.3 それぞれのコンポーネントの使用法

本節では、各インストーラーコンポーネントの詳細について述べていきます。コンポーネントは、ユーザーに認識できる段階へグループ化されました。それらは、install中に現われる命令の形で示されます。すべてのモジュールを、インストール時に使用するとは限らない、ということに注意してください。どのモジュールを実際に使用するかは、使用するインストール法やハードウェアに左右されます。

6.3.1 Debian インストーラーのセットアップとハードウェアの設定

Debian インストーラーが起動して、最初の画面が表示されているとしましょう。このとき、debian-installerの機能はまだ制限されています。ハードウェア、希望する言語、実行するタスクなどに関しても、まだ知りません。しかし心配しないでください。debian-installerは非常に賢いので、ハードウェアの自動検出をしたり、コンポーネントの残りを見つけたり、高性能なインストールシステムに自分自身をアップグレードすることができます。しかし、(希望する言語、キーボードレイアウト、使用するネットワーク、ハードディスク、その他メディアに情報)を記録する方法を提供します。

この段階でdebian-installerがハードウェア検出を数回行うことに気づくことでしょう。最初の検証では、インストーラーのコンポーネントをロードするのに欠かせないハードウェア(例:CD-ROMドライブやネットワークカード)を認識することが目標です。初回の実行ですべてのドライバが使用可能になるわけではないので、ハードウェア検出をこのプロセスの後で繰り返す必要があります。

ハードウェア検出の間、debian-installerはシステムにあるハードウェアデバイスのドライバが、ファームウェアを読み込む必要があるかをチェックします。ファームウェアが必要なときに利用できない場合は、リムーバブルメディアから見つかからないファームウェアを読み込むダイアログを表示します。詳細は章6.4をご覧ください。
6.3.1.1 利用可能なメモリのチェック/低メモリモード

debian-installer がまず行うことの一つが、利用可能なメモリをチェックすることです。利用可能なメモリに制限がある場合、このコンポーネントは、システムに Debian GNU/Linux をインストールできるように、インストールプロセスにいくらかの変更を加えます。

インストーラーで消費メモリを抑えるには、翻訳を無効にすることです。これは、英語でしかインストールできないと言うことでもあります。もちろん、インストール完了後に、インストールしたシステムを地域化することができます。

これで充分でなければ、インストーラーは、基本的なインストールを完了するのに必須なコンポーネントのみを読み込み、メモリ消費をさらに抑えようとします。これはインストールシステムの機能を制限します。手動で機能を追加する手段を提供していますが、それによりさらにメモリを消費し、結果インストールに失敗する可能性を考慮する必要があります。

インストーラーが低メモリモードで動作する場合、比較的大きなswapパーティション(64–128MB)を作成するのをお勧めします。swapパーティションは仮想メモリとして使用され、システムで利用できるメモリの量を増やします。インストーラーは、インストールプロセスで可能な限り早くswapを有効にします。swapを使用すると、ディスク負荷が増加し、システムのパフォーマンスが低下する事に注意してください。

こういった措置にもかかわらず、まだシステムがフリーズしたり、予期しないエラーが発生したり、システムがメモリ範囲外で動作(VT4 と syslog に「Out of memory」メッセージを出力) して、プロセスがカーネルに強制終了される可能性があります。

例えば、swapスペースが不十分な場合、低メモリモードで大きなext3ファイルシステムを作成すると、エラーを報告します。swapをもっと大きくしてもだめな場合、ext2（インストーラーの必須コンポーネント）で作成してください。ext2パーティションをインストール後にext3に変更できます。

インストーラーに項5.3.2で説明している「lowmem」ブートパラメータを使用すると、利用可能なメモリを本体にしたlowmemレベルよりも高いレベルにできます。

6.3.1.2 地域オプションの選択

ほとんどの場合、最初の質問はインストール中とインストールしたシステム双方の、地域オプションの選択に関することです。地域オプションは、言語、場所、ロケールからなっています。

異なるダイアログの翻訳が利用できるなら、選んだ言語をインストールプロセスの残りで使用できます。選択した言語で、有効な翻訳が利用できなければ、インストーラーは自動的に英語になります。

選択された地理的位置(ほとんどの場合で国) は、インストールプロセスの後半で、デフォルトのタイムゾーンの抽出と、その国に適切な Debian ミラーサイトの抽出に使用します。言語と国は、ともにシステムのデフォルトロケールの決定や、正しいキーボードレイアウトの選択を支援します。

最初に好みの言語を選択することになります。言語名は英語(左側)と原語(右側)の両方で表示しています。右側の名称は、その言語そのもので書かれた表記です。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されていません。

次は地理的な場所を選択するよう求められます。言語選択時に、その言語が複数の国で公用語となっている場合、その国だけのリストを表示します。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されています。このリストの先頭には言語の名前が英語で表示されない国を選択したとき、インストールプロセスで選択された国がデフォルトで表示されます。その国の言語に対応する言語が存在する場合、インストールプロセスで選択された言語で表示されます。その国の言語に対応する言語が存在しない場合、インストールプロセスで選択された言語で表示されます。

言語に対して国がひとつしかない場合、その国のリストにはその国が属する大陸や地域を表示し、その国をインストールしたシステムのデフォルトで選択状態にします。別の大陸にある国を選択した場合は、Go Back を選択してください。

注意

インストールしたシステムのタイムゾーンを設定するため、あなたが住む、ないし設置する国を選択することが重要です。

ロケールが定義されていない言語と国の組み合わせを選択して、その言語に複数のロケールが存在
1技術的な用語として、言語に対し国コードが異なるぶんだけ、複数のロケールが存在します。
する場合、インストールしたシステムのデフォルトロケールを、その中から選ぶことになります。そうでなければ、デフォルトロケールは選択した言語と国をもとに選択されます。

前段落で説明したように選択されたデフォルトロケールは、文字コードにUTF-8を使用します。優先度低でインストールしている場合、追加ロケール（いわゆる「レガシー」ロケールを含む）を選択して、インストールしたシステム用に生成できます。この場合、選択したロケールの中からどれをデフォルトロケールにするか尋ねられます。

6.3.1.3 キーボード選択

キーボードは、しばしば言語で使用する文字に合わせられています。使用しているキーボードに一致するレイアウトを選択するか、希望のキーボードレイアウトが表示されなければ、新しいものを選択してください。いったんシステムのインストールが完了すれば、もっと広い範囲からキーボードレイアウトを選択することができます（インストールが完了した後に、root で dpkg-reconfigure keyboard-configurationを実行してください）。

希望のキーボードにハイライトを移動させて、Enterを押してください。ハイライトの移動には矢印キーを使用してください。どの言語のキーボードでも同じ場所にあるため、キーボードの設定に依存しません。

6.3.1.4 Debian Installer iso イメージの検索

hd-mediaでインストールを行う場合、インストールするファイルの残りを得るために、Debian Installer iso イメージを見つけてマウントする必要があるでしょう。iso-scan コンポーネントはその名の通り行います。

最初に iso-scan は、既知のファイルシステムがあるブロックデバイス（例えばパーティションや論理ボリューム）を自動的にすべてマウントし、.iso（もとと言え、.ISO）で終わるファイル名を順番に検索します。初回の試行でルートディレクトリ中、およびそのサブディレクトリ内しか検索しないことに注意してください（つまり /whatever.isoや/data/whatever.isoを探すですが、/data/tmp/whatever.isoは検出しないということです）。iso イメージの検出後、iso-scan は、そのイメージが有効な Debian iso イメージであるか否かを決定するため、その内容をチェックします。前者の場合、完了しますが、後の場合は iso-scan は別のイメージを探します。

インストーラー iso イメージを探す試行が失敗する場合、iso-scan はより徹底的に検索するか確認します。このパスは上位のディレクトリのみ調査しませんが、実際にファイルシステム全体を全探索します。

iso-scanがインストーラー iso イメージを検出しない場合、元の OS を起動し直して、イメージが (.isoで終わる) 正しい名前になっているか、debian-installerが認識できるファイルシステムに配置しているか（チェックサムを検証して壊れていないかチェックしてください。Unix の経験があるユーザーは、再起動せずに第 2 コンソール上でチェックできます。

ISO イメージをホストするパーティション（またはディスク）はインストーラーで利用されているので、インストールブレス中に再利用できない点にご注意ください。この回避策としては、十分なシステムメモリがある場合ですが、インストーラーが ISO イメージをマウントする前に RAM にコピーできます。これはlow priorityのiso-scan/copy_iso_to_ram debconf設定で管理されています（メモリ要件が合致した場合のみ尋ねられます）。

6.3.1.5 ネットワークの設定

このステップに入って、ネットワークデバイスが 1 つ以上あることをシステムが検出すると、どのデバイスを主要（つまりインストールに使用する）ネットワークインターフェースとするか質問されます。その他のインターフェースはここでは設定しません。インストールが完了したところで、さらにインターフェースを設定できるよう、interfaces(5)man ページを参照してください。

6.3.1.5.1 自動ネットワーク設定

デフォルトでは、debian-installerはコンピュータのネットワークを、可能な限り自動的に設定しようとします。自動設定に失敗した場合、ネットワークケーブルが繋がっていないことから、自動設定用のインフラが見つからないことまで、幅広い原因を考えられます。エラー発生時に何が起きたかを確認する場合、優先度が中や低では、選択した言語で有効なロケールの中から、常に好みのものを選択することになります（複数ある場合）。

レガシーロケールとは、UTF-8を使用しないけれど、ISO 8859-1（西欧言語で利用）やEUC-JP（日本語で利用）といった文字エンコードを使用する旧標準の一種です。
認することに、4番目のコンソールに表示するエラーメッセージをチェックしてください。いずれの場合も、再実行するか、手動設定を実行するか、を質問されます。自動設定に使用するネットワークサービスは、時にそのレスポンスが遅いことがあります。そのため、適切な場所にあるかどうか確認してから、自動設定を再実行してください。繰り返し自動設定に失敗する場合、手動でネットワークの設定を行なってください。

6.3.1.5.2 手動ネットワーク設定
ネットワークの手動設定では、ネットワークについて、いくつか質問をしてきます。特に、IPアドレス、ネットマスク、ゲートウェイ、ネームサーバーのアドレス、ホスト名について質問します。さらに、無線ネットワークインタフェースがあるなら、無線ESSID（「無線ネットワーク名」）とWEPキーワ、WPA/WPA2パスフレーズを質問します。項3.3より回答を入力してください。

注意
わかりやすいかどうかはともかく、技術的詳細は以下のようにになります。このプログラムは、システムのIPアドレスとネットマスクのビット積、ネットワークIPアドレスとします。デフォルトのブロードキャストアドレスは、システムのIPアドレスと、ネットマスクのビット否定とのビット和から計算します。同様にゲートウェイも推測します。どのような値を設定するのかよくわかりなければ、デフォルト値を使用してください。一度システムをインストールした後で、必要な値を入力してください。

6.3.1.5.3 IPv4とIPv6
Debian GNU/Linux7.0（「Wheezy」）以降から、debian-installerはIPv6を「クラシックな」IPv4と同様にサポートしています。IPv4とIPv6のすべての組み合わせ（IPv4のみ、IPv6のみ、デュアルスタック構成）をサポートします。
IPv4の自動設定は、DHCP（ダイナミックホストコンフィギュレーションプロトコル）を用いて行います。IPv6の自動設定は、NDP（リカーシブDNSサーバー（RDNSS）の役割に含まれる近隣者発見プロトコル）を用いたステートレス自動設定と、DHCPv6を用いたステートフル自動設定、ステートレス・ステートフル混合（アドレスの設定をNDPで、追加パラメータをDHCPv6で行う）自動設定をサポートします。

6.3.2 ユーザーとパスワードのセットアップ
クロックの設定直前に、インストーラーは「root」アカウントや、最初のユーザーアカウントのセットアップを行います。その他のユーザーアカウントは、インストール完了後に作成してください。

6.3.2.1 rootパスワードの設定
rootアカウントは、ログインするとシステムのすべてのセキュリティ保護をバイパスしてしまうので、スーパーユーザーとも呼ばれます。rootアカウントはシステム管理のみに使用し、可能な限り短時間使用するのみにすべきです。
作成するパスワードは、少なくとも6文字以上で、大文字小文字、カナマやピリオドを混ぜるべきです。rootパスワードを設定するときには、短くもじろとアカウントに特別注意を払ってください。辞書にある単語や推測される個人情報を使うことも避けましょう。誰であっても、rootパスワードが必要だと言う人がいる場合には、決して用意していただくべきです。他のシステム管理者と共に機械の管理をしているのでなければ、rootパスワードを教える必要はありません。
ここで「root」ユーザーのパスワードを指定しなかった場合ですが、このアカウントは無効になりますが、新しいシステム上で管理作業が実施できるよう、後ほどsudoパッケージがインストールされます。デフォルトでは、システムで作成された最初のユーザーがrootになるのでsudoコマンドを使えます。

48
6.3.2.2 一般ユーザーの作成
システムは、この時点で一般ユーザーアカウントを作成するかどうか質問します。このアカウントを、個人でログインする場合のメインアカウントにするべきでしょう。rootアカウントを日常的に使用したり、個人的な用途でログインするべきではありません。
なぜいけないのでしょう？root権限を使用しないようにする理由のひとつは、rootにより簡単に取り返しのつかない損害を与えるということです。他には、だまれされてトリプルの木馬（あなたに隠れ、スーパーユーザー権限を利用してシステムに感染するプログラム）を動かしてしまうということもあり得ます。UNIXシステム管理に関するいずれの良書でも、この件に関して詳細に扱っています。今までご存じなければ、ご一読ください。
まず初めに、ユーザーのフルネームの入力を求められます。次にユーザーアカウントの名前を求められます。一般的にファーストネームか、必要充分な名前に似た何かがデフォルトになります。最後にこのアカウントのパスワードを求められます。
インストール後いつでも、別のアカウントを作成する場合は、adduserコマンドを使用してください。

6.3.3 時計とタイムゾーンの設定
インストーラーはまず、正しいシステム時計を設定するため、インターネットのタイムサーバーに（NTPプロトコルを利用して）接続しようとします。これが成功しない場合、インストールシステムが起動したときのシステム時計を正しいと見なします。インストールプロセス中に、手動でシステム時計を設定することはできません。
インストール処理のはじめの方で選択した所在地をもとに、その場所に関連するタイムゾーンの一覧を表示します。あなたの所在地にタイムゾーンがひとつしかなく、デフォルトインストールを行っている場合、システムは一覧を表示せず、そのタイムゾーンであると仮定します。
エキスパートモードや優先度中でインストールしている場合、タイムゾーンに「協定世界時」（UTC）を使用すると、という選択肢が追加されます。
何らかの理由で、インストールしたシステムのタイムゾーンを、選択した場所とは異なるものにしたい場合は、2つの選択肢があります。
1. シンプルな方法は、インストールが完了し、新しいシステムが起動した後で、異なるタイムゾーンを選択することです。以下のようなコマンドになります。

```
dpkg-reconfigure tzdata
```
2. その他には、インストールシステムの起動時に、パラメータtime/zone=valueを渡すと、インストールの最初からタイムゾーンを設定できます。もちろん値は妥当なタイムゾーン（例えばEurope/LondonやUTC）であるべきです。
自動インストール用に、preseedを用いて、タイムゾーンをお好みの値に設定できます。

6.3.4 パーティションの分割とマウントポイントの選択
最後のハードウェア検出が完了した時点で、debian-installerではユーザーのニーズ通りにカスタマイズされ、実際の作業ができるような、準備万端の状態にあります。本節のタイトルが表すように、以下、多数のコンポーネントの主なタスクは、ディスクのパーティションを分割し、ファイルシステムを作成し、マウントポイントを割り当て、LVMやRAID、暗号化デバイスのような密接に関係する件のオプション設定を行うことです。
パーティション分割に不安があったり、詳細を知りたければ、付録Cをご覧ください。
最初に、ドライブのすべてか、またはドライブの有効な空き領域を、自動的にパーティション分割するか選択する機能が与えられます。これを「ガイド」パーティション分割とも呼びます。自動分割を望まなければ、手動を選んでください。

6.3.4.1 サポートするパーティション分割オプション
debian-installerで使用するパーティション分割ツールは、かなり万能です。これにより、さまざまなパーティションテーブル、ファイルシステム、高度ブロックデバイスを用いて、たくさんの異なるパーティション構成を作成できます。
厳密に、どのようなオプションが利用できるかは、主にアーキテクチャに依存しますので、その他の要因もあります。例えば、内部メモリが制限されたシステムでは、いくつかのオプションは使用できないで
CHAPTER 6. DEBIAN インストーラーの使用法

6.3. それぞれのコンポーネントの使用法

しよう。さらにデフォルトも変わるかもしれません。例えば、大容量ハードディスクに対する、デフォルトのパーティションテーブルのタイプは、より小さいハードディスクのものと異なっている場合があります。debconf 優先度が中ないし低でインストールしているときのみ、いくつかのオプションを変更できます。もっと高い優先度の場合は、実用的な値がデフォルトで使用されます。

インストーラーは、さまざまな形の高度なパーティションやストレージデバイスを（ほとんどの場合組み合わせて）サポートします。

- 論理ボリュームマネージメント
- ソフトウェア RAID
  サポートしている RAID レベルは 0, 1, 4, 5, 6, 10 です。
- 暗号化
- シリアル ATA RAID (dmraid を利用)
  「fake RAID」や「BIOS RAID」とも呼ばれています。現在のところ、シリアル ATA RAID はインストーラー起動時に有効にした場合にのみ利用できます。詳細情報が私たちの Wiki にあります。
- マルチパス（実験的）
  情報は私たちの Wiki をご覧ください。現在のところ、マルチパスはインストーラー起動時に有効にした場合にのみ利用できます。

以下のファイルシステムをサポートしています。

- ext2, ext3, ext4
  ほとんどの場合、デフォルトのファイルシステムに ext4 が選択されています。ガイドパーティション分割を使用する際、/boot パーティションのデフォルトには ext2 が選択されます。
- jfs (全アーキテクチャで使用できるわけではありません)
- xfs (全アーキテクチャで使用できるわけではありません)
- reiserfs (オプション。全アーキテクチャで使用できるわけではありません)
  Reiser ファイルシステムは、もはやデフォルトではサポートされません。インストーラが、中ないし低 debconf 優先度で動作させると、partman-reiserfs コンポーネントを選択して有効にできます。バージョン 3 のみサポートします。
- qnx4
  既存のパーティションを認識し、マウントポイントを割り当てられます。新しい qnx4 パーティションは作成できません。
- FAT16, FAT32
- NTFS（読み込み専用）
  既存の NTFS パーティションのサイズ変更とマウントポイントの割り当てができます。新しい NTFS パーティションは作成できません。

6.3.4.2 ガイドパーティション分割

ガイドパーティション分割を選択した場合、選択肢が 3 つあります。ハードディスクに直接パーティションを作成する（クラシック）方法、論理ボリューム管理 (LVM) を利用する方法、暗号化 LVM を利用する方法です。

注意

(暗号化 LVM を含む) LVM を使用する方法は、すべてのアーキテクチャで使用できるわけではありません。

このインストーラーでは、LVM ボリュームグループを 256 bit AES キーで暗号化し、カーネルの「dm-crypt」サポートを利用します。
LVMや暗号化LVMを使用する場合、インストーラーが作成するほとんどのパーティションを、大きなパーティションの中に作成します。この利点は、大きなパーティションの中ににあるパーティションを、後から簡単に大きさを変更できることです。暗号化LVMの場合、特殊なキーフレーズを知らない大きなパーティションを読むことができません。そのため、あなたの（個人）データにさらなるセキュリティを提供します。

暗号化LVMを利用の場合、インストーラーは、自動的にランダムなデータを書き込んでディスクを消去します。この機能は、ディスクの使用中の領域を分からなくし、以前インストールしていたものの痕跡を消去して）セキュリティを向上しますが、ディスクのサイズにより、時間がかかることがあります。

注意
LVMや暗号化LVMを使用してガイドパーティション分割を選択した場合、パーティションテーブルへの変更は、LVMのセットアップで選択したディスクに書き込まれる必要があります。この変更によって、選択したハードディスクの現在のデータはすべて消去され、後で元に戻すことができなくなります。しかし、ディスクに書き込む前に、インストーラーは変更してよいか確認してきます。

ディスク全体に対してガイドパーティション分割を選択した場合（クラシックでも（暗号化）LVMでも）、まずはじめに、選択したディスクを使用してよいか尋ねられます。複数ディスクがある場合、すべてのディスクが一覧され、正しいものが選択されていることを確認してください。表示順は、普段使っているものと違う可能性があります。ディスクサイズを確認の手がかりにしてください。

ここでついに、ディスクのすべてのディスクの位置が変更されますが、ディスクに書き込む前に変更してよいか、必ず確認してできません。パーティション分割にクラシック法を選択した場合は、終了する前に元に戻せますが、（暗号化）LVMを使用する場合は元に戻せません。

次に、以下の表から分割案を選択できます。どの案でも賛否両論あり、付録Cで議論されています。よくわからない場合は、最初の項目を選択してください。ガイドパーティション分割、最低限動作のある空き領域が必要なことを、心に留めておいてください。少なくとも1GBの空き領域（選択した方法に依存します）が必要であれば、ガイドパーティション分割は失敗てしまいます。

<table>
<thead>
<tr>
<th>パーティション分割方法</th>
<th>最低容量</th>
<th>作成するパーティション</th>
</tr>
</thead>
<tbody>
<tr>
<td>All files in one partition</td>
<td>600MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Separate /home partition</td>
<td>500MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Separate /home, /var and /tmp partitions</td>
<td>1GB</td>
<td>/, /home, /var, /tmp, swap</td>
</tr>
</tbody>
</table>

(暗号化) LVMを利用するガイドパーティション分割を行うと決めた場合、インストーラーは独立した/bootパーティションも作成します。スワップパーティションを含むその他のパーティションは、LVMパーティションの内部に作成します。

EFIモードでブートした場合、ガイドパーティション分割にEFIブートローダ用にFAT32の起動可能ファイルシステムでフォーマットされた追加パーティションがあります。このパーティションはEFIシステムパーティション（ESP）とも呼ばれています。手動でESPとしてパーティションをセットアップするよう、フォーマットメニューで追加メニュー項目があります。

分割案を選択後、新しいパーティションテーブルが次の画面に表示されます。ここでは、パーティションがどのようにフォーマットされるか、どこにマウントされるかといった情報が含まれています。

パーティション一覧は以下のようになります。

```
SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L
#1 primary 16.4 MB B f ext2 /boot
#2 primary 551.0 MB swap swap
#3 primary 5.8 GB ntfs
pri/log 8.2 MB FREE SPACE

SCSI2 (1,0,0) (sdb) - 80.0 GB ST380021A
#1 primary 15.9 MB ext3
#2 primary 996.0 MB fat16
#3 primary 3.9 GB xfs /home
#5 logical 6.0 GB f ext4 /
```
6.3. それぞれのコンポーネントの使用法

<table>
<thead>
<tr>
<th>#6 logical</th>
<th>1.0 GB</th>
<th>f</th>
<th>ext3</th>
<th>/var</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7 logical</td>
<td>498.8 MB</td>
<td>ext3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

この例では、2つのハードディスクを、いくつかのパーティションに分割しています。第1ディスクには空き領域がいくらかあります。パーティション行ごとに、パーティション番号、パーティションタイプ、サイズ、追加フラグ、ファイルシステム、マウントポイントを（あれば）表示しています。注意: こういった詳細なセットアップはガイドパーティション分割では行えませんが、手動パーティション分割で使用できる変化を示します。

これでガイドパーティション分割を終えます。生成されたパーティションテーブルでよければ、(本節の最後に書かれているように)新しいパーティションテーブルを反映するよう、パーティショニングの終了とディスプレイの変更の書き込みをメニューから選べます。そうなければ、もう一度ガイドパーティション分割をしたり、以下で述べる手動パーティション分割で提言する変更を修正するのにパーティションへの変更を元に戻すを選択し、ガイドパーティション分割を再実行してください。または、以下で述べる手動パーティション分割で修正してください。

6.3.4.3 手動パーティション分割

手動パーティション分割を選択すると、既存のパーティションテーブルがマウントポインタなしで表示されるのを除き、前述と同様の画面が表示されます。パーティションテーブルの手動セットアップの方法と、新しいDebianシステムでのパーティションの使用法については、本節の残りで扱います。

パーティションも空き領域も、素のハードディスクを選択すると新しいパーティションテーブルを作成するか確認されます（新しいパーティションを作成するのに必要）。すると選択したディスプレイのパーティションテーブルに、「FREE SPACE」(空き領域)という新しい行が現れます。

空き領域を選択すると、新しいパーティションを作成できるようになります。サイズやタイプ(基本か論理か)、場所(空き領域の先頭からか最後からか)といった、一連の簡単な質問に答えなければなりません。この後、新しいパーティションの詳細な概要が得られます。主な設定は、ファイルシステムがパーティションにあたる場合、スワップ、ソフトウェアRAID、LVM、暗号化ファイルシステムとして使うか、全部使わないかを決定する利用方法です。その他には、マウントポイントやマウントオプション、起動フラグといったパーティションの使用中に依存した設定があります。あらかじめ選択されたデフォルト値が気に入らないか、自由にお好みのものへと変更してください。例えば、オプション利用方法:を選択すると、スワップ、ソフトウェアRAID、LVM、またそれ以外のファイルシステムに、新しいパーティションに変更をします。新しいパーティションに満足したら、パーティションのセットアップを終了を選択して、partmanのメイン画面に戻ってください。

パーティションに対して変更を加えたい場合は、単にそのパーティションを選択して下さい。パーティションの設定メニューに入ります。新しいパーティションを作成する際に使用するのと同じ画面ですので、同様に設定を変更できます。一見わかりづらいかもしれませんが、表示されているパーティションのサイズを選択して、サイズ変更ができます。動作することがわかっているファイルシステムは、少なくともfat16, fat32, ext2, ext3, swapです。このメニューではパーティションを削除することもできます。

少なくとも2つのパーティションを必ず作成してください。1つはswapで、もう1つは(/にマウントする)ルートファイルシステムです。ルートファイルシステムをマウントしないと、この問題を修正するまでpartmanは先に進めません。

EFIシステムパーティションをフォーマットし忘れた場合は、partmanがそれを検出し、行うまでに進むことができません。

partmanの機能は、インストーラーモジュールで拡張できますが、システムのアーキテクチャに依存します。あるすの機能を確認できなければ、すべての必要なモジュールが読み込まれているか確認してください。（例: partman-ext3, partman-xfs, partman-lvm）

パーティション分割に満足したら、パーティション分割メニューからパーティショニングの終了とディスプレイの変更の書き込みを選択してください。ディスプレイに行われる変更内容が反映され、その通りファイルシステムを作成するかどうか確認することになります。

6.3.4.4 マルチディスクデバイス(ソフトウェア RAID)の設定

コンピュータに複数ハードディスクドライブがある場合、ドライブのパフォーマンスの向上やデータの信頼性向上のためにpartman-mdを使用できます。この結果をマルチディスクデバイス(ソフトウェア RAID)のデータが有りと呼びます。

<table>
<thead>
<tr>
<th>付記事項</th>
<th>変更内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>本項のことをいえば、同一の物理ドライブを分割してMDデバイスを構築できますが、何も利点がありません。</td>
</tr>
</tbody>
</table>
MDは基本的に別のディスクにあるパーティションを束ねて、論理デバイスの形に結合するものです。このデバイスは通常のパーティション（例: partmanでフォーマットでき、マウントポイントに割り当てられる等）と同様に使用できます。

どんな恩恵を受けるかは、作成するMDデバイスの種類に依存します。現在、以下をサポートしています。

RAID0
RAID0はパフォーマンスに主眼をおいています。RAID0は全入力データをstripesへ分割し、均等にディスカレッジの各ディスクに分配します。これにより、読み取り・書き込みの処理速度を向上できますが、ディスクのうちの1つが破損したら、すべてを失ってしまいます。（情報の一部は正常なディスク上にありますが、他の部分は破損したディスク上にあるからです）

RAID0の典型的な使用法は映像編集用のパーティションです。

RAID1
信頼性第一である場合、RAID1を構成するとよいでしょう。全パーティションが正確に同じデータを含むような、いくつかの（たいてい2つ）等しいサイズのパーティションから成ります。これは本質的に3つのことを意味します。まずディスクの1つが破損した場合、残ったディスクにデータミラーが残ります。次に利用可能な領域の断片だけの使用もできます。（もっと正確には、RAIDで構成する最小のパーティションサイズとなります）第3に、ディスクからのファイルの読み込みをロードバランスする事ができます。これにより、ファイルサーバーのような、書き込みより読み込みの方が負荷が高くなる傾向のあるサーバーのパフォーマンスを改善できます。

破損した場合に、任意に予備ディスクを破損したディスクの代わりに、ディスクアレイにかけることができます。

RAID5
RAID5は速度と信頼性、データの冗長性をうまく折衷しています。RAID5はストライピング入力するデータをすべて分割し、1つ以外の全ディスクに（RAID0のように）等しく分配します。RAID0と違い、RAID5は（残りのディスクに書かれている）パーティティ情報も計算します。パーティティディスクは静的（これをRAID4と呼ぶ）ではありません。（定期的に変更される）パーティティ情報を全ディスクに等しく分配します。あるディスクが故障した場合、情報が失われた部分は他のディスクとそのパーティティから計算されます。RAID5は少なくとも3つのアクティブなパーティティンから成ります。故障した場合に、任意でディスクアレイ中の故障したディスクの箇所に予備のディスクをセットできます。

おそらくのように、RAID5はRAID1より冗長性が少なく、同程度の信頼性を持ちます。一方、パーティティ情報は計算するため、RAID0より書き込み操作が少し遅いかかもしれません。

RAID6
RAID6はパーティティデバイスが1つではなく2つであるという点を除き、RAID5と似ています。
RAID6アレイは、2つのディスクが故障するまで存続できます。

RAID10
RAID10はストライピング（RAID0）とミラーリング（RAID1）を組み合わせたものです。格納データの n 個のコピーを作成し、パーティションをまたがって分配するため、ディスクに同じデータを格納することはありません。nのデフォルト値は2ですが、エキスパートモードで別の値を設定できます。使用するパーティションの数は、少なくとも n 個必要です。RAID10はコピーを分配するために、様々なレイアウトを用意しています。デフォルトはnear コピーです。near コピーは、全ディスクにおいて同一のオフセットでの全てのコピーを分配します。far コピーは、全ディスクにおいて異なるオフセットで全てのコピーを分配します。offset コピーは、個々のコピーではなく、ストライピングしたものをコピーします。

RAID10はパーティティを計算するという難点を回避しつつ、信頼性と冗長性を確保するのに使用できます。

以下に、MDデバイスの種類の比較表を示します。

<table>
<thead>
<tr>
<th>タイプ</th>
<th>デバイス最小構成数</th>
<th>予備デバイス</th>
<th>ディスク破損に耐えるか</th>
<th>利用可能領域</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>no</td>
<td>no</td>
<td>RAID にある最小パーティションのサイズ × デバイス数</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>任意</td>
<td>yes</td>
<td>RAID にある最小パーティションのサイズ</td>
</tr>
</tbody>
</table>

まとめると以下のようになります。
<table>
<thead>
<tr>
<th>タイプ</th>
<th>デバイス最小構成数</th>
<th>予備デバイス</th>
<th>ディスク破損に耐えるか</th>
<th>利用可能領域</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID5</td>
<td>3</td>
<td>任意</td>
<td>yes</td>
<td>RAIDにある最小パーティションのサイズ×(デバイス数-1)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>任意</td>
<td>yes</td>
<td>最小パーティションのサイズ×(RAIDにあるデバイス数-2)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>任意</td>
<td>yes</td>
<td>全パーティションサイズ÷チャントのコピー数（デフォルトは2）</td>
</tr>
</tbody>
</table>

ソフトウェアRAIDに関して、もっと知りたい場合はSoftware RAID HOWTOをご覧ください。

MDデバイスを作るには、RAIDで使うための(これは利用方法: → RAIDの物理ボリュームを選択して出てくる、パーティション設定メニューのpartmanで行えます)

注意
計画しているパーティション分割方式で、システムがブートできることを確認してください。通常、ルート(/)ファイルシステムにRAIDを使用する際には、/bootを独立したファイルシステムにする必要があります。ほとんどのブートローダ(grubなど)は、ミラーリングした(ストライピングではなく!)RAID1をサポートしています。そのため、/にRAID5を用い、/bootにRAID1を用いる例が選択したり得ます。

次にメインのpartmanメニューからソフトウェアRAIDの設定を選んでください。(このメニューは、少なくともパーティションをひとつRAIDの物理ボリュームとしてマークしないと表示されません)partman-mdの最初の画面では、単にMDデバイスの作成を選択してください。サポートされるMDデバイスのリストも提供されます。これから1つ(例:RAID1)を選択してください。その後は選択したMDデバイスに依存します。

- RAID0は単純です。利用可能なRAIDパーティションの一覧が提供されますので、単にMDにするパーティションを選択してください。
- RAID1は少しトリッキーです。まずMDにするアクティブデバイスの数、スペアデバイスの数を入力します。次に利用可能なRAIDパーティションの一覧からアクティブのもの、次にスペアのものを選ぶ必要があります。選択したパーティションの数と先ほど入力した数は一致しなければなりません。心配しないでください。間違って違う数のパーティションを選択した場合、debian-installerは問題を修正するまで、先に進ませません。
- RAID5では、少なくとも3つのアクティブパーティションを使用する必要があるという例外を除き、RAID1と同様のセットアップ手順を行います。
- RAID6では、少なくとも4つのアクティブパーティションを使用する必要があるという例外を除き、RAID1と同様のセットアップ手順を行います。
- RAID10もまた、エキスパートモードであることを除き、RAID1と同様のセットアップ手順を行います。エキスパートモードでは、debian-installerはレイアウトについて確認します。レイアウトは2段階に分かれています。第1段階はレイアウトタイプです。n(nearコピー)、f(farコピー)、o(offsetコピー)のどれかになります。第2段階はデータから作るコピーの数です。少なくとも、コピーをすべて異なるディスクに分配するには、たくさんのアクティブデバイスがなければなりません。

同時に数種のMDを持つことは完全に可能です。例えば、3つの200GBのMD専用ドライブがあって、どれも2つの100GBのパーティションに分かれている場合、3つのドライブすべての最初のバ


6.3.4.5 論理ボリュームマネージャ (LVM) の設定

システム管理者や「上級」ユーザーとしてコンピュータを動かしていると、ディスク内のあるパーティション（たいてい最も重要なもの）が足らなくなり、他のパーティションは全体的にあまり使用されていないという状況が確実にあります。このような場合は、内容を移動したりシンボリックリンクを張るといった管理を行うことになります。

上記のような状況を避けるために、論理ボリュームマネージャ (LVM) を利用できます。簡単に言うと、LVM では複数のパーティション (LVM 用語で物理ボリューム (physical volumes)) を仮想ディスク (いわゆるボリュームグループ (volume group)) の形に結合でき、このディスクを仮想パーティション (論理ボリューム (logical volumes)) に分割できます。ポイントは、論理ボリュームは (もちろんその下のボリュームグループも)、複数の物理ディスクをまたがって定義できると言うことです。

例えば、古い 160GB の/home パーティションに、もっと容量を追加することを考えてみましょう。単にあなたは新しい 300GB のディスクをコンピュータに追加し、既存のボリュームグループに入れます。その後/home ファイルシステムを保持したまま論理ボリュームをリサイズします。するとおおよその論理ボリュームが 460GB へと新品交換されたので、ユーザーの空き容量がすこし増えたことになります。もちろんこの例は単純にすぎます。まだ読んでいないようなら、LVM HOWTO を調べるべきです。

debian-installer での LVM のセットアップはかなりシンプルで、partman 内部で完全にサポートしています。特にパーティションを LVM の物理ボリュームとして変更する場合、マークをつけなければなりません。これは、パーティション設定メニューの partman 内で利用方法：→LVM の物理ボリュームを選ぶことで行います。

警告

注意: 新規の LVM は LVM タイプコードがマークされた全てのパーティション上のデータを破壊します。そのため、新規設置時に LVM があってそのマシンへ Debian を追加インストールしたい場合、古い (既存の) LVM は消去されます! 同じことが (何らかの理由で) 誤って LVM タイプコードがマークされているものの、別のものが含まれている場合 (例えば暗号化ボリューム) のパーティションにも言えます。新たに LVM を実行する前にその様なディスクをシステムから取り除きましょう！

メインの partman 画面に戻ると、論理ボリュームマネージャの設定が新しく選択できるようになっています。これらを選択すると、まず決定していないパーティションテーブルへの変更（があれば）確認を行い、その後 LVM 設定メニューを表示します。メニューの上部には LVM 設定の概要を表示します。メニュー画面自体はそのときに実行できる操作のみ表示します。行える操作は以下の通りです。

- 設定の詳細表示: LVM デバイスの構造、論理ボリュームの名称やサイズなどを表示します
- ボリュームグループの作成
- 論理ボリュームの作成
- ボリュームグループの削除
- 論理ボリュームの削除
- ボリュームグループの拡張
- ボリュームグループの縮小
- 完了: メインの partman 画面に戻ります

55
はじめにボリュームグループを作成し、その中に論理ボリュームを作成するのに、このメニューのオプションを使用してください。

メニューのpartman画面に戻ると、作成した論理ボリュームが通常のボリュームと同じように表示されています（そして同じように扱えます）。

### 6.3.4.6 暗号化ボリュームの設定

debian-installerでは暗号化パーティションを設定できます。暗号化パーティションに保存したファイルはすべて、暗号化した形で即座にデバイスに書き込まれます。暗号化したデータへのアクセスは、暗号化パーティションを作成した際に設定したパスフレーズを入力した後で有効になります。この機能は、ノートPCやハードディスクが盗難に遭った際に、機密データを保護するのに便利です。盗人がハードディスクの物理データにアクセスしようとする際、正しいパスフレーズを知らないと、ハードディスクのデータはラウンドな文字列にしか見えません。

暗号化するのが最も重要なパーティションが2つあります。個人的なデータを格納するhomeパーティションと、操作中に機密データを一時的に格納するswapパーティションです。もちろん、その他どのパーティションも暗号化が可能であり、それはあなたに選ばれます。たとえば、データベースサーバー、メールサーバー、プリンターサーバー、それぞれのフォルダを暗号化する/varや、様々なプログラムが、潜在的に興味深い一時ファイルを作成する/tmpです。システム全体を暗号化したいと考える方も多いでしょう。一方、ここで暗号化をおこなわない方がある場合、例外パーティションは、/bootパーティションです。歴史的に、暗号化されたパーティションからカーネルを起動する方法がなかったためです。（GRUBは暗号化されたパーティションから起動できるようになりましたが、debian-installerは現在暗号化された/bootからの起動をネイティブにサポートしていません。そのため設定は別の文書で取り扱っています。）

#### 注意

データの読み書き時に常に暗号化・復号を行うため、暗号化パーティションのパフォーマンスは、暗号化していないものよりも低下する事に注意してください。パフォーマンスは、CPUのスピード、選択した暗号方式、暗号化キーの長さに影響を受ける。

暗号化を用いるには、メインパーティションメニューで空き領域を選択して、新しいパーティションを作成する必要があります。他には既存のパーティション（例、通常のパーティション、LVM論理ボリューム、RAIDボリューム）を選択するという手もあります。パーティション設定メニューの、利用方法：で暗号化の物理ボリュームを選択する必要があります。そうすると、メニューにパーティションを暗号化するオプションが追加されます。

debian-installerでサポートしている暗号化方法はdm-crypt（新しくのLinuxカーネルに収録されていてLVM物理ボリュームをホストできる）です。

暗号化するにあたりDevice-mapper（dm-crypt）を選択した場合に利用できるオプションを見て見ましょう。これよりも下で指定すればデフォルト値を指定してください。セキュリティを念頭に置いて選択されています。

Encryption: aes このオプションで、パーティションのデータを暗号化するのに使用する、暗号化アルゴリズム（暗号化）を選択します。現在、debian-installerは以下の暗号方式をサポートしています。aes, blowfish, serpent, twofishです。それぞれのアルゴリズムの品質についての議論は、この文書の範疇を越えていませんが、以下はあなたが選択するに際し参考になるかもしれません。

AESは、2000年に米国商務省標準技術局より、21世紀の機密情報保護に標準的な暗号化アルゴリズムとして採用されました。

Key size: 256 ここでは暗号化キーの長さを指定できます。一般的に暗号化キーが長くなると暗号強度が向上します。一方、暗号化キーが長くなると、大抵パフォーマンスにマイナスの影響を与えるため、利用できる暗号化キーのサイズは暗号方式に依存します。

IV algorithm: xts-plain64 初期化ベクトルやIVアルゴリズムは、同じ平文データと同一の暗号化キーで、常に異なる暗号化の出力を保証し、安全に暗号を解読するのに利用されます。これにより、暗号化データ中に繰り返されバイナーハらか、攻撃者が情報を推測できないようにします。デフォルトの xts-plain64は現在のところ、攻撃される恐れがもっとも少ないです。その他の選択肢は、新しいアルゴリズムに対応していない、以前インストールしたシステムと互換をとる場合のみ使用してください。
Encryption key: Passphrase ここでは、このパーティションの暗号化キーのタイプを選択できます。

- Passphrase 暗号化キーを、プロセスの後で入力するパスフレーズに基づいて計算します。
- Random key 暗号化パーティションを作成するたびに、新しい暗号化キーをランダムに生成します。言い換えると、シャットダウン後に暗号化キーがモーリーから削除され、パーティションの内容を失うということです。（もちろん、暗号化キーを推測することはできません）

Random key はswapパーティションで使うと便利です。というのも、パスフレーズを覚えておく必要もなく、コンピュータをシャットダウンする前に、機密情報をswapパーティションから掃除するからです。しかし、最近のLinuxカーネルで利用できる「suspend-to-disk」機能では使用できないということでもあります。（次の起動中に）swapパーティションからサスペンドデータを、復元できなくなってしまうのです。

Erase data: yes 暗号化の前に、このパーティションの内容をランダムなデータで上書きするかどうかを決めます。そうしないと攻撃者が、パーティションのどの部分を使用中で、どの部分が使用していないかを見分けられますので、上書きすることをお勧めします。その上、以前インストールしていて残ってしまったデータを、復元しにくくなります。

暗号化パーティション用に必要なパラメータを選択すると、メインパーティション分割メニューに戻ります。そこで今度は暗号化されたパーティションの設定という項目があります。これを選択すると、削除するようにマークしたパーティションを本当に削除しておかないと確認し、新しいパーティションテーブルを書き込むといったアクションを起こします。大きなパーティションではしばらく時間がかかるでしょう。

次に、パスフレーズを使用するような設定していれば、パスフレーズを訊かれます。よいパスフレーズは、8文字以上で、文字・数字・その他の記号が混ざり、辞書に載っていないか、容易に連想される情報（誕生日、趣味、ペットの名前、家族や親戚の名前など）でないものです。

警告

パスフレーズを入力する前に、キーボードが正しく設定され、期待した文字が入力できるようになっていないければなりません。よくわからなければ、別の仮想端末で入力してください。これにより、インストール中にazerty配列を使用しているのに、qwerty配列でパスフレーズを入力するといったことで、あなたが後で驚くようなことは起こりません。この状況はいくつかの原因が考えられますが、インストール中に別のキーボード配列に切り替えたかどうか、ルートファイルシステムのパスフレーズを入力する時に、まだ選択したキーボードレイアウトが有効でなかったのかもしれません。

暗号化キーの作成に、パスフレーズ以外の方法を選択した場合、すぐに暗号化キーを生成します。インストールの初期では、カーネルが十分なエントロピーを集めているので、このプロセスに長時間かかるかもしれません。エントロピーを集めてこのプロセスのスピードを上げるには、ランダムにキーを押す。別の仮想コンソールで鍵を切り替えて（ファイルのダウンロードや、大きなファイルを/dev/nullに流すなど）。ネットワークやディスクのトラフィックを起こすなどがあります。暗号化するパーティションの数だけ繰り返します。

メインパーティション割合メニューに戻ると、暗号化パーティションが、通常のパーティションと同様に追加パーティションとして見えています。以下の例ではdm-cryptで暗号化したパーティションを表示します。

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
├ #1 115.1 GB F ext3
```

今度は、パーティションをマウントポイントに割り当てます。また、デフォルトのファイルシステムタイプが合っていないければ変更も行います。

---

6暗号化キーにパスフレーズを使用するのは、LUKSを使用して設定するという意味です。
73文字の機器では、磁気光学メディアを何度か書き換えた後でも、データを復元できると信じられています。
括弧内の識別子（ここでは sda2_crypt）と、暗号化ボリュームを割り当てるマウントポイントに注意を払ってください。後で新しいシステムを起動するときに、この情報が必要になります。通常の起動プロセスと、暗号を伴う起動プロセスの相違点は、項7.2で扱います。

パーティション分割の内容に納得いったら、インストールに進んでください。

6.3.5 基本システムのインストール
この段階が重要ではないとはいえ、全体の基本システムをダウンロード、確認、展開にインストールのかなりの部分を費やします。遅いコンピュータや遅いネットワーク接続しかなければ、ある程度時間がかかるかもしれません。

基本システムのインストール中、パッケージの展開・セットアップメッセージは、tty4にリダイレクトされます。左Alt-F4を押すと、この端末（terminal）にアクセスできます。元のインストラーの画面に戻るには、左Alt-F1を押してください。

このフェイズでの展開・設定メッセージは、/var/log/syslogに保存されます。シリアルコンソールでインストールする場合、これをチェックできます。まずインストールの途中で、Linuxカーネルをインストールします。デフォルトの優先度では、インストラーはハードウェアと最も適合するカーネルを選びます。より低い優先度モードでは、利用可能なカーネルのリストから選ぶことができます。

パッケージ管理システムを使用してパッケージをインストールした際、デフォルトでは、そのパッケージが推奨しているパッケージもインストールされます。推奨パッケージは、選択したソフトウェアの核となる機能にとって厳密には必要ではありませんが、ソフトウェアを拡張し、パッケージメインターナ視点で、通常そのソフトウェアと同時にインストールされるべきパッケージです。

注意
技術的な理由で、ベースシステムのインストール中にインストールされるパッケージは、「推奨」が含まれていません。前述の規則は、インストールプロセスの中のこの時点以降でのみ効力を持っています。

6.3.6 追加ソフトウェアのインストール
この時点では、制限されたシステムが利用できるようになります。ほとんどのユーザーは、お好みに調整するために、追加ソフトウェアをシステムにインストールするでしょうが、これはインストラーから行えます。遅いコンピュータやネットワーク接続を使用していると、このステップは基本システムのインストールよりも時間がかかるかもしれません。

6.3.6.1 aptの設定
Debian GNU/Linuxシステムにパッケージをインストールするツールの1つにaptパッケージのaptプログラムがあります。パッケージ管理のその他のフロントエンドには、aptitudeやsynapticも使われます。これらのフロントエンドは追加機能（パッケージの検索や状態チェック）を、すばらしいユーザーインターフェースと統合しているので、新しいユーザーにお勧めします。

パッケージをどこから取るか、aptを設定しておかなくてはなりません。この設定の結果は、/etc/apt/sources.listファイルに書き込まれます。インストール完了後に、お好みに合わせて検査・編集できます。

デフォルトの優先度でインストールしている場合、インストール方法と、可能であればインストールの初期に選択した内容から、大部分の設定を自動で面倒みてくれます。ほとんどの場合、インストラーは自動でセキュリティミラーを使用します。また、安定版をインストールしている場合、「stable-updates」更新サービスのミラーを追加します。

低い優先度でインストールしている場合（例：エキスパートモード）、もっと多くのことを自分で決定できます。セキュリティやstable-updates更新サービスの有無や、アーカイブの「contrib」や「non-free」からのパッケージ追加の有無を変えることができます。

8パッケージを実際にインストールするプログラムは、dpkgであることに注意してください。ですが、このプログラムは、どちらかというと下位のツールです。aptはもっと上位のツールで、適切なdpkgを起動します。また、インストールメディアやネットワーク、その他から、パッケージどのように取得するかも知っています。さらに、インストール作業が正しく行えるように、パッケージが必要とする他のパッケージも自動的にインストールできます。
CHAPTER 6. DEBIAN インストーラーの使用法

6.3. それぞれのコンポーネントの使用法

6.3.6.1 2 枚以上の CD/DVD イメージでのインストール

複数枚からなる CD や DVD イメージでインストールする場合、さらにインストールメディアをスキャンするか、インストール者が尋ねてきます。追加するメディアがある場合、そこからパッケージをインストールするため、スキャンしたくなると思います。

追加するメディアがない場合、これも必須ではないので、問題ありません。ネットワークミラーも使用しない場合（次節で説明します），次のステップで選択する，タスクに含まれるすべてのパッケージをインストールできるわけではないことを意味します。

なお、追加するメディアがない場合、これは必須ではないので、問題ありません。

複数のインストールメディアをスキャンする場合、現在ドライブに入っているものとは別のインストールメディアにあるパッケージが必要になると、インストーラーは交換するよう促します。注意：ディスクは、同じセットに属するもののみをスキャンするべきです。スキャンする順番はあまり重要ではありませんが、昇順にスキャンすると、失敗する可能性が低くなります。

6.3.6.1.2 ネットワークミラーの利用

インストールに関するよくある質問に、パッケージの取得元にネットワークミラーを使用するかどうかがあります。ほとんどの場合、デフォルトの回答でうまくいいますが、中には例外もあります。

完全な CD/DVD イメージからインストールしない場合、非常に最小限のシステムで完了するなら、ネットワークミラーを使用するべきです。しかし、インターネット接続に制限がある場合、インストールの次のステップで，desktop タスクを選択しないのが最善でしょう。

1 枚の完全な CD イメージからインストールしている場合は、ネットワークミラーを使用する必要はありませんが、1 枚の CD イメージには非常に限られた数のパッケージしか含まれていないため、ネットワークミラーを使用すると強くお勧めします。インターネット接続に制限がある場合は、まだここでネットワークミラーを設定しない方がよいでしょう。CD イメージでできる限りのインストールを行い、追加パッケージのインストールは、新しいシステムで起動した後など後で行うのがよいでしょう。

DVD でインストールしている場合、インストールに必要なパッケージは、1 枚目の DVD イメージで提供されているはずです。ネットワークミラーの使用はオプションとなります。

ネットワークミラーを追加する利点は、CD/DVD イメージが作成された後にポイントリリースに含まれた更新が、インストールできるということです。つまり、インストールしたシステムのセキュリティや安定性に傷つけることなく、CD/DVD の寿命を延ばすことができます。

まとめる、ネットワークミラーを選択するのは、質の良いインターネット接続がない場合を除き、一般的によい考えです。パッケージの最新版がインストールメディアで利用できる場合には、インストールは常にそれを使うでしょう。従って、ミラーを選択した場合のダウンロードのデータ量は、以下に依存します。

1. インストールの次のステップで選択するタスク。
2. どのパッケージがそのタスクに必要か。
3. そのパッケージがスキャンしたインストールメディアに収録されているかどうか。
4. インストールメディアに収録したパッケージの最新版が、ミラーサイト（通常のパッケージのミラーサイトだけでなく、セキュリティのミラーサイトや stable-updates のミラーサイト）に用意されているかどうか。
6.3.6.1 ネットワークミラーの選択

ネットワークミラーを使わない選択をした場合を除き、インストールプロセスの初期で行った国の選択を元にしたネットワークミラーのリストが与えられています。提示されたデフォルト値を選択すると、大抵うまく行きます。

提供されるデフォルトはdeb.debian.orgです。これ自体はミラーではなく、最新かつ高速なミラーへダイレクトされます。これらのミラーはTLS（httpsプロトコル）とIPv6をサポートします。このサービスはDebianシステム管理（DSA）チームによって維持されています。

「情報を手動で入力」を選択することで、ミラーを手で指定することもできます。そうするとミラーのホスト名とオプションでポート番号を指定できます。これは実際のURLベースで、つまりIPv6アドレスを指定する場合には[]で囲まなければならない。例えば「[2001:db8::1]」。

コンピュータがIPv6のみのネットワークにつながっている（おそらくユーザーの大多数に一致しない）場合、あなたの国のディフォルトミラーはうまく動作しないかもしれません。リスト内のすべてのミラーは、IPv4だけでなくIPv6でも通信できます。個々のミラーの接続は、時間とともに変わることがあり、その情報をインストーラーに持たせません。あなたの国向けのデフォルトミラーにIPv6接続がない場合、提示された他のミラーを試すか、「情報を手動で入力」オプションを選択し、ミラー名に「ftp.ipv6.debian.org」を指定できます。これは、IPv6が有効なミラーのエイリアスで、おそらく可能の限り速い、とはいかないと思います。

6.3.6.2 ソフトウェアの選択・インストール

インストール処理中に、追加ソフトウェアをインストールする機会があります。87573個もの利用可能なパッケージから、個々のパッケージを取り上げるよりも、インストール処理のこの段階では、いち早く様々なコンピュータのタスクをセットアップするよう、定義済みのソフトウェア集合を選択・インストールするのに集中します。

タスクは、様々なジョブやあなたがコンピュータにやらせたいことを、いくつか大まかに表しています。 「デスクトップ環境」、「Webサーバー」、 「SSHサーバー」といった具合です9。項D.2に、利用可能なタスクの必要容量一覧があります。

いくつかのタスクは、インストールするコンピュータの特性により、あらかじめ選択されている可能性があります。選択されているものが合わない場合は、そのタスクの選択をはずせます。全くタスクを選ばないようにもできます。

### ティップ

インストーラーの標準ユーザーインターフェースでは、タスクの選択をスペースバーでトグルできます。
6.3. それぞれのコンポーネントの使用法

注意

「デスクトップ環境」タスクは、グラフィカルデスクトップ環境をインストールします。

デフォルトでdebian-installerはGnome デスクトップ環境をインストールします。インストール中に異なるデスクトップ環境を、インタラクティブに選択することが可能です。デスクトップ環境を複数インストールすることもできますが、組み合わせによっては互いに排他的でインストールできない可能性もあります。

希望のデスクトップ環境に必要なパッケージが実際に利用できる場合にのみ動作することに注意してください。フルCD イメージ1枚でインストールしている場合、容量が限られているそのCD イメージに入っておらず、ミラーサイトからダウンロードする必要があるかもしれません。DVD イメージやその他のインストール方法では、利用可能なデスクトップ環境のインストールがうまくいかないでしょう。

各サーバータスクでは、おおまかに以下のソフトウェアをインストールします。Web サーバー: apache2; SSH サーバー: openssh。

「標準システム」タスクは、優先度が「標準」のパッケージをインストールします。ここには、通常どんなLinux やUnix のシステムでも効率的、たくさんの共通ユーティリティを含んでいます。何をしようとしているのか解っていて、本当に最小限のシステムが必要なのでなければ、このタスクを選択したまににしてください。

言語選択で、デフォルトロケールに「C」ロケール以外を選択した場合、tasksel は、そのロケールで定義されている地域化タスクがあるかチェックし、関連する地域化パッケージを自動的にインストールしようとします。これには例えば単語集や、あなたの言語の特殊なフォントが含まれます。デスクトップ環境を選択している場合、適切な地域化パッケージも（有効なら）インストールします。

タスクを選択したら、Continue を選択してください。ここで apt が選択したタスクの一部をインストールし始めます。個々のプログラムで、ユーザーからのもっと詳細な情報が必要な場合、このプロセス中に問い合わせが発生します。

デスクトップタスクは非常に大きいことを意識してください。特に、通常のCD-ROM と、ミラーサイトにあるCD-ROM 外のパッケージを組み合わせる場合、インストールが、ネットワークから大量のパッケージを取得しようとするかもしれません。インターネット接続が遅い場合、長い時間かかるでしょう。一度、パッケージのインストールが始まる、キャンセルするオプションはありません。

パッケージがCD-ROM に含まれている場合でも、CD-ROM にあるパッケージよりもミラーサイトにあるパッケージの方が新しければ、インストールはミラーサイトから取得しようとします。安定版をインストールしている場合はポイントリリース（オリジナルの安定版リリースの更新）後に、テスト版をインストールしている場合は古いイメージを使用していると、こういったことが起こり得ます。

6.3.7 システムを起動可能に

ディスクなしワークステーションにインストールするなら、ローカルディスクから起動するなんて、明らかに意味がありませんから、このステップをスキップしてください。

6.3.7.1 他 OS の検出

ブートローダがインストールされる前に、インストラーは既にインストールされている他の OS の検出を試します。サポーターする OS を見つけると、ブートローダインストールステップの間にそれを通知します。また、Debian に加えて他の OS をブートできるように、このコンピュータを設定します。

複数の OS を同一の機械で起動するのは、いまだに魔術的だということに注意してください。他の OS を検出し起動するようにブートローダをセットアップする自動サポートは、アーキテクチャごとに（すブアーキテクチャそれぞれで、）異なります。作動しない場合は、詳細についてブートマネージャの文書を調べるべきです。
6.3.7.2 ドライブへのGrubブートローダのインストール

amd64のブートローダは「grub」と呼ばれています。grubは柔軟で頑健なブートローダで、新規ユーザーや古株を問わず、とりあえずこれを選んでおけばよいでしょう。

デフォルトでは、grubはUEFIパーティション/第1ドライブのブートレコードにインストールされ、そこで起動プロセスの完全なコントロールを引き継ぎます。ご希望なら、他の場所にインストールすることができます。完全な情報に関しては、grubのマニュアルをご覧ください。

grubをインストールしたくない場合、Go Backボタンでメインメニューに戻ってください。そしてそこで、使用したいブートローダを選択してください。

6.3.7.3 ブートローダなしで継続

このオプションは、アーキテクチャ/サブアーキテクチャにブートローダがない、あるいはインストールする気がない(例えば、既存のブートローダを使用するつもりであるとか)時に、ブートローダをインストールしていなくても、インストールを完了するのに利用できます。

手動でブートローダを設定する場合、/target/bootにインストールしたカーネルの名前をチェックしてください。またそのディレクトリにinitrdが存在するかチェックしてください。存在するならば、ブートローダにそれを使うよう指定しなければなりません。他に必要な情報は、/ファイルシステムとするディスクないしパーティション、(/bootを個別のパーティションとする場合)/bootファイルシステムとするディスクないしパーティションが必要です。

6.3.8 インストールの完了

これからインストーラーが行ういくつかのタスクが、Debianのインストール過程での最終段階です。ほとんどがdebian-installerの後片付けです。

6.3.8.1 システム時計の設定

インストーラーは、コンピュータの時計をUTCにするかどうかを、尋ねることがあります。通常この質問は可能な限り避け、他のオペレーションシステムがインストールされているかどうか、といったことからUTCを基準にするかどうかを判断します。

エキスパートモードでは、常に時計をUTCにあわせるかどうかを選択することになります。DOSやWindowsを使用するシステムは、通常現地時間にあわせています。デュアルブートする場合は、UTCではなく現地時間を選択してください。

ここで、debian-installerは、システムのハードウェア時計に現在の時間を保存しようと試みます。先ほどの選択により、UTCか現地時間のどちらかで保存します。

6.3.8.2 システムの再起動

インストーラーの起動に使用したブートメディア(CD、USBメモリなど)を、取り出すよう促されます。システムはこの後、新しいDebianシステムで再起動します。

6.3.9 トラブルシューティング

本節に挙げるコンポーネントは、通常インストールプロセスに関係しませんが、何かうまく行かない時に、ユーザーの助けになるようバックグラウンドで待っています。

6.3.9.1 インストールログの保存

インストールが成功したら、インストールプロセス中のログファイルが、新しいDebianシステムの/var/log/installer/に自動的に作成されています。

メインメニューからデバッグログを保存を選択すると、ログファイルをUSBメモリやネットワーク、ハードディスク、その他メディアに保存できます。これは、インストール中に致命的な問題に遭遇してしまい、別システムでそのログを調査したいときや、インストールレポート向けにログを添付したいときに便利です。
6.3.9.2 シェルの使用とログの参照

インストール中にシェルを起動する方法はいくつかあります。ほとんどのシステムでは、さらにシナリオコンソールでインストールしていない場合、左 Alt-F2 を押して（Macのキーボードでは、Option-F2）、第2仮想コンソールに切り替えるのが簡単です。左 Alt-F1 でインストラー自体に戻ってください。

グラフィカルインストラーでは、節6.1.1もご覧ください。

コンソールに切り替えられない場合、メインメニューにあるシェルの実行でもシェルを起動できます。ほとんどのダイアログから、Go Back ボタンを何度か押して、メインメニューに戻れます。exit と入力すると、シェルを終了してインストラーに戻ります。

この段階ではRAMディスクから起動しています。また、使用には制限がありますがUnixユーティリティが利用可能です。どのプログラムが利用できるかはコマンドls/bin/sbin/usr/bin/usr/sbinやhelpとタイプするとわかります。シェルはashというBourneshellのクローンで、自動補完や履歴のような、気の利いた機能を備えています。

ファイルの編集や表示をするには、nanoというテキストエディタを使用してください。インストールシステムのログファイルは、/var/logディレクトリにあります。

注意
シェルの中で、有効なコマンドを許可されている限り、基本的にはなんでもできますが、何か問題が発生したときのデバッグ用に、シェルを使用するオプションはここにしかありません。

シェルから手動で何かを行うと、インストールプロセスや結果にエラーが発生したり、インストールが完了しなかったりといった恐れがあります。特に、インストラーでswapを有効にするようにし、シェルから手動で行わないようにしましょう。

6.3.10 network-consoleを利用したインストール

network-consoleはとても興味深いコンポーネントで、インストールの大半を、SSHを用いたネットワーク越しで行えるようにします。ネットワークを使用することのないときは、少なくともネットワークをセットアップするまで、コンソールでインストールを行わなければならないということも含んでいます。（でもこの部分は節4.6で自動化できます）

このコンポーネントは、デフォルトではメインインストールメニューには現れません。そのため、自分で明示しなければなりません。光学メディアからインストールする場合、優先度を中にするかインストールメニューを呼び出して、インストールメディアからインストーラーをロードを選んでください。また、追加コンポーネントの一覧からnetwork-console:SSHを使ってリモートでインストールを続けるを選んでください。読み込みに成功すると、SSHを使ってリモートでインストールを続けるから呼ばれる新しいメニュー項目が表示されます。

この新しいエントリを選択したら、インストールするシステムに接続するための新しいパスワード（その確認）を入力してください。これで以上です。今、リモートでログインするよう促す画面が出ているはずです。ユーザー名はinstaller、パスワードは先ほど入力したものを使用してください。この画面にある重要な細かい点として、このシステムの指紋(fingerprint)があります。この指紋を、リモートでインストールを続ける人に、安全に転送する必要があります。

ローカルでインストールするかと決めた場合は、Enterを押してください。メインメニューに戻ります。そこで別のコンポーネントを選択してください。

それでは接続の向こう側へ行きましょう。前提として、あなたの端末がインストールシステムで使用するUTF-8エンコードを用いるように設定されている必要があります。そうでなければ、リモートインストールは可能ですが、ダイアログの枠線が化けたりASCII以外の文字が読めないといった妙な表示に終わってしまいます。インストールシステムへの接続を確立するには、単に以下のように入力してください。

$ ssh -l installer install_host

install_host には、インストールするコンピュータの名前かIPアドレスのどちらかをセットします。実際のログインの前に、リモートシステムの指紋を表示するのでそれが正しいかどうか確認してください。
### 注意

インストーラーの ssh サーバーは、keep-alive パケットを送らないというデフォルト設定を使用します。原則的に、インストールするシステムへの接続は、無期限に保たれるべきです。しかし、ある状況下（あなたのローカルネットワークの設定に依存する）では、不使用時間が続くと接続を失う可能性があります。よくある状況は、クライアントとインストールするシステムの間のどこかに、ネットワークアドレス変換（NAT）があることです。接続が失われた際のインストールのポイントにより、再接続後にインストールを再開できるかどうかが決まるでしょう。

ssh 接続を開始する際や、ssh の設定ファイルに、オプション `-o ServerAliveInterval=value` を追加して、接続が切れるのを回避できるかもしれません。しかし、ある状況下では、このオプションを追加すると、接続が切れる原因になるかもしれません。注意してください（例えば、普段なら ssh が復旧してしまうような、短時間のネットワーク障害中に keep-alive パケットを送るなど）。そのため、使用は必要最小限にするべきです。

### 注意

順番にいくつものコンピュータにインストールして、同じ IP アドレスやホスト名を持っていったりすると、ssh はそういったホストへの接続を拒否します。指紋が異なっているのは、通常なりすまし攻撃のサインです。なりすまし攻撃ではないことが確かなら、`~/.ssh/known_hosts` から関連する行を削除して、もう一度行う必要があります。

---

ログインするとメニューの開始, メニューの開始という 2 つのメニューがある初期画面が表示されます。前者はメインのインストールメニューに移動し、通常のインストールを進めることができます。後者はリモートシステムの検査と（可能なら）修正できるようなシェルを起動します。インストールメニュー用の SSH セッションを起動するのは 1 つだけにするべきですが、シェル用には複数のセッションを起動できます。

### 警告

SSH を使ってリモートでインストールを始めた後で、ローカルコンソールのインストールセッションに戻るべきではありません。新システムの設定を保持しているデータベースが破損する可能性があるからです。それによりインストールが失敗したり、インストールしたシステムに何か問題が発生するかもしれません。

### 6.4 見つからないファームウェアの読み込み

項 2.2 で述べたように、ある種のデバイスはファームウェアを読み込む必要があります。多くの場合、ファームウェアが有効でないとデバイスはまったく動作しません。場合によっては、ファームウェアがない場合、基本機能は損なわれませんが、追加機能を有効にするためだけにファームウェアが必要になります。

利用できないファームウェアをデバイスドライバが要求する場合、debian-installer は見つからないファームウェアを要求するダイアログを表示します。このオプションが選択されると、
CHAPTER 6. DEBIAN インストーラーの使用法 6.4. 見つからないファームウェアの読み込み

debian-installer はルーズなファームウェアファイルと、ファームウェアのあるパッケージの両方を、利用できるデバイスについて検索します。見つかると、ファームウェアを正しい場所 (/lib/firmware) にコピーし、ドライバモジュールを再読込します。

注意
どのデバイスがスキャンされるか、どのファイルシステムをサポートしているかは、アーキテクチャやインストール方法、インストールの段階に依存します。特にインストールの初期段階では、ファームウェアの読み込みには、FAT フォーマットの USB メモリがもっとも成功の可能性が高いでしょう。i386 や amd64 のファームウェアは、MMC や SD カードからも読み込みます。

ファームウェアがなくてもデバイスが動作することを知っていたり、インストール中にそのデバイスが必要な場合は、ファームウェアの読み込みスキップすることにご注意ください。

debian-installer は、インストール中に読み込んだカーネルモジュールが必要とする場合にのみ、ファームウェアのプロンプトを表示します。debian-installer にすべてのドライバが含まれるわけではない（特に radeon はありません）、そのため、いくつかのデバイスの機能は、はじめからインストールの終わりまで、まったく変わらないこともあります。その結果として、ハードウェアの能力を引き出せないかもしれません。この場合に該当するかどうかを疑わしく、興味を持たれたのでしたら、新しくブートしたシステムで dmesg コマンドの出力をチェックし、「firmware」を検索してみてもよいでしょう。

6.4.1 メディアの準備
公式インストールイメージには non-free のファームウェアが含まれません。そのようなファームウェアを読み込むもっとも一般的な方法は、USB メモリのようなリムーバブルメディアから読み込むことです。また、https://cdimage.debian.org/cdimage/unofficial/non-free/ に、non-free のファームウェアを含む非公式インストールイメージがあります。USB メモリ（ないし、ハードディスクのパーティションのような他のメディア）を利用するために、ファームウェアのファイルやパッケージを、メディアのファイルシステムのルートディレクトリか、/firmware というディレクトリのどちらかに配置しなければなりません。ファイルシステムには、インストールの初期段階でも間違いなくサポートされている、FAT を使用するのをお勧めします。

よくある一般的なファームウェアの最新パッケージを、tar や zip で固めたものが、以下のサイトで利用できます。

- https://cdimage.debian.org/cdimage/unofficial/non-free/firmware/

正しいリリースの tarball か zip ファイルをダウンロードし、メディアのファイルシステムに展開するだけです。

必要なファームウェアが tarball に含まれていない場合、特定のファームウェアパッケージを、アーカイブ（non-free セクション）からダウンロードすることもできます。以下のように、利用できるほとんどのファームウェアパッケージを網羅できると思いますが、完全であることを保証できません。ファームウェアではないパッケージを含むかもしれません。

- https://packages.debian.org/search?keywords=firmware

また、個々のファームウェアファイルを、メディアにコピーもできます。ルーズなファームウェアを、例えばすでにインストールしたシステムや、ハードウェアベンダから入手できます。

6.4.2 ファームウェアとインストールしたシステム
インストール中に読み込んだファームウェアは、いずれもインストールしたシステムに、自動的にコピーされます。多くの場合、これによりシステムをリブートして新しいシステムにしても、ファームウェアが必要なデバイスが確実に動作するでしょう。しかし、インストールしたシステムが、インストーラーと異なるバージョンのカーネルで動作している場合、バージョンのずれによりファームウェアが読み込めない可能性が考えられます。

ファームウェアパッケージからファームウェアをロードした場合、debian-installer はインストールしたシステム向けにも、このパッケージをインストールし、APT の sources.list に、パッケージア
カーネルの non-free セクションを自動的に追加します。これには、ファームウェアの新しいバージョンが利用できるようになると、自動的に更新するという利点があります。

インストール中に、ファームウェアの読み込みをスキップした場合、おそらくファームウェア（パッケージ）を手動でインストールするまで、関連するデバイスがインストールしたシステムで動作しないでしょう。

### 注意
ファームウェアをルーズなファームウェアファイルから読み込んだ場合、インストール完了後に対応したファームウェアパッケージをインストールするまで、インストールしたシステムにコピーしたファームウェアは、自動的に更新されません。

### 6.4.3 インストールしたシステムの設定を完了する
関連するファームウェアが取得できなかった、その時点でファームウェアをインストールしないといった選択をした等、どのようにインストールが実施されたかに応じて、インストール作業中では検出されなかったファームウェアが必要になる可能性があります。いくつかのケースでは、インストールが成功したにも関わらずシステム再起動後にブランクあるいは文字化けした画面が表示される可能性があります。このような場合、以下の回避策を試みることが出来ます:

- カーネルコマンドラインにnomodeset を渡す。「fallback graphics」モードでの起動ができる可能性があります
- Ctrl-Alt-F2 の組み合わせを使って、動作しているログインプロンプトが表示される VT2 (仮想端末 2) にスイッチする

インストール後のシステムに一旦ログインできた後、見つけられていなかったファームウェアの自動検出が実施可能となります。以下の手順に従って必要な手順を実施することで自動検出を有効化できます:

1. isenkram-cli パッケージをインストールする
2. 「root」ユーザーで isenkram-autoinstall-firmware コマンドを実行する

一般的に、すべてのカーネルモジュールが正しく初期化されるのを担保するには再起動するのが最も手軽な方法です。暫定的な処置として nomodeset オプションを指定して起動していた場合に、これは特に重要な部分です。

### 注意
ファームウェアパッケージのインストールには、パッケージアーカイブの non-free セクションを有効化する必要が生じる可能性が非常に高いです。Debian GNU/Linux 11.0 では、isenkram-autoinstall-firmware コマンドの実行によって汎用的なミラーサイトを指定した専用ファイル (/etc/apt/sources.list.d/isenkram-autoinstall-firmware.list) を自動的に生成します。

### 6.5 カスタム化
シェル（項6.3.9.2参照）を使えば、インストール作業を例外的なユースケースに合わせるため、じっくりとカスタマイズできます:
6.5.1 代替 init システムのインストール
Debian は systemd をデフォルトの init システムとして利用しています。ですが、他の init システム (sysvinit や OpenRC など) もサポートされていて、別の init システムを選択するのに最も楽なタイミングはインストール作業時となります。どのようにして切り替えるかの詳細な作業内容はDebian wiki の Init のページを参照してください。
新しいDebianシステムを起動してみる

7.1 決定的瞬間

新しいシステムが初めて自力で起動することを、電気技術者は「スモークテスト」と呼びます。
デフォルトのインストールをした場合、システムを起動してまず最初にgrubブートローダのメニューをおそらく目にするはずです。メニューの一番目の選択肢は、インストールしたDebianシステムです。インストールシステムが(Windowsのような)他のオペレーティングシステムをコンピュータ上に見つけた場合、メニューのもっと下の方にリストアップされているでしょう。
たとえシステムが正常に起動しなかったとしても、パニックにならないでください。インストールが正常に終了したものなら、システムがDebianを起動するのを妨げる比較的小さな問題だけがある可能性が高いです。ほとんどの場合、そのような問題はインストールを繰り返すことなしに解決することができます。ブート時の問題を修正する一つの選択肢は、インストーラ内蔵のレスキューモード(項8.6をご覧ください)を使用することです。
もしDebianやLinuxに不馴れなら、より経験のあるユーザの手助けが必要かもしれません。直接的なオンラインヘルプとして、OFTCネットワーク上のIRCチャネル(#debianあるいは#debian-boot)を試してみてください。もしくは、debian-userメーリングリストに連絡してみてください。インストールレポートを提出することもできます。レポートには、問題についてはっきりと説明され、表示されたすべてのメッセージが含まれており、他の人が問題の原因を突き止める助けになるようにしてください。
もしインストールシステムがコンピュータ上にある他のオペレーティングシステムを見つけなかったり、誤認識するようなら、インストールレポートを提出してください。

7.2 暗号化ボリュームのマウント

インストール中に暗号化ボリュームを作成し、マウントポイントに割り当たると、そのボリュームに対して、起動中にパスフレーズを入力するように訊いてきます。
dm-cryptで暗号化したパーティションでは、起動中に以下のようなプロンプトが表示されます。

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

プロンプトの最初の行のpartは、たとえばsda2やmd0のような、基本的なパーティション名です。おそらく、ボリュームごとにパスフレーズを入力することに、違和感を覚えるのではないでしょうか。これは/homeや/varそれぞれでパスフレーズを入力させられるのでしょうか？もちろんそうです。暗号化したボリュームが一つだけなら、話は簡単で、セットアップのときに入力したパスフレーズを入力するだけです。インストール時に、暗号化ボリュームを少なくとも一つは設定しているなら、項6.3.4.6の最後のステップに書き留めたメモが役立つでしょう。以前のpart_cryptとマウントポイントの間のマッピングを記録しない場合、新しいシステムの/etc/crypttabと/etc/fstabにあります。
暗号化されたルートファイルシステムがマウントされる時は、プロンプトは少し違って見えるかもしれません。それは、システムの起動に使用されるinitrdを生成するために、どのinitramfsジェネレータが使われたかによってます。以下の例は、initramfs-toolsで生成されたinitrdの場合です。

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
```
Enter LUKS passphrase:

パスフレーズの入力時には、入力した文字（やアスタリスク）は表示されません。パスフレーズを間違えた場合、訂正するために2回まで試行できます。入力を3回間違えると、そのボリュームをスキップして、次のファイルシステムをマウントしようとします。詳細は、項7.2.1をご覧ください。

パスフレーズをすべて入力すると、通常と同様に起動を継続します。

7.2.1 トラブルシューティング

パスフレーズを間違えて、暗号化ボリュームをマウントできなかった場合、ブート後に手動でマウントする必要があります。以下の状況が考えられます。

• まずはじめの状況は、ルートパーティションに関することです。正しくマウントできないとブートプロセスが停止し、再起動しても一度行わなければならない。

• 最も考えられる状況は /home や /srv のようにデータを保持する暗号化ボリュームです。単純にブート後に手作業でマウントできます。

dm-crypt の場合は少しトリッキーです。まず device mapper を実行して、ボリュームを登録する必要があります。

# /etc/init.d/cryptdisks start

/etc/crypttab に記述されたボリュームすべてを検査し、正しいパスフレーズを入力すると、/dev ディレクトリ以下に、適切なデバイスを作成します。既に登録されたボリュームはスキップするので、何度も実行しても警告がでません。登録に成功すると、以下のよう正常な方法でマウントできます。

# mount /mount_point

• クリティカルでないシステムファイルを扱うボリューム（/usr や /var）がマウントできなかった場合、それでもシステムが起動し、前述の状況のように手動でボリュームをマウントできるでしょう。しかし、デフォルトのランレベルで通常動作しているサービスを、起動していない可能性があるので、（再）起動が必要があります。最も簡単なのはコンピュータの単純な再起動です。

7.3 ログイン

システムが起動するとすぐに、ログインプロンプトが現れます。インストールプロセス中にあなたが指定した一般ユーザのアカウント名とパスワードを入力して、ログインしてください。これで、システムは準備完了です。

初心者のユーザは、システムを使い始めながら、すでにインストールされている文書を読んでみると良いでしょう。現在はまだ文書システムが数種類存在しており、それぞれの形式の文書を統合するための作業が進められているところです。以下に出発点をいくつか示します。

インストールしたプログラムに付属する文書は、/usr/share/doc/以下のそのプログラム（より正確には、そのプログラムを含む Debian パッケージ）にちなんで命名されたサブディレクトリの下で見ることが出来ます。しかし多くの場合、より豊富な文書が、独立した文書パッケージ（ほとんどの場合、デフォルトではインストールされません）として特に用意されます。例えば、パッケージ管理ツール aptに関する文書は、apt-doc や apt-howto パッケージで見ることができます。

また、/usr/share/doc/階層構造の中には、いくつか特別なフォルダがあります。Linux HOWTOは、/usr/share/doc/HOWTO/HTML/index.html に付属の文書をインストールした後に、/usr/share/doc/HOWTO/HTML/index.html に選択できる文書のインデックスを見つけるでしょう。

テキストベースのブラウザを使用して以下のコマンドを入力することで、以下のよう文書を簡単に見られます。

$ cd /usr/share/doc/
$ w3m .

69
w3m コマンドの後のドットは、カレントディレクトリの内容を表示させるためのものです。
グラフィカルデスクトップ環境をインストールした場合には、Web ブラウザも利用できます。アプリケーションメニューから Web ブラウザを起動し、アドレスバーに /usr/share/doc/ と入力してください。

また、コマンドプロンプトから使えるほとんどのコマンドに対し、info コマンド または man コマンド によってその文書が参照できます。help と入力すると、シェルコマンドのヘルプが読めます。コマンドを --help つきで入力すると、たいていそのコマンドの簡単な使い方が表示されます。その結果が画面からスクロールして消えてしまう場合には、コマンドのあとに | more を追加すると、画面ごとに一時停止してくれます。ある文字で始まるコマンドの一覧を知りたいときは、その文字を入力してからタブを 2 回押します。
章8
次のステップとそれから

8.1 システムをシャットダウンする
稼働中のDebian GNU/Linuxシステムをシャットダウンする際には、コンピュータの前面や背面にあるリセットスイッチで再起動させたり、いきなり電源を落したりしてはいけません。Debian GNU/Linuxは適切な手順でシャットダウンすべきで、さもないとファイルを失ったりディスクにダメージもたらされたりします。デスクトップ環境を実行している場合は、通常システムのシャットダウン（または再起動）を可能にする、アプリケーションメニューから利用できる「ログアウト」用のオプションがあります。

もう一つの方法として、Ctrl-Alt-Delのキーを同時に押す方法が使えます。このキーの組合せが効かない場合、最後の選択肢として、rootでログインして必要なコマンドを打ち込んでください。システムを再起動するにはrebootと打ち込んでください。電源を入れたままでシステムを停止するにはhaltを使ってください。マシンの電源を落とすにはpoweroffまたはshutdown-hnowを使ってください。systemd initシステムでは例えばsystemctl rebootやsystemctl poweroff等、同一の機能を果たす追加のコマンドを提供しています。

8.2 Debianに慣れる
Debianは他のディストリビューションとは少し異なっています。他のディストリビューションでLinuxに精通された方でも、システムを整然とした状態に保つためには、Debianについて知っておかなくてはならないことがあります。この章ではDebianに慣れる手助けとなる資料を紹介します。Debianの使い方を逐次説明することは意図しておりません。すごく急いでいる人にシステムをざっとつかんでもらうだけのものです。

8.2.1 Debianパッケージングシステム
まず理解すべき最も重要な考え方に、Debianのパッケージングシステムがあります。基本的に、システムの大部分はパッケージングシステムの管理下にあると考えられています。このパッケージングシステムによって管理されるディレクトリには、以下のディレクトリが含まれています。

- /usr（/usr/localを除く）
- /var（/var/localを作成し、それ以下のディレクトリを自由に使うことは可能です）
- /bin
- /sbin
- /lib

例えば、/usr/bin/perl をあなたが別に用意したファイルで置き換えたとしても、その動作には問題はありません。ただし、後でperl パッケージを更新すると、あなたが置いたファイルはパッケージ化されたものではありません。ただし、後で perl パッケージを更新すると、あなたが置いたファイルはパッケージ化されたものではありません。

1 SysVinitシステムではhaltはpoweroffと同じ効果がありましたが、initシステムがsystemd（jessieからデフォルト）の場合には異なる効果があります。
8.2.2 Debianで利用できる追加ソフトウェア

Debianのデフォルトインストールでは有効にならない、公式・非公式のソフトウェアリポジトリがあります。この中には、重要で当然インストールしておくソフトウェアもたくさんあります。こういった追加リポジトリの情報は、Debian WikiのThe Software Available for Debian’s Stable Releaseページにあります。

8.2.3 アプリケーションのバージョン管理

複数のバージョンがあるアプリケーションは、update-alternativesで管理されています。同種のアプリケーションを複数保守する場合は、update-alternativesのmanページをご覧ください。

8.2.4 cronジョブ管理

システム管理者権限のもとで実行するジョブは、設定ファイルのある/etcに置いてください。毎日、每週、每月rootで実行するcronジョブがあれば、/etc/cron.{daily,weekly,monthly}に置いてください。これらは/etc/crontabから呼び出され、アルファベット順に実行されます。

一方、特定のユーザで実行する必要があるcronジョブや、特定の時間または頻度で実行する必要があるcronジョブには、/etc/crontabあるいは/etc/cron.d/whateverを使う（後者の方が望ましい）。これらのファイルにはcronジョブを実行するユーザアカウントを明記する特別なフィールドがあります。

どちらの場合も、ファイルを編集するだけでcronが自動的に実行してくれます。特別なコマンドを実行する必要はありません。詳しい情報はcron(8)、crontab(5)、/usr/share/doc/cron/README.Debianをご覧ください。

8.3 さらなる文書や情報

Debianウェブサイトには、Debianに関するたくさんの文書があります。特に、Debian GNU/Linux FAQとDebianリファレンスをご覧ください。Debianドキュメンテーションプロジェクトには、Debianドキュメンテーションに関するより多くのインデックスが用意されています。Debianのコミュニティでは、ユーザがお互いにサポートを行っています。Debianのメーリングリストを読むにはメーリングリストの購読ページをご覧ください。大事なことを言い忘れたかもしれません。DebianのメーリングリストアーカイブにはDebianに関する豊富な情報が含まれています。

もし、特定のプログラムに関する情報が必要ならば、まずはmanプログラム名やinfoプログラム名を実行してみてください。

/usr/share/docにも有用な文書がたくさんあります。特に、/usr/share/doc/HOWTOや/usr/share/doc/FAQには興味深い情報がいくつもあります。バグを報告するには/usr/share/doc/debian/bug*をご覧ください。特定のプログラムについてDebian固有の問題を読むためには/usr/share/doc/(パッケージ名)/README.Debianをご覧ください。

GNU/Linuxの情報の一般的なソースは、Linux Documentation Projectです。そこで、GNU/Linuxシステムの部分について、他の非常に価値ある情報のためのHOWTOやポインタを得られるでしょう。

LinuxはUnix実装の一つです。Linux Documentation Project (LDP)ではLinuxに関するたくさんのHOWTOやオンライン書籍を集めてています。

Unixを初めてお使いになる方は、出かけて何冊か本を買い、少し読んでみるとよいでしょう。このUnix FAQのリストには、素晴らしい歴史的な参考文献を提供するUseNetドキュメントがたくさん紹介されています。
8.4 電子メールを使用するためのシステム設定

今日では、電子メールは多くの人々にとって生活の重要な一部になっています。電子メールを使ったように設定するまでには、たくさんの選択肢があり、さらに電子メールが正確に設定されていることが重要になるDebianユーザーリソースがあります。本節では、基本的なことのみ説明します。

電子メールシステムは、三つの主要な機能で構築されています。最初に、ユーザがメールを読み書きするために実際に使用するプログラムであるMail User Agent (MUA)があります。次に、あるコンピュータから別のコンピュータまでメッセージの転送処理をするMail Transfer Agent (MTA)があります。そして最後に、ユーザの受信箱に受信メールの配信処理をするMail Delivery Agent (MDA)があります。

これら三つの機能は個別のプログラムによって実行されますが、一つあるいは二つのプログラムに組み込むこともできます。また、異なるタイプのメールのために、これらの機能を処理する異なるプログラムを使用することもできます。

LinuxやUnixシステムにおいては、muttが非常によく知られているMUAです。従来のほとんどのLinuxシステムがそうであるようにテキストベースのプログラムで、MTAとしてeximまたはsendmail、そしてMDAとしてprocmailと組み合わせてよく使用されます。

グラフィカルデスクトップシステムの人気の高まりとともに、GNOMEのevolution、KDEのkmail、あるいはMozillaのthunderbirdとして利用可能なグラフィカルな電子メールプログラムの使用がより一般的になっています。これらのプログラムは、MUA、MTAおよびMDAの機能が組み合わされていますが、従来のLinuxツールと組み合わせることもできます。

8.4.1 デフォルトの電子メール設定

グラフィカルなメールプログラムを使用するつもりでいても、Debian GNU/Linuxシステムに従来のMTA/MDAをインストールし、正確に設定するのは有用かもしれません。システムで起動している様々なユーティリティ2が、システム管理者に（潜在的な）問題や変更を通知するために、電子メールで重要な通知を送ることができるからです。

そのために、exim4とmuttをapt install exim4 muttでインストールできます。exim4は、比較的小さなプログラムですが、とても柔軟性のあるMTA/MDAの組み合わせです。デフォルトでは、システム内のローカルな電子メールの処理のみで設定され、システム管理者（rootアカウント）宛ての電子メールは、インストールの際作成した標準のユーザーアカウントに配信されます3。

システムから配信された電子メールは/var/mail/account_name中のファイルに加えられます。メールはmuttを使って読むことができます。

8.4.2 システム外の電子メールを送る

先に述べたように、インストールしたDebianシステムは、システム内のローカルな電子メールを処理するようにだけ設定され、他人にメールを送ったり、他人からメールを受け取ったりするようには設定されません。

exim4に外部の電子メールを処理させたい場合は、利用できる基本設定オプションに関して、次節を参照してください。メールが正しく送受信できることが必要です。テストして確かめることができるからです。

もしグラフィカルなメールプログラムを使ってインターネットサービスプロバイダー(ISP)あるいは会社のメールサーバを使用するつもりならば、外部の電子メールを処理するためにexim4を設定する必要は実際にはありません。電子メールを送受信するために、好みのグラフィカルなメールプログラムが正しいサーバを使用するようにただ設定するだけで（設定方法は本マニュアルでは扱いません）。

しかしその場合には、電子メールを正しく送れるように個々のユーザーリソースを設定する必要があるかもしれません。そのようなユーザーリソースの一つに、Debianパッケージに対するバグ報告の提出を容易にするプログラムであるreportbugがあります。デフォルトでは、バグ報告を提出するためにexim4が使用機能であることが期待されます。

外部のメールサーバを使用するようにreportbugを正しく設定するため、reportbug --configureコマンドを実行し、MTAが利用可能かどうかを確認するために「no」と答えてください。その後、バグ報告の提出に使用するSMTPサーバを尋ねられるでしょう。2

2例えば：cron、quota、logcheck、aide、…

3標準のユーザーアカウントへのroot宛のメールの転送は、/etc/aliasesで設定します。標準のユーザーアカウントを作成しなかった場合、もちろんメールはrootアカウントに配信されます。
8.4.3 Exim4 Mail Transport Agent の設定
システムで外部の電子メールを処理するようにしたい場合、exim4 パッケージを再設定する必要があ ります4:

```
dpkg-reconfigure exim4-config
```

(root で) 上記のコマンドを入力した後に、設定ファイルを小さなファイルに分割するかどうか質 問されます。よく分からない場合は、デフォルトオプションを選択してください。
次に、一般的な複数のメールシナリオが提示されます。あなたが必要としていることに最も近いも のを一つ選択してください。

インターネットサイト システムはネットワークに接続され、SMTP を使用して直接メールを送受信し ます。次の画面で、マシンのメール名や受信あるいは中継するメールのドメインリストなどのよ うな、いくつかの基本的な質問をされます。
スマートホストでメール送信 このシナリオでは、あなたの送信メールは、宛て先へのメッセージ送信 処理をする「スマートホスト」と呼ばれる他のマシンに転送されます。通常、スマートホストは、 あなたのコンピュータ宛てに送信された受信メールを保管するので、ずっとオンラインである必 要はありません。つまりそれは、fetchmail のようなプログラムによって、スマートホストのメ ールをダウンロードしなければならないことを意味します。
スマートホストでメール送信; ローカルメールなし このオプションは、システムがローカルの電子メールドメインを処理する場所には設定されないという点を除いては、基本的に前のものと同じで す。システム自体 (例えば、システム管理者のため) のメールは処理されます。
ローカル配信のみ システムがデフォルトで設定されるオプションです。

以上のどのシナリオもあなたの必要とするものに合っていない場合や、より精細な設定が必要な場合は、インストール完了後に `/etc/exim4ディレクトリの設定ファイルを編集する必要があ ります。exim4 に関するより多くの情報は、/usr/share/doc/exim4ディレクトリにあります— README.Debian.gz ファイルには、exim4 の設定に関するその他の情報や、補足文書がどこで見つか るかなどの説明があります。

8.5 新しいカーネルのコンパイル
新しいカーネルをコンパイルしようとする動機はなんでしょう? Debian で提供している標準カーネル はほとんどどの機能を利用できるようになっているので、あまり必要はないでしょう。
それでも独自のカーネルをコンパイルしたい場合はもちろんできます。その場合は「make deb-pkg」 ターゲットの利用をお勧めしています。詳細については Debian Linux Kernel Handbook を参照してく ださい。4もちろん、exim4 を削除し、他の MTA/MDA を使用することもできます。
8.6 起動しなくなっていったシステムの回復

時に物事は失敗し、慎重にインストールしたはずのシステムはもはや起動しません。おそらくブートローダの設定ファイルを編集しているうちに壊してしまったか、あるいはインストールした新しいカーネルでは起動しないか、こうなると宇宙線がディスクに命中して/sbin/initの中のビットがちょっと弾きとばされてしまったのかもしれません。原因のいかんを問わず、問題を修正する間に動作するようなシステムが必要になるでしょう。レスキューモードはそんな時に役立ちます。

レスキューモードにアクセスするためには、ブートメニューからrescueを選択してboot:プロンプトでrescueとタイプするか、ブートパラメータにrescue/enable=trueを指定して起動してください。インストーラの最初でこれがフルインストールではなくレスキューモードだということを知らせる注意書きがディスプレイの隅にほんの少し表示されます。心配しないでください、あなたのシステムが上書きされるわけではありません！レスキューモードは単に、システムを修復している間にディスクやネットワークデバイスなどが利用できることを確認するために、ハードウェア検出機能を利用します。

パーティション分割ツールの代わりに、システム上のパーティションリストが示され、それらのうちの一つを選択するよう尋ねられるでしょう。通常は、修復する必要のあるルートファイルシステムを含むパーティションを選択すべきです。ディスク上で直接作成されたパーティションと同様にRAIDやLVMデバイス上のパーティションも選択できます。

可能であれば、インストーラは、選択したファイルシステムにおける、必要な修復を実行するために使えるシェルプロンプトを提供するようになっています。たとえば、1番目のハードディスクのマスターブートレコードにGRUBブートローダを再インストールする必要があれば、grub-install ('hd0')と入力してください。

選択したルートファイルシステムにあるシェルを選択したが実行できない場合は、おそらくファイルシステムが壊れているので、インストーラは警告を発し、代わりにインストーラ環境でのシェルを提供することを提案します。この環境で利用できるツールは多くはありませんが、たいていの場合、システムをとにかく復旧させるには十分でしょう。選択したルートファイルシステムは、/targetディレクトリにマウントされます。

いずれの場合でも、シェルを抜いた後にシステムが再起動します。

最後に、壊れてしまったシステムを修復するのは難しいことがあります。本マニュアルが、うまくいかない事や問題を修正する方法のすべてを説明しているわけではないことに注意してください。もし問題があれば、専門家に相談してください。
Appendix A

インストール Howto

この文書は、新しい debian-installer で 64-bit PC (「amd64」) に Debian GNU/Linux bookworm をインストールする方法について説明します。これは、インストール作業の迅速なリハーサルで、たいいていの導入のために必要となるであろうすべての情報を含んでいます。もっと多くの情報が有用な場合に、この文書内の他の部分にある、より詳細な説明にリンクします。

A.1 前置き

debian-installer はまだベータ版の状態です。インストール中にバグに遭遇した場合には、それらを報告する方法の説明のために項5.4.7を参照してください。この文書で答えることができない質問があれば、debian-boot メーリングリスト (debian-boot@lists.debian.org) で直接質問するか、IRC (OFTCネットワーク上の #debian-boot) で訊ねてください。

A.2 インストーラを起動する

インストールイメージへのリンクが直ちに必要な方は、debian-installer ホームページを確認してください。debian-cdチームがdebian-installerを使用してビルトしたインストールイメージは、Debian CD/DVD ページから入手できます。どこでインストールイメージを手に入れられるかについてのより詳細に関しては、項4.1をご覧ください。

一部のインストール方法では、光学ディスク以外のイメージを必要とします。debian-installer ホームページには、他のイメージへのリンクがあります。項4.2.1は、Debianミラーサイトでイメージを探す方法について説明しています。

以下の小節では、インストール可能なそれぞれの手段のためにどのイメージを取得するべきかを詳しく説明します。

A.2.1 光学ディスク

netinst CDイメージは、debian-installerでのbookwormのインストールに使用するのに一般的なイメージです。このインストール方法はこのイメージから起動し、ネットワーク越しに追加パッケージをインストールするように意図されているので、「netinst」という名前がついています。また、インストーラを実行するために必要な、ソフトウェアコンポーネントと最小限のbookwormシステムを提供する基本パッケージが含まれています。必要なら、ネットワークを必要としない、フルサイズCD/DVDイメージを手に入れることもできます。その場合は一式の最初のイメージだけが必要です。

好みのタイプをダウンロードして、光学ディスクに焼いてください。ディスクから起動するには、項3.6.1で説明されているように、BIOS/UEFI設定を変更する必要があるかもしれません。

A.2.2 USB メモリ

取り外し可能なUSB記憶装置からもインストールできます。例えば、USBメモリは、どんな場所でも手軽にDebianをインストールできる媒体です。

USBメモリを準備する最も簡単な方法は、それに合うDebianのCD/DVDイメージのどれかをダウンロードして、直接USBメモリにそのイメージを書き込むことです。もちろん、これによって既に
USBメモリ上にあるものはすべて壊れます。これが動作するのは、DebianのCD/DVDイメージが光学ドライブからでもUSBメモリからでも起動できる「isoハイブリッド」イメージだからです。

その他にも、debian-installerで使用するためのUSBメモリを設定する、より柔軟な方法があり、もっと小さなサイズのUSBメモリで動作させられます。詳細は、項4.3をご覧ください。

USB記憶装置からの起動はUEFIシステムでは極めて一般的ですが、古いBIOSの世界ではやや異なります。いくつかのBIOSは、USB記憶装置を直接起動できますが、起動できないものもあります。BIOS/UEFIで「USB legacy support」もしくは「Legacy support」を有効にする必要があるかもしれません。USBデバイスを認識してそこから起動するために、起動デバイス選択メニューで「removable drive」または「USB-HDD」が表示されている必要があります。役立つヒントや詳細に関しては、項5.1.1をご覧ください。

A.2.3 ネットワークからの起動

debian-installerをネットから完全に起動することもできます。netbootのための様々な方法は、アーキテクチャやnetbootの設定に依存します。netboot/以下のファイルは、debian-installerをnetbootするために使用できます。

設定するのに最も容易なのは、おそらくPXEnetbootingです。netboot/pxeboot.tar.gzファイルを/srv/tftpの中か、tftpサーバのどこか適切なところに解凍してください。DHCPサーバを設定して、クライアントへファイル名pxelinux.0を渡してください。運がよければすべてがうまく動作するでしょう。詳細な説明に関しては、項4.5をご覧ください。

A.2.4 ハードディスクからの起動

リムーバブルメディアを使用せずに、単に既存のハードディスク（そこに異なるOSがあっても構いません）を使ってインストーラを起動することができます。hd-media/initrd.gz、hd-media/vmlinuzおよびDebian CD/DVDイメージをハードディスクの一番上のディレクトリにダウンロードしてください。イメージのファイル名が.isoで終わっていることを確かめてください。これはinitrdを使ったLinuxの起動時の問題です。項5.1.5では、その方法を説明しています。

A.3 インストール

インストーラが立ち上がるとすぐに、歓迎の初期画面が表示されます。起動するためにEnterを押すか、他の起動方法やパラメータのための説明を読んでください（項5.3をご覧ください）。

しばらくして、言語を選択するための質問がされます。矢印キーを使って言語を選び、継続するためにはEnterを押してください。次に、その言語が話される国々を含む選択肢が表示され、国を選択するよう質問されます。短いリスト上にはない場合は、世界中のすべての国のリストから選択できます。

キーボードレイアウトを確認するよう尋ねられるかもしれませんが、もしそれからなければ、デフォルトを選択してください。

debian-installerがハードウェアの一部を検知し、インストールイメージの残りの部分をロードする間、くつろいでいてください。

次にインストーラは、ネットワークハードウェアを検知し、DHCPによってネットワークの設定をしようとします。ネットワーク設定がないか、DHCPがない場合は、ネットワークを手動で設定する機能が与えられます。

ネットワーク設定に続き、ユーザアカウントの作成を行います。デフォルトでは、「root」（管理者）アカウントのパスワードと、一般ユーザアカウントの作成に必要な情報を尋ねます。「root」ユーザのパスワードを指定しない場合、このアカウントは無効になります。新しいシステムで管理権限が必要なタスクを行うために、後にsudoパッケージをインストールすることになります。デフォルトではそのシステムで最初に作成されたユーザに、rootになるためのsudoコマンドを使う権限が与えられます。

次のステップは、時計とタイムゾーンの設定です。インストーラは、時計が正しく設定されるのを保証するために、インターネット上のタイムサーバに接続します。タイムゾーンは、あらかじめ選択した国を元にしますが、その国で複数のゾーンがある場合のみ問い合わせられます。

ディスクのパーティションを分割しましょう。最初に、ドライブのすべてか、またはドライブの利用可能な空き領域を自動的にパーティション分割するか選択する機会が与えられます（項6.3.4.2を参照）。これは新規ユーザが急いでいる場合でもお勧めされます。自動分割をしたくない場合は、メニューから手動を選んでください。
失いたくない既存のDOSかWindowsパーティションがあるなら、パーティションの自動分割には充分に注意してください。手動分割を選択すれば、Debianをインストールする場所を作るために既存のFATあるいはNTFSパーティションをサイズ変更するようにインストーラが使えます。単にパーティションを選択して、新しいサイズを指定してください。

次の画面でパーティションテーブル（パーティションをどうフォーマットするか、それをどこにマウントするか）を見ることになります。修正や削除をするためには、パーティションを選択してください。もし自動パーティション分割を行っていれば、設定したものを使用するメニューから、パーティションングの終わりとディスクへの変更の書き込みで決定できます。スワップスペースのために少なくとも1つのパーティションを割り当てることと、それにパーティションをマウントすることを忘れないようにしてください。パーティション分割ツールの使い方に関する詳細情報は、項6.3.4をご覧ください。また、付録の付録Cにパーティション分割に関するもっと多くの情報があります。

それからdebian-installerはパーティションをフォーマットし、基本システムのインストール（時間がかかることがあります）を始めます。続いてカーネルがインストールされます。

最初にインストールした基本システムでも動作はしますが、最低限のものしかインストールされていません。もっと機能的なには、次のステップでタスクを選択し、追加パッケージをインストールしてください。なお、パッケージを選択する前に、パッケージをどこから取得してインストールするかの定義を、aptに設定する必要があります。「標準システム」タスクはデフォルトで選択され、通常は既にインストールされているはずです。インストール後にグラフィカルデスクトップが必要であれば、「デスクトップ環境」を選択してください。このステップについてのさらなる情報は、項6.3.4をご覧ください。

最後の段階はブートローダをインストールすることです。コンピュータ上に他のオペレーティングシステムを検出した場合は、インストーラがブートメニューにそれらを加えて知らせます。GRUBは、デフォルトで1つ目のドライブのUEFIパーティション/ブートレコードにインストールされ、一般にそれは良い選択です。その選択を無効にして他の場所にインストールする機会が与えられます。

次にdebian-installerは、インストールが終了したことを伝えます。CD-ROMやその他の起動メディアを取り出し、マシンを再起動するためにEnterを叩いてください。新しくインストールしたシステムが起動し、ログインできるはずです。これは第7章で説明しています。

インストール手順についてもっと多くの情報が必要ならば、第6章をご覧ください。

A.4 インストールレポートを送ってください

debian-installerで首尾よくインストールをやり遂げられたなら、レポート提出のためにしばらく時間をおかけてください。reportbugパッケージをインストールして（apt install reportbug）、項8.4.2の説明にあるようにreportbugを設定し、reportbug installation-reportsと実行するのが最も簡単な方法です。

もしインストールが完了しなかったのならば、おそらくdebian-installerのバグを発見しました。インストーラを改善するためには、私たちがそれらについて知っていることが必要ですので、バグ報告するための時間をとってください。問題を報告するためにはインストールレポートが使用できます。インストールが完全に失敗する場合は、項5.4.6をご覧ください。

A.5 そして最後に…

Debianのインストールが快適であり、Debianが役に立つことに気づいていただければと思います。第8章を読むのが良いでしょう。
Appendix B

preseed 利用したインストールの自動化

本付録は preseed の方法を説明します。これは debian-installer の質問に回答しておきインストールを自動化するものです。

本付録で使用する設定の断片は、https://d-i.debian.org/manual/example-preseed.txt のサンプル事前設定ファイルでも利用できます。

B.1 概要

preseed は、インストールの実行中に手動で回答を入力せずに、インストールプロセス中の質問の設定を設定する方法を提供します。これにより、ほとんどの方法のインストールを自動化し、さらに通常のインストールでは利用できない特徴もあります。

preseed は必須ではありません。空の preseed ファイルを使用すると、インストーラは通常の手動インストールと同じ振る舞いをします。preseed とした各質問は、(正しく与えれば!) ベースラインからと同じ方法で、インストールの内容を変更します。

B.1.1 preseed の方法

preseed を利用するには、initrd, file, network と 3 種類の方法があります。initrd preseed は、いずれのインストール方法でも動作し、より多くの preseed をサポートしますが、多くの準備が必要です。file preseed や network preseed は、それぞれインストール方法が異なる場合に使用されます。

以下の表では、各インストール方法で使用できる preseed 方法を示します。

<table>
<thead>
<tr>
<th>インストール方法</th>
<th>initrd</th>
<th>file</th>
<th>network</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>netboot</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>hd-media (USB メモリを含む)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

preseed 方法の重要な違いは、事前設定ファイルを読込・処理するポイントです。initrd preseed では、インストールの始め(最初の質問が行われる前)に読み込まれます。カーネルコマンドラインからの preseed がその直後に続きます。そのため、(可能なブートローダの場合) ブートローダの設定、またはブートローダのプート時に手作業でカーネルコマンドラインを編集することにより initrd 中での設定に上書きできます。file preseed では、インストールイメージが読み込まれた後です。network preseed では、ネットワークの設定の後でないと読み込まれません。

1 ネットワークアクセスを行う場合だけでなく、適切な preseed/url を設定する場合。
B.2. PRESEED の利用

事前設定ファイルを最初に作成し、使用する場所に配置する必要があります。事前設定ファイルの作成は本付録で後ほど扱います。network preseed の場合や、ファイルを USB メモリから読み込む場合、簡単に正しい位置に事前設定ファイルを配置できます。インストール ISO イメージにファイルを含めただければ、イメージを再度マスタリングする必要があります。initrd に含まれている事前設定ファイルを取り出す方法は、この文書では扱いません。debian-installer の開発者向け文書を当たってください。

事前設定ファイルの手本にできる事前設定ファイルのサンプルは、https://d-i.debian.org/manual/example-preseed.txt から取得できます。このファイルは、この付録にある設定の断片を元にしています。

B.2.1 事前設定ファイルの読み込み

initrd preseed を使用する場合、preseed.cfg というファイルが initrd のルートディレクトリに確実にある必要があります。インストールでは、このファイルがあるか自動的にチェックし、読み込みます。

他の preseed 方法では、起動時にどのファイルを読み込むか、インストールに指定する必要があります。通常、カーネルのブートパラメータで渡して行います。これは起動時に手動で与えるか、ブートローダ設定ファイル（例: syslinux.cfg）を編集し、カーネルへの append の最後にパラメータを追加します。

ブートローダの設定で事前設定ファイルを指定する場合、設定を変更すれば、インストールの起動時に ENTER を押す必要はありません。syslinux ではこの設定をするのに、syslinux.cfg でタイムアウトを 1 にします。

インストールが確実に正しい事前設定ファイルを取得するのに、このファイルのチェックサムを指定できます。現在、これには md5sum 値の指定が必要です。指定した値と事前設定ファイルの値が一致しなければなりません。一致しない場合は、インストールは事前設定ファイルを使用しません。

ブートパラメータの設定:
- netboot の場合:
  preseed/url=http://host/path/to/preseed.cfg
  preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
- または
  preseed/url=tftp://host/path/to/preseed.cfg
  preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
B.2. PRESEED の利用

事前設定ファイルを preseed の各段階で使用できない場合でも、preseed の値をインストーラ起動時のコマンドラインに与えることで、インストールを自動で行えます。

preseed を使用せずに設定した質問への答えを設定したい場合にも、ブートパラメータを使用します。有用な使用法のサンプルが、このマニュアルの別の場所にあります。

debian-installer 内部で使用する値をセットするには、path/to/variable=value のように本付録の例にある preseed 変数を渡すだけで、値がターゲットシステムのパッケージ設定を設定することがある場合、owner² 変数を、あらかじめ用意し、owner:variable=value で使用する必要があります。owner を指定しない場合、変数の値はターゲットシステムの debconf データベースにコピーされず、関連パッケージの設定中使用されません。

通常、この方法で答えをあらかじめ設定しておくと、質問してきません。質問のデフォルト値を指定しているのに、まだ質問してくる場合には、「=」演算子の代わりに、「?=」を使用してください。項 B.5.2 もご覧ください。

ブートプロンプトによく使用される変数には、短いエイリアスがあることに注意してください。有効なエイリアスは、本サンプル内で完全な変数名の代わりに使用しています。例えば preseed/url 変数には url というエイリアスがあります。もう一つ、tasks というエイリアスがあり、これは tasksel:tasksel/first に変換されます。

ブートオプションの「---」は特別な意味を持ちます。最後の「---」に続きカーネルパラメータがあると、(インストーラがサポートするブートローダの場合) インストール済みのブートローダの設定にコピーされます。インストーラは、(事前設定オプションのような) オプションを認識すると、自動的にフィルタをかけます。

注意
現在の Linux カーネル (2.6.9 以降) では、最大 (インストーラがデフォルトで指定するオプションを含め) コマンドラインオプションを 32 個、環境オプションを 32 個受け取れます。この数を超えると、カーネルはパニック (クラッシュ) してしまいます。以前のカーネルではこの数字がもっと少ないです。

ほとんどのインストールでは、ブートローダ設定ファイルにある (vga=normal などの) デフォルトオプションを安全に削除できるかもしれません。これにより preseed 用にもっとオプションを追加できます。

注意
ブートパラメータに空白を含んだ値を設定するのは、引用符で囲んだとしてもいつもうまくいかず、簡略化した値を設定するには、引用符を外すことも有効です。

２debconf 変数 (やテンプレート) の所有者 (owner) は、debconf タイプテンプレートに含まれるように、通常パッケージ名です。インストール状態が使用する値は、「d-i」になっています。テンプレートや変数は、複数の owner を持つ、パッケージを完全削除する際に debconf データベースから削除できるかどうかを決定するのに利用されます。
B.2.3 自動モード

ブートプロンプトでの非常に簡単なコマンドラインで、自動インストールに対して任意の複雑なカスタマイズを行うことができる組み合わせ、Debian インストーラの機能がいくつかあります。

これは起動時の選択からインストールの自動化を使うことで有効化できます。アーキテクチャや起動方法によっては auto とも呼ばれます。ここでは、auto パラメータではなく、起動時の選択でそれを選択して起動時のプロンプトに以下のパラメータを付け加えるという意味になります。起動パラメータの追加方法についての情報は、項5.1.7 をご覧ください。

これを見ることの一つ、予めブートプロンプトで使用できる例を示します。

```
auto url=autoserver
```

これは、DNS で autoserver の名前解決ができ (おそらく DHCP でローカルドメイン追加後)、そのマシンが DHCP サーバであることを前提にしています。example.com というドメインのサイトが、普通のマシンで DHCP を設定していれば、http://autoserver.example.com/d-i/bookworm//preseed.cfg から、preseed ファイルを取得することができます。

URL (d-i/bookworm//preseed.cfg) の最後の部分は、auto-install/defaultroot から取られています。デフォルトでは、将来のバージョンでコードネームを指定して移行していくので、bookworm ディレクトリが含まれています。/ は、その後の続くパスが確定するように、ルートからの相対パスを示します (preseed/include や preseed/run で使用)。これにより、完全な URL や / で始まるパス、前回 preseed が見つかった場所からの相対パスでファイルを指定できます。スクリプトの階層構造を整えずに新しい場所に移動できる (例えばウェブサーバで開始し、USB メモリにコピーする)、よりポータブルなスクリプトを構成するのに便利です。このサンプルでは、preseed ファイルの preseed/run に /scripts/late_command.sh が設定されている場合、http://autoserver.example.com/d-i/bookworm//scripts/late_command.sh からファイルを取得します。

元に DHCP や DNS のインフラがない場合や、preseed.cfg のデフォルトパスを使用したくない場合でも、きちんとした URL を使用でき、/要素を使用しない場合は、パスの開始点を決めてください (例えば URL の 3 つ目の /)。以下是、元のネットワークインフラから最低限必要な物のサンプルです。

```
auto url=http://192.168.1.2/path/to/mypreseed.file
```

この方法は次のように動作します。

- URL が見つからない場合、http だと仮定します。
- ホスト名部分にピリオドがなければ、DHCP から引き出して追加します。
- ホスト名の後に / がなければ、デフォルトパスを追加します。

```
auto url=example.com classes=class_A;class_B
```

classes にはこのサンプルでは、インストールするシステムのタイプや、地域化を指定するのに使用できます。

この概念はもちろん拡張でき、もしそうする場合、auto-install 名前空間を使用するのが妥当です。ですから、次にあなたのスクリプトで使用する auto-install/style のような物かもしれません。これが必要だと思うなら、名前空間の衝突を避けるために debian-boot@lists.debian.org メーリングリストで提案してください。おそらくパラメータのエイリアスが追加されます。

auto ブートの選択肢は、まだ全てのアーキテクチャで定義されていません。カーネルのコマンドラインに、単にパラメータを 2 つ auto=true priority=critical を追加すると、同じ効果を図られます。auto カーネルパラメータは auto-install/enable のエイリアスで、true に設定するとローカルやブートプロンプトの質問を preseed で行えるよう遅らせます。また、priority は debconf/priority のエイリアスで、critical に設定すると、優先度の低い質問を抑制するようになります。

DHCP を使用してインストールの自動化を行う際に、関連する追加オプションは以下の通りです。`interface=auto netcfg/dhcptimeout=60` これはマシンが最初の使用不可能 NIC を選択し、DHCP 問い合わせに対する返答をもっとと停極強く待つようになります。

classes にこのサンプルでは、インストールするシステムのタイプや、地域化を指定するのに使用できます。

この概念はもちろん拡張でき、もしそうする場合、auto-install 名前空間を使用するのが妥当です。ですから、次の選択肢は追加を提案することに、auto-install/style のような物かもしれません。これが必要だと思うなら、名前空間の衝突を避けるために debian-boot@lists.debian.org メーリングリストで提案してください。おそらくパラメータのエイリアスが追加されます。

auto ブートの選択肢は、まだ全てのアーキテクチャで定義されていません。カーネルのコマンドラインに、単にパラメータを 2 つ auto=true priority=critical を追加すると、同じ効果を図られます。auto カーネルパラメータは auto-install/enable のエイリアスで、true に設定するとローカルやキーボードの質問を preseed で行えるよう遅らせます。また、priority は debconf/priority のエイリアスで、critical に設定すると、優先度の低い質問を抑制するようになります。

DHCP を使用してインストールの自動化を行う際に、関連する追加オプションは以下の通りです。`interface=auto netcfg/dhcptimeout=60` これはマシンが最初の使用不可能 NIC を選択し、DHCP 問い合わせに対する返答をもっとと停極強く待つようになります。
ティップ

スクリプトやクラスのサンプルを含む、フレームワークの使用法についての大規模なサンプルが、開発者のウェブサイトにあります。そこで得られるサンプルでも、事前設定の独創的な使用を成し遂げる、たくさんのすばらしい効果があります。

B.2.4 preseedで利用できるエイリアス

以下のエイリアスは、(自動モード)preseedの際に、役に立つ場合があります。これらは単に、質問名の短いエイリアスであることに注意してください。そのうえで、常に値を指定する必要があります。例えば、auto=true や interface=eth0 のようにです。

<table>
<thead>
<tr>
<th>キー</th>
<th>エイリアス</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>debconf/priority</td>
</tr>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>file</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>modules</td>
<td>anna/choose_modules</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel:tasksel/first</td>
</tr>
<tr>
<td>desktop</td>
<td>tasksel:tasksel/desktop</td>
</tr>
<tr>
<td>dmraid</td>
<td>disk-detect/dmraid/enable</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 ブートプロンプトのpreseedの例

ここではブートプロンプトの見た目の例を示します(これを必要に応じて調整してください、項5.1.7もご覧ください)。

```bash
To set French as language and France as country:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=fr country=FR --- quiet
To set English as language and Germany as country, and use a German keyboard layout:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz language=en country=DE locale=en_US.UTF-8 keymap=de --- quiet
To install the MATE desktop:
/install.amd/vmlinuz vga=788 initrd=/install.amd/gtk/initrd.gz desktop=mate-- desktop --- quiet
To install the web-server task:
/install.amd/vmlinuz initrd=/install.amd/initrd.gz tasksel:tasksel/first=web server ---
```
B.2.6 事前設定ファイルを指定するための DHCP の利用方法

事前設定ファイルをネットワークからダウンロードするよう指定するために、DHCP でも利用できます。DHCP はファイル名の指定ができます。通常、これは netboot のファイルですが、URL 形式になっていると、network preseed をサポートするインストールメディアが、URL からファイルをダウンロードし、事前設定ファイルとして使用します。以下は、ISC DHCP サーバのバージョン 3 用 dhcpd.conf で設定するサンプルです。

```bash
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
 filename "http://host/preseed.cfg";
}
```

上記の例は、「d-i」を名乗る DHCP クライアントにこのファイル名を渡すよう制限されており、通常の DHCP クライアントではなく、インストールにのみ影響を与えることに注意してください。この文字列で、ネットワーク上の全マシンに preseed でインストールするのではなく、特定のホストに対して行うようにもできます。

DHCP preseed を使用するよい方法は、自分のネットワークには、Debian ミラーサイトのような preseed の値のみ指定することです。自分のネットワークにこの方法でインストールすると、選択したよいミラーサイトから自動で取得しますが、インストールの残りのプロセスはインタラクティブに行われます。DHCP preseed を用いた Debian の完全自動インストールは、充分注意しなければ行うべきではありません。

B.3 事前設定ファイルの作成

事前設定ファイルのフォーマットは、debconf-set-selections コマンドで使用されるものと同じです。事前設定ファイルの行の一般的なフォーマットは以下のようになります。

- 所有者 <質問名> <質問タイプ> <値>

このファイルの内容は #_preseed_V1 から始まります

事前設定ファイルを記述する際には、ちょっとした規則があると気に留めておいてください。

- 型と値の間には、空白かタブを 1 つだけおいてください。空白を追加すると、値の一部として解釈されます。空値を指定する場合は、型の後に空白かタブを、ひとつ記述したままにしてください。

- 行継続文字としてバックスラッシュ（「\」）を付けて複数行に分割できます。質問名の後で分割するのが適当でしょう。型と値の間はよくありません。値の途中で行を分割するのは、パーティション分割のレシピを除いて、サポートしていません。

- インストール自身でのみ使用する debconf 変数（テンプレート）では、所有者を「d-i」と設定しておきます。インストールしたシステムで使用する preseed 変数では、対応する debconf テンプレートを含むパッケージ名を使用するべきです。所有者が「d-i」ではない変数だけを、インストールしたシステムの debconf データベースに伝播させます。

- ほとんどの質問では、訳した値ではなく英語の値を指定する必要がありますが、(partman など) 訳した値を使用できる質問もあります。

- 質問の中には、インストール中に表示される英語のテキストの代わりに、コードを取るものがあります。

- #_preseed_V1 から始まります

- コメントは先頭にハッシュ記号（「#」）の行で、その行の最後まで続きます。

事前設定ファイルを作成する簡単な方法は、項 B.4 にあるサンプルファイルを元にして作業することです。

その他には、手動インストールを行い、再起動してから debconf-utils パッケージの debconf-get-selections を使用します。以下のように debconf データベースとインストーラの cdebconf データベースを 1 ファイルに出力してください。
### B.4 事前設定ファイルの内容 (BOOKWORM 用)

本付録で使用する設定の断片は、https://d-i.debian.org/manual/example-preseed.txt のサンプル事前設定ファイルでも利用できます。本サンプルは、Intel x86 アーキテクチャ用インストールを元にしていることに注意してください。他のアーキテクチャにインストールする場合、サンプルのいくつか（キーボードの選択やブートローダの選択など）は適切でないかもしれませんので、そのアーキテクチャ用に適切な debconf 設定で置き換える必要があるでしょう。

Debian インストーラコンポーネントの実際の動作が、どのように異なるのかといった詳細は、項6.3 にあります。

#### B.4.1 地域化

通常のインストール中、地域化について最初に質問されるため、地域化に関する質問はinitrd またはカーネルブートパラメータによる方法でのみ preseed 可能となります。自動モード（項B.2.3）ではauto-install/enable=true の設定を（通常は preseed の別名 auto 経由で）盛り込むことになります。それにより地域化の質問を聞いてくる時機が後になるため、どの方法でも preseed できるようになります。

ロケールは言語と国を両方指定でき、debian-installer がサポートする言語と認識する国のいずれかの組み合わせでもかまいません。組み合わせが正しいロケールの形になっていない場合、インストーラは選択した言語から正しいロケールを自動選択します。ブートパラメータでロケールを指定するには、locale=en_US としてください。

この方法は非常に簡単ですが、言語・国・ロケールの利用可能な組み合わせを、すべて preseed できるわけではありません。例えば、preseed で locale を en_NL とするとき、インストールしたシステムのデフォルトローカルは en_US.UTF-8 になります。例えば en_GB.UTF-8 を期待するのであれば、preseed にその値を設定する必要があります。

```bash
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

しかし、この方法で生成したファイルでは preseed されない項目があります。ほとんどのユーザはサンプルファイルから始めるのがよいでしょう。
APPENDIX B. PRESEEDを利用したインストール

B.4 事前設定ファイルの内容 (BOOKWORM 用)

# Optionally specify additional locales to be generated.
#d-i localechooser/supported-locales multiselect en_US.UTF-8, nl_NL.UTF-8

キーボード設定は、キーマップの選択と、(非ラテンキーマップ向けの)非ラテンキーマップとUSキーマップとの、切り替えキーの選択から成っています。インストール中では基本的なキーマップバリエーションしか有効ではありません。詳細なバリエーションは、インストールしたシステムでdpkg-reconfigurekeyboard-configurationを実行することでのみ有効になります。

# Keyboard selection.
# Option to specify additional locales to be generated.
d-i localechooser/supported-locale multiselect

キーボード設定をスキップするには、keymapをskip-configとpreseedしてください。これにより、カーネルのキーマップが有効になったままとなります。

B.4.2 ネットワーク設定

もちろん、ネットワークから事前設定ファイルを読み込む場合、preseedのネットワーク設定は動作しません。しかし、光学ディスクやUSBメモリから起動するときには重要です。ネットワークから事前設定ファイルを読み込む場合、ネットワーク設定パラメータは、カーネルブートパラメータで渡すことになります。

ネットワークから事前設定ファイルを読み込む前にnetbootするとき、特定のインターフェースを選ぶ必要があるなら、interface=eth1のようにブートパラメータを使用してください。

「preseed/url」でnetworkpreseedを使用する際、ネットワーク設定のpreseedは通常不可能ですが、例えば、ネットワークインテルフェースに静的アドレスを設定するといった、以下のハックを利用して動作させることができます。このハックは、以下のコマンドを含む「preseed/run」スクリプトを作成し、事前設定ファイルを読み込んだ後でネットワークの設定を強制的に再度行う、というものです。

```
kill -all-dhcp; netcfg
```

以下のdebconf変数は、ネットワークの設定と関係があります。

```
Disable network configuration entirely. This is useful for cdrom
installations on non-networked devices where the network questions,
warning and long timeouts are a nuisance.
#d-i netcfg/enable boolean false

netcfg will choose an interface that has link if possible. This makes it
skip displaying a list if there is more than one interface.
#d-i netcfg/choose_interface select auto

To pick a particular interface instead:
#d-i netcfg/choose_interface select eth1

To set a different link detection timeout (default is 3 seconds).
Values are interpreted as seconds.
#d-i netcfg/link_wait_timeout string 10

If you have a slow dhcp server and the installer times out waiting for
it, this might be useful.
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpv6_timeout string 60

Automatic network configuration is the default.
If you prefer to configure the network manually, un-comment this line and
the static network configuration below.
#d-i netcfg/disable_autoconfig boolean true

If you want the preconfiguration file to work on systems both with and
without a dhcp server, un-comment these lines and the static network
configuration below.
#d-i netcfg/dhcp_failed note
```
APPENDIX B. PRESEEDを利用したインストール… B.4. 事前設定ファイルの内容 (BOOKWORM用)

netcfg/get_netmask が preseed されていない場合、netcfg は自動的にネットマスクを決定することに注意してください。この場合、自動インストールを行うためには、この変数を seen としてマークされていないければなりません。同様に、netcfg/get_gateway が設定されていないと、netcfg は適切なアドレスを選択します。特殊な場合として、netcfg/get_gateway に「none」と設定して、ゲートウェイを使用しないようにできます。

### B.4.3 ネットワークコンソール

network-consoole に関する詳細な情報は項6.3.10 で参照してください。

### B.4.4 ミラーサイト設定

使用するインストール方法に依存しますが、インストーラの追加コンポーネントのダウンロードや、基本システムのインストール、インストールしたシステムの/etc/apt/sources.list のセットアップにミラーサイトを使用できます。
mirror/suite パラメータでは、インストールするシステム用の組を設定します。
mirror/udeb/suite パラメータでは、インストーラの追加コンポーネントの組を設定します。実際にコンポーネントをネットワークでダウンロードする場合に役立つだけです。また、インストールで使用するインストール方法のための initrd を生成するには、この組が一致していなければなりません。通常インストーラは、自動的に正しい値を設定しますので、設定する必要はありません。

# Mirror protocol:
# If you select ftp, the mirror/country string does not need to be set.
# Default value for the mirror protocol: http.
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string

# Suite to install.
#d-i mirror/suite string testing
# Suite to use for loading installer components (optional).
#d-i mirror/udeb/suite string testing

B.4.5 アカウント設定

root アカウント用のパスワードや、最初のユーザアカウントの名前・パスワードは preseed できます。パスワードには、平文か crypt(3) ハッシュのどちらかを使用できます。

警告

パスワードを知っている事前設定ファイルに誰でもアクセスできるため、preseed のパスワードは、完全に安全というわけではないことを知っておいてください。保存するパスワードをハッシュ化することで、総当たり攻撃を許す DES や MD5 のような弱いハッシュ化アルゴリズムを使わない限りは安全だと考えられます。ハッシュ化アルゴリズムとしては SHA-256 か SHA512 を勧めます。

# Skip creation of a root account (normal user account will be able to
# use sudo).
#d-i passwd/root-login boolean false
# Alternatively, to skip creation of a normal user account.
#d-i passwd/make-user boolean false

# Root password, either in clear text
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
# or encrypted using a crypt(3) hash.
#d-i passwd/root-password-crypted password [crypt(3) hash]

# To create a normal user account.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
# Normal user's password, either in clear text
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
# or encrypted using a crypt(3) hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
# Create the first user with the specified UID instead of the default.
#d-i passwd/user-uid string 1010

# The user account will be added to some standard initial groups. To
APPENDIX B. PRESEEDを利用したインストー… B.4. 事前設定ファイルの内容 (BOOKWORM用)

# override that, use this.
#d-i passwd/user-default-groups string audio cdrom video

passwd/root-password-crypted 変数や passwd/user-password-crypted 変数では、preseed で「!」という値を取れます。この場合、そのアカウントは無効となります。もちろん管理権限での実行や root ログインを許可する代替手段 (例えば SSH キー認証や sudo) を用意していてもと、root アカウントに設定すると便利です。

以下のコマンド (whois パッケージから利用できます) を、パスワードの SHA-512 ベースの crypt(3) ハッシュを生成するのに利用できます。

mkpasswd -m sha-512

B.4.6 時計と時間帯の設定

# Controls whether or not the hardware clock is set to UTC.
d-i clock-setup/utc boolean true

# You may set this to any valid setting for $TZ; see the contents of
# /usr/share/zoneinfo/ for valid values.
d-i time/zone string US/Eastern

# Controls whether to use NTP to set the clock during the install
#d-i clock-setup/ntp boolean true
# NTP server to use. The default is almost always fine here.
#d-i clock-setup/ntp-server string ntp.example.com

B.4.7 パーティション分割

ハードディスクのパーティション分割にpreseedを使用するのは、partman-autoでサポートしている機能に限定されています。パーティションはディスクに既存の空き領域とディスク全体のどちらかから選べます。ディスクレイアウトは、あらかじめ定義したレシピ、レシピファイルによるカスタムレシピ、事前設定ファイルに書いたレシピから選択できます。

RAID、LVM、暗号化を用いた高度なパーティションセットアップを、preseedではサポートしていますが、preseedを用いないインストールしたときに使用できるような、完全な柔軟性があるわけではありません。

以下の例は、レシピを使用する際の基本的な情報のみを提供しています。詳細情報は、debian-installerパッケージにある、partman-auto-recipe.txt と partman-auto-raid-recipe.txt をご覧ください。どちらのファイルも debian-installerソースリポジトリにもあります。リリースごとに、サポートする機能が変更されることがありますので、注意してください。

警告

ディスクの識別は、ドライバの読み込み順に依存します。複数のディスクがシステムにある場合、preseedを使用する前で、正しいディスクを確実に選択できるようにしなければなりません。

B.4.7.1 パーティション分割の例

# If the system has free space you can choose to only partition that space.
# This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatically_partition select biggest_free

# Alternatively, you may specify a disk to partition. If the system has only
# one disk the installer will default to using that, but otherwise the device
# name must be given in traditional, non-devfs format (so e.g. /dev/sda
# and not e.g. /dev/discs/disc0/disc).
For example, to use the first SCSI/SATA hard disk:
# d-i partman-auto/disk string /dev/sda
# In addition, you’ll need to specify the method to use.
# The currently available methods are:
# - regular: use the usual partition types for your architecture
# - lvm: use LVM to partition the disk
# - crypto: use LVM within an encrypted partition
# d-i partman-auto/method string lvm

# You can define the amount of space that will be used for the LVM volume
# group. It can either be a size with its unit (e.g. 20 GB), a percentage of
# free space or the 'max' keyword.
# d-i partman-auto-lvm/guided_size string max

# If one of the disks that are going to be automatically partitioned
# contains an old LVM configuration, the user will normally receive a
# warning. This can be preseeded away...
# d-i partman-lvm/device_remove_lvm boolean true
# The same applies to pre-existing software RAID array:
# d-i partman-md/device_remove_md boolean true
# And the same goes for the confirmation to write the lvm partitions.
# d-i partman-lvm/confirm boolean true
# d-i partman-lvm/confirm_nooverwrite boolean true

# You can choose one of the three predefined partitioning recipes:
# - atomic: all files in one partition
# - home: separate /home partition
# - multi: separate /home, /var, and /tmp partitions
# d-i partman-auto/choose_recipe select atomic

# Or provide a recipe of your own...
# If you have a way to get a recipe file into the d-i environment, you can
# just point at it.
# d-i partman-auto/expert_recipe_file string /hd-media/recipe

# If not, you can put an entire recipe into the preconfiguration file in one
# (logical) line. This example creates a small /boot partition, suitable
# swap, and uses the rest of the space for the root partition:
# d-i partman-auto/expert_recipe string
#   
#   boot-root ::
#     \    40 50 100 ext3
#     \ $primary{ } $bootable{ }  
#     \ method{ format } format{ }  
#     \ use_filesystem{ } filesystem{ ext3 }  
#     \ mountpoint{ /boot }  
#     \    
#     \ 500 10000 1000000000 ext3
#     \ method{ format } format{ }  
#     \ use_filesystem{ } filesystem{ ext3 }  
#     \ mountpoint{ / }  
#     \    
#     \ 64 512 300% linux-swap
#     \ method{ swap } format{ }  
#     
# The full recipe format is documented in the file partman-auto-recipe.txt
# included in the 'debian-installer' package or available from D-I source
# repository. This also documents how to specify settings such as file
# system labels, volume group names and which physical devices to include
# in a volume group.

## Partitioning for EFI
# If your system needs an EFI partition you could add something like
# this to the recipe above, as the first element in the recipe:
B.4.7.2 RAIDを用いたパーティション分割

ソフトウェアRAIDアレイにパーティションをセットアップすることも、preseedを使用してできます。サポートしているのは、RAID0,1,5,6,10、や縮退アレイの作成、スペアデバイスの指定です。

RAID1を使用する際には、アレイで使用する全デバイスへインストールするよう、preseedで探せます。項B.4.11をご覧ください。

警告
自動パーティション分割でのこの形式は、誤動作をしやすいです。またこの機能は、debian-installerの開発者によって、相対的にまだあまりテストを受けていません。様々な条件で正しく動作するかの責任（理解でき衝突しない限り）は、ユーザの側にあります。問題が発生したら、/var/log/syslogをチェックしてください。
B.4. 事前設定ファイルの内容 (BOOKWORM 用)

B.4.7.3 パーティションマウントの制御

通常、ファイルシステムは、汎用一意識別子 (UUID) をキーとしてマウントされます。これにより、デバイス名が変更されたとしても、適切にマウントできます。UUIDは長く読みにくいため、お好みによ り、インストーラは、伝統的なデバイス名やあなたが割り当てたラベルをベースにして、ファイルシ ステムをマウントできます。インストーラにラベルでマウントさせる場合、ラベルがないファイルシ ステムは、UUIDでマウントされます。

LVM 論理ボリュームのような不変名のデバイスは、UUIDではなく伝統的な名前で使用され続けま す。

警告

伝統的なデバイス名は、ブート時にカーネルが検出する順番によって、変わってしまう可能性があり、そのため、誤ったファイルシステムをマウントする原因になります。同様に、新しいディスクや USB ドライプを挿すと、ラベルが競合してしまいます。こうなってしまうと、起動時の挙動が不安定になってしまうのです。

# The default is to mount by UUID, but you can also choose "traditional" to
# use traditional device names, or "label" to try filesystem labels before
# falling back to UUIDs.
#d-i partman/mount_style select uuid
APPENDIX B. PRESEEDを利用したインストール… B.4. 事前設定ファイルの内容 (BOOKWORM用)

B.4.8 基本システムのインストール
インストールのこの段階で、実際にpreseedできる項目は多くありません。質問はカーネルのインストールに関するものだけです。

# Configure APT to not install recommended packages by default. Use of this
# option can result in an incomplete system and should only be used by very
# experienced users.
#d-i base-installer/install-recommends boolean false

# The kernel image (meta) package to be installed; "none" can be used if no
# kernel is to be installed.
#d-i base-installer/kernel/image string linux-image-686

B.4.9 apt設定
/etc/apt/sources.listのセットアップと基本設定オプションは、インストール方法と初期の質問への回答から、完全に自動的に行われます。さらに、他の（ローカルな）リポジトリを追加できます。

# Choose, if you want to scan additional installation media
# (default: false).
#d-i apt-setup/cdrom/set-first boolean false
# You can choose to install non-free and contrib software.
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Uncomment the following line, if you don’t want to have the sources.list
# entry for a DVD/BD installation image active in the installed system
# (entries for netinst or CD images will be disabled anyway, regardless of
# this setting).
#d-i apt-setup/disable-cdrom-entries boolean true
# Uncomment this if you don’t want to use a network mirror.
#d-i apt-setup/use_mirror boolean false
# Select which update services to use; define the mirrors to be used.
# Values shown below are the normal defaults.
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

# Additional repositories, local[0-9] available
#d-i apt-setup/local[0-9]/repository string 
 # http://local.server/debian stable main
#d-i apt-setup/local[0-9]/comment string local server
# Enable deb-src lines
#d-i apt-setup/local[0-9]/source boolean true
# URL to the public key of the local repository; you must provide a key or
# apt will complain about the unauthenticated repository and so the
# sources.list line will be left commented out.
#d-i apt-setup/local[0-9]/key string http://local.server/key
# If the provided key file ends in ".asc" the key file needs to be an
# ASCII-armoured PGP key, if it ends in ".gpg" it needs to use the
# "GPG key public keyring" format, the "keybox database" format is
# currently not supported.

# By default the installer requires that repositories be authenticated
# using a known gpg key. This setting can be used to disable that
# authentication. Warning: Insecure, not recommended.
#d-i debian-installer/allow_unauthenticated boolean true

# Uncomment this to add multiarch configuration for i386
#d-i apt-setup/multiarch string i386

93
B.4.10 パッケージ選択

有効なタスクを組み合わせてインストールするものを選ぶことができます。有効なタスクを以下に書き出します。

- standard (標準ツール)
- desktop (グラフィカルデスクトップ)
- gnome-desktop (Gnome デスクトップ)
- xfce-desktop (XFCE デスクトップ)
- kde-desktop (KDE Plasma デスクトップ)
- cinnamon-desktop (Cinnamon デスクトップ)
- mate-desktop (MATE デスクトップ)
- lxde-desktop (LXDE デスクトップ)
- web-server (webサーバ)
- ssh-server (SSHサーバ)

タスクをインストールしないこともできますし、他の方法でパッケージのセットが強制的にインストールされることもあります。standardタスクは常に含めるのをお勧めします。

あるいはtaskselのダイアログを全く表示させたくないという場合は、pkgsel/run_taskselのpreseedを設定してください(この場合、taskselではパッケージは何もインストールされません)。

タスクでインストールするパッケージに加えて、特定のパッケージをインストールする場合、pkgsel/includeパラメータを使用できます。このパラメータの値は、カーネルコマンドラインと同様に簡単に仕様できるよう、カンマか空白で区切ったパッケージのリストを取れます。

#tasksel tasksel/first multiselect standard, web-server, kde-desktop

# Or choose to not get the tasksel dialog displayed at all (and don’t install any packages):
#d-i pkgsel/run_tasksel boolean false

# Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
# Whether to upgrade packages after debootstrap.
# Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

# You can choose, if your system will report back on what software you have installed, and what software you use. The default is not to report back, # but sending reports helps the project determine what software is most popular and should be included on the first CD/DVD.
#popularity-contest popularity-contest/participate boolean false

B.4.11 ブートローダのインストール

# Grub is the boot loader (for x86).

# This is fairly safe to set, it makes grub install automatically to the UEFI
# partition/boot record if no other operating system is detected on the machine.
#d-i grub-installer/only_debian boolean true

# This one makes grub-installer install to the UEFI partition/boot record, if # it also finds some other OS, which is less safe as it might not be able to # boot that other OS.
#d-i grub-installer/with_other_os boolean true
APPENDIX B. PRESEEDを利用したインストー…  B.4. 事前設定ファイルの内容 (BOOKWORM用)

# Due notably to potential USB sticks, the location of the primary drive can
# not be determined safely in general, so this needs to be specified:
#d-i grub-installer/bootdev string /dev/sda
# To install to the primary device (assuming it is not a USB stick):
#d-i grub-installer/bootdev string default

# Alternatively, if you want to install to a location other than the UEFI
# partition/boot record, uncomment and edit these lines:
#d-i grub-installer/only_debian boolean false
#d-i grub-installer/with_other_os boolean false
#d-i grub-installer/bootdev string (hd0,1)
# To install grub to multiple disks:
#d-i grub-installer/bootdev string (hd0,1) (hd1,1) (hd2,1)

# Optional password for grub, either in clear text
#d-i grub-installer/password password r00tme
#d-i grub-installer/password-again password r00tme
# or encrypted using an MD5 hash, see grub-md5-crypt(8).
#d-i grub-installer/password-crypted password [MD5 hash]

# Use the following option to add additional boot parameters for the
# installed system (if supported by the bootloader installer).
# Note: options passed to the installer will be added automatically.
#d-i debian-installer/add-kernel-opts string nousb

grubで使用するパスワードのMD5ハッシュは、grub-md5-cryptを使用して生成するか、項B.4.5
にあるコマンドを使用して生成します。

### B.4.12 インストールの仕上げ

# During installations from serial console, the regular virtual consoles
# (VT1~VT6) are normally disabled in /etc/inittab. Uncomment the next
# line to prevent this.
#d-i finish-install/keep-consoles boolean true

# Avoid that last message about the install being complete.
#d-i finish-install/reboot_in_progress note

# This will prevent the installer from ejecting the CD during the reboot,
# which is useful in some situations.
#d-i cdrom-detect/eject boolean false

# This is how to make the installer shutdown when finished, but not
# reboot into the installed system.
#d-i debian-installer/exit/halt boolean true
# This will power off the machine instead of just halting it.
#d-i debian-installer/exit/poweroff boolean true

### B.4.13 他パッケージのpreseed

# Depending on what software you choose to install, or if things go wrong
# during the installation process, it’s possible that other questions may
# be asked. You can preseed those too, of course. To get a list of every
# possible question that could be asked during an install, do an
# installation, and then run these commands:
# debconf-get-selections --installer > file
# debconf-get-selections >> file

95
B.5 高度なオプション

B.5.1 インストール中のカスタムコマンド実行

事前設定ツールには、インストール中の一定の箇所でコマンドやスクリプトを実行するといった、とても強力で柔軟なオプションが存在します。

ターゲットシステムのファイルシステムがマウントされると /target 以下で利用できるようになります。インストール CD を利用している場合はマウント後には /cdrom 以下で利用できるようになります。

# d-i preseeding is inherently not secure. Nothing in the installer checks
# for attempts at buffer overflows or other exploits of the values of a
# preconfiguration file like this one. Only use preconfiguration files from
# trusted locations! To drive that home, and because it’s generally useful,
# here’s a way to run any shell command you’d like inside the installer,
# automatically.

# This first command is run as early as possible, just after
# preseeding is read.
#d-i preseed/early_command string anna-install some-udeb
# This command is run immediately before the partitioner starts. It may be
# useful to apply dynamic partitioner preseeding that depends on the state
# of the disks (which may not be visible when preseed/early_command runs).
#d-i partman/early_command 
  # string debconf-set partman-auto/disk "$($list-devices disk | head -n1)"
# This command is run just before the install finishes, but when there is
# still a usable /target directory. You can chroot to /target and use it
# directly, or use the apt-install and in-target commands to easily install
# packages and run commands in the target system.
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh

B.5.2 preseed を用いたデフォルト値変更

preseed を用いて、質問へのデフォルトの回答を変更できますが、この状態でも質問されるままにできます。そのためには、質問への回答を設定した後で、seen フラグを「false」に再設定してください。

d-i foo/bar string value

d-i foo/bar seen false

ブートプロンプトで preseed/interactive=true バラメータを設定し、すべての質問に対して同じ効果を及ぼすこともできます。これは事前設定ファイルのテストやデバッグにも便利です。

「d-i」という owner は、インストーラ自身が使用する変数でのみ、使用するべきであることに注意してください。ターゲットシステムにインストールされたパッケージに属する変数用には、パッケージ名を代わりに使用するべきです。項 B.2.2 の脚注をご覧ください。

ブートパラメータを利用して preseed を行う場合、質問に対して「?」演算子を使用して回答できます。例: foo/bar?=value (もしくは owner:foo/bar?=value) これはもちろん、インストール中に実際に表示される質問に対応するパラメータのみ効果を及ぼし、「内部」パラメータには効果を及ぼしません。

詳細なデバッグ情報を取得するためには、ブートパラメータ DEBCONF_DEBUG=5 を使用してください。これにより debconf が、各変数の現在の設定と各パッケージのインストールスクリプトの動作について、より詳細な情報を出力してくれます。

B.5.3 事前設定ファイルのチェーンロード

事前設定ファイルから他の事前設定ファイルを読み込みます。先に読み込まれたファイルの既存設定を、後から読み込まれた設定で上書きします。これは例えば、あるファイルに一般的なネットワークの設定を書いておき、他のファイルで具体的な設定を指定する、という使い方ができます。
# More than one file can be listed, separated by spaces; all will be loaded. The included files can have preseed/include directives of their own as well. Note that if the filenames are relative, they are taken from the same directory as the preconfiguration file that includes them.

```
#d-i preseed/include string x.cfg
```

# The installer can optionally verify checksums of preconfiguration files before using them. Currently only md5sums are supported, list the md5sums in the same order as the list of files to include.

```
#d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d
```

# More flexibly, this runs a shell command and if it outputs the names of preconfiguration files, includes those files.

```
#d-i preseed/include_command
string if ["'hostname'" = bob]; then echo bob.cfg; fi
```

# Most flexibly of all, this downloads a program and runs it. The program can use commands such as debconf-set to manipulate the debconf database. More than one script can be listed, separated by spaces. Note that if the filenames are relative, they are taken from the same directory as the preconfiguration file that runs them.

```
#d-i preseed/run string foo.sh
```

また initrd や file preseed の段階で、あらかじめ用意したファイルの preseed/url で設定した network preseed へ、チェーンロードを行うことができます。これにより、ネットワークに接続した時点で network preseed を行えます。この場合、2 種類の異なる preseed が実行されることに注意してください。例えば、preseed/early コマンドを実行する機会が 2 度あり、2 回目はネットワークに接続した時に発生するということです。
Appendix C

Debianでのパーティション分割

C.1 Debianのパーティションとそのサイズを決める

必要最小限の構成でも、GNU/Linuxは自分のために少なくとも1つのパーティションを必要とします。オペレーティングシステム全体、アプリケーション、個人ファイルは1つのパーティションに収められます。多分の人たこれはこれと別にスワップパーティションも必要だと思っているようですが、これは厳密には正しくありません。「スワップ」とはオペレーティングシステムが用いるメモリの一時退避空間で、これを用いるとシステムはディスク装置を仮想メモリとして使えるようになります。スワップを独立したパーティションに割り当てると、Linuxからの利用がずっと効率的になります。Linuxは普通のファイルを無理やりスワップとして利用することもできますが、これはお勧めできません。

とはいえ大抵の人たは、この最低限必要な数よりも多いくてのパーティションをGNU/Linuxに割り当てます。ファイルシステムをいくつかの小さなパーティションに分割する理由は2つあります。1つめは安全性です。もし偶然に何かがファイルシステムを破壊したとしても、一般的にその影響を被るのは1つのパーティションだけです。そのため、システムの一部を(注意深く保持しておいたバックアップと)置き換えるだけですみます。少なくとも、いわゆる「ルートパーティション」は別にすることを考えてましょう。ここにはシステムの最も基本的な構成部分が収められており、もし他のパーティションに破損が生じたとしても、Linuxを起動してシステムを補修できます。システムをゼロから再インストールしなければならないようなトラブルが防げます。

2つめの理由は、一般的にビジネスで使う際により重要になってくるものです。これはコンピュータの利用方法にかなり依存します。例えばスパムメールをたくさん受け取るメールサーバーは、パーティションを簡単に溢れさせてしまうかもしれません。もしメールサーバー上の独立したパーティションを/var/mailに割り当てば、スパムメールを処理してシステムの大部分は問題なく動作するでしょう。

たくさんのパーティションを利用する際には、どのパーティションが必要となるかをあらかじめ予測するのが唯一の不利になる点ですが、用意したパーティションが小さすぎると、システムを再インストールしたり、容量の足りないパーティションからちょっとったファイルを移動して、スペースを空けたりしなければならないでしょう。一方、あまりに大きなパーティションを用意すれば、他で利用できるスペースを浪費しかねません。近頃はディスクも安価になったとはいえ、お金を無駄に使う必要はないでしょう?

C.2 ディレクトリツリー

ディレクトリとファイルの名前について、Debian GNU/LinuxはFilesystem Hierarchy Standardに従っています。この規格を用いると、ユーザやプログラムは、ファイルやディレクトリの場所を予想しやすくなります。根っこ（ルート = root）にあるディレクトリは、単にスラッシュ / で表されます。ルートのレベルには、Debianシステムでは必ず以下のようなディレクトリが含まれます。

<table>
<thead>
<tr>
<th>ディレクトリ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>基本的なコマンドハイパーブリ</td>
</tr>
<tr>
<td>boot</td>
<td>ブートローダの静的ファイル</td>
</tr>
<tr>
<td>dev</td>
<td>デバイスファイル</td>
</tr>
<tr>
<td>etc</td>
<td>ホスト固有のシステム設定</td>
</tr>
<tr>
<td>home</td>
<td>ユーザのホームディレクトリ</td>
</tr>
</tbody>
</table>
### ディレクトリツリー

<table>
<thead>
<tr>
<th>ディレクトリ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>lib</td>
<td>基本的な共有ライブラリとカーネルモジュール</td>
</tr>
<tr>
<td>media</td>
<td>取替え可能なメディア用のマウントポイントを含む</td>
</tr>
<tr>
<td>mnt</td>
<td>ファイルシステムを一時的にマウントするためのポイント</td>
</tr>
<tr>
<td>proc</td>
<td>システム情報を含む仮想ディレクトリ</td>
</tr>
<tr>
<td>root</td>
<td>rootユーザのホームディレクトリ</td>
</tr>
<tr>
<td>run</td>
<td>ランタイム可変データ</td>
</tr>
<tr>
<td>sbin</td>
<td>基本的なシステムバイナリ</td>
</tr>
<tr>
<td>sys</td>
<td>システム情報を含む仮想ディレクトリ</td>
</tr>
<tr>
<td>tmp</td>
<td>一時ファイル用</td>
</tr>
<tr>
<td>usr</td>
<td>第2階層</td>
</tr>
<tr>
<td>var</td>
<td>可変データ</td>
</tr>
<tr>
<td>srv</td>
<td>システムによって割り当てられた、サービスのためのデータ</td>
</tr>
<tr>
<td>opt</td>
<td>アドオンアプリケーションソフトウェアパッケージ</td>
</tr>
</tbody>
</table>

以下の一覧は、ディレクトリやパーティションについて重要となる考え方を説明したものです。与えられたシステム構成や特別な使用パターンによって、ディスク使用状況は大きく変化することに注意して下さい。ここで提案するのは一般的なガイドラインであり、パーティション分割の第一歩を提供しています。

- ルートパーティション/は、必ず/etc、/bin、/sbin、/lib、/devを物理的に含んでいなければなりません(つまりこれらのディレクトリを別のパーティションにしてはいけません)。そうないと起動ができない。一般的には250~350MB程度を必要とします。

- /usr: 全てのユーザプログラムを含む(/usr/bin)、ライブラリ(/usr/lib)、文書(/usr/share/doc)など。これは一般に、ファイルシステムの中で最も容量を必要とするところです。少なくとも500MBのディスク容量を割り当てるべきでしょう。インストールしようとするパッケージの数やタイプによっては、もっと多くのディスク容量を割り当てなければなりません。ディスク容量がたっぷりあるワークステーションやサーバのインストールでは4~6GBを割り当てるべきです。

- 現在は/usrをrootパーティションに置くことが勧められます。そうしない場合はブート時に問題を引き起こす可能性があります。つまり、/usrを含めたルートパーティションには最低でも600~750MB、ワークステーションやサーバの場合には5~6GBのディスク容量を割り当てるべきだということです。

- /var: ニュース記事、電子メール、ウェブコンテンツ、データベース、バックグランドシステムのキャッシュなど、様々な可変データがこのディレクトリに収められます。このディレクトリの容量はシステムの利用方法に大きく左右されます。たとえば、バックグランドツールの使用分が大きい場合に影響を受けるでしょう。Debianが提供するものすべてをいつでもフルインストールする場合でも、/varには2~3GBのディスク容量を割り当てておけば十分です。一度にすべてをインストールせず、一部を徐々に(例えば、まずサービスやユーティリティを、次にコンソール用のもの、次にX用のもの…というように)インストールすると、300~500MBの空き容量があれば良いでしょう。ハードディスクの空き容量が貧しい場合は、メジャー更新を無くしていけるでしょう。

- /tmp: プログラムが作成する一時データは、普通このディレクトリを利用します。通常は40~100MBがあれば大丈夫です。たくさんのアプリケーション(アーカイブマニピュレータ、CD/DVDオーディオパッケージ、およびマルチメディアソフトウェアを含む)が、一時イメージファイルを保存するために利用される場合があるから、それに相応しい/tmpで利用できる容量を調整すべきです。

- /home: 各ユーザは、個人的なデータをこのディレクトリのサブディレクトリに収めます。その容量は、このシステムを利用するユーザの数や、ユーザディレクトリにどのようなファイルが収められているかによって異なります。システムの使い方によるが、ユーザごとに約100MBほど必要でしょう。しかしこの値は必要に応じて調整しなければなりません。もしそう


C.3 お勧めするパーティションルール

新規ユーザやDebian マシンを個人で使う人、家庭で使うシステム、その他ユーザ1人で使うようなマシンには、パーティション1つ（とスワップ）で済むのが、恐らくもっととも簡単で素直なやり方でしょう。お勧めのパーティションタイプはext4です。

マルチユーザーシステムやたくさんのディスク容量があるシステムでは、/var、/tmp、/homeをそれぞれパーティションとは別の独立したパーティションにするのが良いでしょう。

Debianのディストリビューションは含まれていないプログラムをたくさんインストールするつもりなら、/usr/localパーティションが必要になるかもしれません。またメールサーバとして利用するなら、/var/mailを別のパーティションにする必要があるかもしれません。たくさんのユーザアカウントを抱えるサーバを設置するなら、独立した大きな/homeパーティションを用意することも大抵は良い考えです。このように、利用方法に応じて、パーティションの配置状態はコンピュータによって様々です。

とても複雑なシステムのためには、Multi Disk HOWTOをご覧になるとよいでしょう。こちらには、ISPやサーバの管理者が関心を持つような事柄の多くが、詳細な情報として含まれています。

スワップスペースの問題に関しては、様々な見方があります。大雑把ながらも悪くないやり方は、搭載しているシステムメモリと同じ容量のスワップを用意することです。ただし多くの場合は512MB以下にすべきではありません。もちろんそのルールにも例外はあります。

一例として、以前の自宅用マシンを紹介しましょう。このマシンは512MBのRAMと/dev/sdaに20GB SATAのハードディスクを搭載していました。/dev/sda1には別OS用に8GBのパーティションがあり、/dev/sda3を512MBのスワップパーティションとして使用し、残りの約11.4GBの/dev/sda2をLinuxパーティションにしています。

システムのインストールが完了した後に入れることになるであろう各タスク(task)の占める領域については項D.2を調べてください。

C.4 Linuxにおけるデバイス名

Linuxにおけるディスクおよびパーティションの命名法は、他のオペレーティングシステムとは異なっています。パーティションを作成したりマウントしたりする際には、Linuxがどのようなディスク名を用いるのか知っておく必要があります。以下の基本的な命名法の仕組みです。

- 最初に見つかったハードディスクは/dev/sdaと名付けられる。
- 2番目に見つかったハードディスクは/dev/sdbと名付けられ、以下も同様。
- 第1SCSI CD-ROMは/dev/scd0および/dev/sr0と名付けられる。

各ディスクのパーティションは、ディスク名に十進数を付け加えることで表します。例えばsda1とsda2は、それぞれシステムの第1SCSIディスクリブアイがあるディスクの第1、第2パーティションを表します。

実際にありそうな例を挙げてみましょう。2つのSCSIディスクドライブがあります。/dev/scd0には、512MBのスワップパーティションがあり、/dev/sda1には別のOS用に8GBのパーティションがあります。もしsdaドライブに3つのパーティションがあるなら、それらはsda1、sda2、sda3と名付けられます。sdbディスクとそのパーティションについては同様です。

2つのSCSIホストバスアダプタ（コントローラ）があると、ドライブの順序が混乱するかもしれないので注意してください。ドライブのモデルや容量を知っているなら、ブートメッセージに注目するのが最も良い解決策でしょう。

Linuxは基本パーティションを、ドライブ名に1から4の数字をつけた名前で表します。例えば、第1ドライブの第1基本パーティションは/dev/sda1となります。論理パーティションは、5から始まる数字で表され、このドライブの第1論理パーティションは/dev/sda5になります。また、拡張パーティションは論理パーティションを含む基本パーティションのことですが、これ自体は使用できないことも覚えておいてください。
C.5 Debianのパーティション分割プログラム

いろいろな種類のパーティション分割ツールがDebian開発者によって組み込まれ、様々な形式のハードディスクやコンピューターアーキテクチャで動作するようになっています。以下に、それらのアーキテクチャで使えるプログラムのリストを示します。

partman Debian推奨のパーティション分割ツールです。このアーミーナイフは、パーティションサイズを変更したり、ファイルシステムを作成（Windowsで言うところの「フォーマット」）したり、マウントポイントを指定したりすることもできます。

fdisk 上級魔術師用の、Linuxオリジナルのディスクパーティション作成プログラムです。すでにコンピュータにFreeBSDのパーティションが存在する場合は注意が必要です。インストール用のカーネルはこのパーティションをサポートしていますが、fdiskの表示方法では名前が異なります（そもそも表示されないかもしれません）。Linux+FreeBSD HOWTOをご覧になってください。

cfdisk 一般ユーザのための、操作の容易なフルスクリーン表示ディスクパーティション作成プログラムです。
cfdiskはFreeBSDパーティションを全く理解しません。したがって、こちらでもデバイス名が変わってしまうかもしれません。

ディスクのパーティショニング（あるいは同様のもの）を選択すると、上記のプログラムの中のひとつがデフォルトで実行されます。VT2のコマンドラインから、異なるパーティション分割ツールを使うこともできるのがお勧めします。

ブートパーティションを「起動可能（Bootable）」にマークするのをお忘れなく。

C.5.1 64-bit PCでのパーティション分割

新しいハードディスクを使っている（またはあなたのディスクのパーティションテーブル全体を消したい）場合は、新しいパーティションテーブルを作成する必要があります。「ガイドによるパーティショニング」がこれを自動で行ってくれますが、手動でパーティショニングを行うときは、そのディスクの一番上の階層のエントリを選択してEnterを押してください。そのディスクに新しいパーティションテーブルを作成します。エキスパートモードでは、その後そのパーティションテーブルの種類が聞かれます。UEFIベースのシステムでは「gpt」がデフォルトですが、古いBIOSの世界でのデフォルト値は「msdos」です。標準の優先度でのインストール時はこれらのデフォルトが自動的に使われます。

注意

パーティションテーブルの種類に「gpt」を選択した場合は（UEFIシステムのデフォルト）、1 MBの空き領域がそのディスクの先頭に自動で作成されます。これは意図されたもので、GRUB2ブートローダを埋め込むのに必要です。

DOSまたはWindowsのような他の既存のオペレーティングシステムがあり、Debianをインストールする際にそのオペレーティングシステムを失わないようにしたければ、Debianをインストールするスペースを解放するためにパーティションサイズを変更する必要があるでしょう。インストーントールは、FATおよびNTFSファイルシステムの両方のサイズ変更をサポートしています。インストーラーのパーティション分割のステップになり、手動オプションを選択した場合は、単に既存のパーティションを選択し、サイズを変更してください。

最近のUEFIシステムには次に挙げるような制限はありませんが、古いPCのBIOSは、一般的に、ディスクパーティションにさらに制限をかける。1つのドライブに作成できる「基本」および「論理」パーティションの個数が制限があることもその一つです。さらに、1994年以前から1998年までのBIOSは、ドライブのどの場所を、BIOSが起動できるかについても制限があります。より詳細な情報については、Linux Partition HOWTOをご覧になっていただくとして、この節では、一般によくある状況下で役立つ概要を簡単に紹介します。

「基本」パーティションは、PCディスクで元々あったパーティションの仕組みです。しかし、その個数は4つに限りられています。このような制限を乗り越えるため、「拡張」および「論理」パーティションフラグメントが考案されました。基本パーティションの1つを拡張パーティションとして設定すると、
そのパーティションの全領域を、いくつかの論理パーティションにさらに分割することができます。1つの拡張パーティションには、論理パーティションを60個まで作成できます。ただし、1つのディスクに作成できる拡張パーティションは1つだけです。

Linuxにおけるドライブあたりのパーティション数の制限は、SCSIディスクの場合255個まで（基本パーティション3個と論理パーティション252個）、IDEディスクの場合は63個まで（基本パーティション3個と論理パーティション60個）です。ただし、通常のDebian GNU/Linuxシステムでは、パーティション用に20のデバイスしか用意していないので、20以上のパーティションを持つディスクにインストールするには、最初にそれらのパーティション用のデバイスを自分で作成する必要があります。

大きなIDEディスクを使う場合に、そのディスクがLBAアドレスやオーバーレイドライバ（ハードディスクメーカーから提供されることがあります）を使っていなければ、ブートパーティション（カーネルイメージが置かれるパーティション）はハードドライブの先頭から1024シリンダ以内に置かなければならない（BIOS変換がない場合、だいたい524メガバイトです）。

1995〜98年あたり（メーカーによって異なります）以降に製造され、「Enhanced Disk Drive Support Specification」をサポートしているBIOSには、この制限は当てはまりません。DebianのLilo代替のブートローダmbrは、カーネルをディスクからRAMに読み込む際に、いずれもBIOSを利用しなければなりません。BIOSのint 0x13 ラージディスクアクセス拡張が利用できるならそちらが利用されますか、できない場合は旧式のアクセスインターフェースが利用されます。そして後者は1023シリンダまでしかアクセスできません。なお、一度Linuxが起動してしまうと、LinuxはディスクアクセスにBIOSを利用しませんから、お使いのBIOSが何であれ、この制限を気にする必要はありません。

大きなディスクをお持ちの場合は、シリンダ変換機構を使う必要があるかもしれません。これはBIOSの設定プログラムのLBA（Logical Block Addressing）とかCHS変換モード（「Large」といった項目から設定できるでしょう。大きなディスクに関する問題についての詳細な情報については、Large Disk HOWTOをご覧ください。なお、シリンダ変換機構を使う場合は、ブートパーティションを変換後の第1024番シリンダより前に収めなければなりません。

お勧めは、起動用の小さなパーティション（25〜50MBあれば十分です）をディスクの先頭に作成し、残りの領域でお好みに合わせて他のパーティションを作成することです。このブートパーティションは、Linuxカーネルが取られる/bootディレクトリにマウントしなければなりません。この設定なら、LBAやラージディスクCHS変換を利用していたとしても、また、お使いのBIOSがラージディスクアクセス拡張をサポートしていたとしても、いずれのシステムでも問題ないでしょう。
Appendix D
雑多な事柄

D.1 Linuxのデバイス

Linuxでは、/devに特別なファイルがいえらとあります。このファイルはデバイスファイルと呼ばれ、通常のファイルと異なる振る舞いをします。デバイスファイルの一般的なものは、ブロックデバイスとキャラクタデバイスです。このファイルは、ハードウェアにアクセスする実際のドライバ（Linuxカーネルの一部）へのインターフェースです。その他、あまり一般的ではありませんが、パイプというデバイスファイルの形式もあります。以下に、最も重要なデバイスファイルを一覧します。

<table>
<thead>
<tr>
<th>名称</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>第1ハードディスク</td>
</tr>
<tr>
<td>sdb</td>
<td>第2ハードディスク</td>
</tr>
<tr>
<td>sda1</td>
<td>最初のハードディスクの最初のパーティション</td>
</tr>
<tr>
<td>sdb7</td>
<td>2番目のハードディスクの7番目のパーティション</td>
</tr>
<tr>
<td>sr0</td>
<td>第1CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>第1CD-ROM</td>
</tr>
<tr>
<td>ttyS0</td>
<td>シリアルポート0、MS-DOSではCOM1</td>
</tr>
<tr>
<td>ttyS1</td>
<td>シリアルポート1、MS-DOSではCOM2</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2マウスデバイス</td>
</tr>
<tr>
<td>gpmd</td>
<td>疑似デバイス、GPM（マウス）デーモンからのリピータデータ</td>
</tr>
<tr>
<td>cdrom</td>
<td>CD-ROMドライブへのシンボリックリンク</td>
</tr>
<tr>
<td>mouse</td>
<td>マウスデバイスファイルへのシンボリックリンク</td>
</tr>
<tr>
<td>null</td>
<td>書き込まれたものをすべて消してしまうデバイス</td>
</tr>
<tr>
<td>zero</td>
<td>無限に0を読み出せるデバイス</td>
</tr>
</tbody>
</table>

D.1.1 マウスのセットアップ

(gpmが動いている) LinuxコンソールとXウィンドウ環境の両方で、マウスを使用できます。通常、gpmやXサーバ自体をインストールするだけです。どちらも、マウスデバイスとして/dev/input/miceを使用するように設定されています。正しいマウスプロトコルは、gpmではexp2、XではExplorerPS/2とされています。それぞれの設定ファイルは/etc/gpm.confと/etc/X11/xorg.confです。

あなたのマウスが動作するには、特定のカーネルモジュールを読み込む必要はありません。ほと
APPENDIX D. 雑多な事柄

D.2 タスクに必要なディスクの空き容量

AMD64 アーキテクチャの全標準パッケージを含む標準インストールで、デフォルトのカーネルを用いると、971MB以上のディスク領域を必要とします。「標準システム」タスクを選択しない最小の基本インストールでは、769MB必要でしょう。

<table>
<thead>
<tr>
<th>タスク</th>
<th>インストールサイズ (MB)</th>
<th>ダウンロードサイズ (MB)</th>
<th>インストールに必要な空き容量 (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>デスクトップ環境</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GNOME (デフォルト)</td>
<td>2790</td>
<td>786</td>
<td>3576</td>
</tr>
<tr>
<td>• KDE Plasma</td>
<td>4122</td>
<td>1212</td>
<td>5334</td>
</tr>
<tr>
<td>• Xfce</td>
<td>2187</td>
<td>621</td>
<td>2808</td>
</tr>
<tr>
<td>• LXDE</td>
<td>2271</td>
<td>653</td>
<td>2924</td>
</tr>
<tr>
<td>• MATE</td>
<td>2574</td>
<td>711</td>
<td>3285</td>
</tr>
<tr>
<td>• Cinnamon</td>
<td>4197</td>
<td>1251</td>
<td>5448</td>
</tr>
<tr>
<td>ウェブサーバ</td>
<td>44</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>SSH サーバ</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

重要な項目

どちらの場合も、インストールが完了し一時ファイルを削除した後の、実際のディスク領域です。ジャーナルファイルのような、ファイルシステムのオーバーヘッドで消費される量は含まれていません。これは、インストールの最中や通常のシステム利用では、もっと大量にディスク領域が必要だということです。

以下は、tasksel で表示されるタスクについて、aptitude が報告したサイズです。いくつかのタスクでは、内容が一部重複していることに注意してください。つまり、2 つのタスクを一緒にインストールした後のインストールサイズは、挙げてある数値を合計したものよりも、小さくなるということです。

デフォルトでは、インストールは GNOME デスクトップ環境をインストールしますが、特殊なインストールイメージを使用したり、インストール中に希望のデスクトップ環境を指定して、その他のデスクトップ環境を選択できます (項 6.3.6.2 参照)。

パーティションのサイズを決定するととき、標準インストールのサイズに加え、以下の表に列挙したサイズが必要であるのに注意してください。「Installed size」はインストール完了時に /usr と /lib に必要なサイズを、「Download size」は /var に（一時的に）必要なサイズを記述しています。

1 シリアルマウスには、通常 9 番の D 型コネクタが、バスマウスには、8 番ビン円形コネクタが付いており、PS/2 マウスの 6 番ビン円形コネクタや、ADB マウスの 4 番ビン円形コネクタと混同することはないでしょう。
英語以外の言語でインストールする場合、その言語が有効なら tasksel は地域化タスクを、自動的にインストールします。必要な容量は言語によって異なりますが、ダウンロードとインストールで最大 350MB 必要となります。

D.3 Unix/Linux システムからのDebian GNU/Linux のインストール

この節は、マニュアルの他の部分で説明されているメニュードリブンインストーラを使用せずに、既存の Unix・Linux システムから Debian GNU/Linux をインストールする方法について説明します。この「クロスインストール」HOWTO は、Red Hat, Mandriva, SUSE から Debian GNU/Linux に移行するユーザの要望で書かれました。本節では、*nix コマンドの入力について熟知し、ファイルシステムを操作できるのが前提となっています。本節では、# が Debian chroot に入力されたコマンドを示し、$ はユーザの現在のシステムに入力されるコマンドを表します。

一旦、新しい Debian システムを好みに設定したら、既存のユーザデータを(あるなら)稼働したまま移行できます。したがって、これは「ダウンタイム無し」での Debian GNU/Linux インストールになります。またこれは、様々な起動・インストールメディアと相性のよくないハードウェアに対処するうまい方法です。

注意

これはほとんど手作業になりますから、自分でシステムの大部分の基本設定を行う必要があります。それには通常のインストールよりも Debian や Linux の一般的な知識が必要なことを覚えておいてください。また、この手順で通常のインストールと全く同じシステムになると期待してはいけません。これはシステムをセットアップする基本的な手順でしかありません。追加インストールや追加設定が必要になるかもしれません。

D.3.1 はじめに

今の*nix のパーティション分割ツールで、スワップと最低 1 つファイルシステムを作成するよう、ハードディスクを希望に添って再分割してください。コンソールのみのインストールには、最低 769MB の空き領域が必要です。X をインストールする予定なら 2271MB (GNOME や KDE Plasma のようなデスクトップ環境をインストールする場合はもっと) 必要です。

次に、パーティションにファイルシステムを作成してください。例えば、/dev/sda6 パーティションに、ext3 ファイルシステムを作成するには、以下のようにします。(今回の例ではこのパーティションを root パーティションとして)

```bash
mke2fs -j /dev/sda6
```

ext3 ではなく ext2 ファイルシステムを作成するには、-j を取ってください。

スワップを以下のように初期化して有効にしてください。 (パーティション番号は、Debian スワップパーティションにするパーティション番号に、読み替えてください)

```bash
mkswap /dev/sda5
sync
swapon /dev/sda5
```

パーティションを /mnt/debinst (インストールポイント。新システムの root (/) ファイルシステムになります) にマウントしてください。厳密にいうとマウントポイント名は何でも構いません。以下記の説明ではこれを使用します。

```bash
mkdir /mnt/debinst
mount /dev/sda6 /mnt/debinst
```
注意
分割したパーティションをファイルシステムの一部（例 /usr）にマウントする場合、次のステージに進む前に、手動でそのディレクトリを作成・マウントする必要があります。

D.3.2 debootstrap のインストール
Debian インストーラが使用するユーティリティで、Debian 基本システムをインストールする公式の方法と認められているのが debootstrap です。wget と ar を使用しますが、/bin/sh と基本的な Unix/Linux ツールにのみ依存しています。今のシステムにまだインストールしていなければ、wget と ar をインストールし、その後 debootstrap をダウンロード・インストールしてください。
また、手動でインストールするには、以下の手順になります。まず deb を展開するために作業フォルダを次のように作ってください。

```bash
mkdir work
cd work
```
debootstrap バイナリは、Debian アーカイブ（あなたのアーキテクチャに適合するファイルを必ず選ぶこと）にあります。pool から debootstrap.deb をダウンロードして、作業フォルダにパッケージをコピーし、ファイルを展開してください。ファイルをインストールする際には root 権限を持つ必要があるでしょう。

```bash
ar -x debootstrap_0.X.X_all.deb
cd /
zcat /full-path-to-work/work/data.tar.gz | tar xv
```

D.3.3 debootstrap の実行
debootstrap を実行すると、アーカイブから必要なファイルを直接ダウンロードできます。以下のコマンドの例では、http.us.debian.org/debian としていますが、ネットワーク的に近い Debian アーカイブミラーサイトで代用できます。ミラーサイトは、http://www.debian.org/mirror/list に一覧があります。
bookworm Debian GNU/Linux インストールイメージを持っていて、/cdrom にマウントしていれば、http URL に代えて file URL (file:/cdrom/debian/) を使用することができます。
debootstrap コマンドの ARCH は、amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x のどれかと置き換えるか。

```bash
/usr/sbin/debootstrap --arch ARCH bookworm
 /mnt/debinst http://ftp.us.debian.org/debian
```
のようにします。所用のアーキテクチャがホストとは異なる場合には --foreign オプションを追加します。

D.3.4 基本システムの設定
さあ、これでディスクに真の Debian システムを（いくぶん中がスカスカですが）手に入れました。そこに chroot してください。

```bash
LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```
所用のアーキテクチャがホストとは異なる場合には、qemu-user-static を新しいホストにコピーする必要があります。

```bash
cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

---

このページには、sed, grep, tar, gzip といった、GNU コアユーティリティが含まれます。
chroot した後で Debian 基本システムと互換のある端末定義を設定する必要があるかもしれません。例えば

```bash
export TERM=xterm-color
```

どのようにします。TERM の値により、その値をサポートするのに ncurses-term パッケージをインストールする必要があるかもしれません。

所用のアーキテクチャがホストとは異なる場合には複数段階の前処理を終えておく必要があるかもしれません。

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 デバイスファイルの作成

この時点で、/dev/には、非常に基本的なデバイスファイルがあるだけです。おそらくインストールの次のステップで、追加デバイスファイルが必要になります。インストールに使用するホストシステムがモジュール化カーネルを使用するかどうかや、新しいシステムで動的デバイスファイル（例: udev を使用）と静的デバイスファイルのどちらを使用するかにより、どの方法で行うかが異なります。

以下の様々な選択肢があります。

- makedev パッケージをインストールし、次のようにして（chroot してから）、デフォルトの静的デバイスファイル群を作成してください。

  ```bash
 # apt install makedev
 # mount none /proc -t proc
 # cd /dev
 # MAKENDEV generic
  ```

- MAKEDEV を使用して、指定したデバイスファイルのみを手で作成します。

- ホストシステムの /dev をターゲットシステムの /dev の先頭にマウントします。いくつかのパッケージの postinst スクリプトでは、デバイスファイルを作成しようとするのに注意してください。そのため、この選択肢は注意深く使用するべきです。

D.3.4.2 パーティションのマウント

/etc/fstab を作る必要があります。

```bash
editor /etc/fstab
```

以下のサンプルを自分に合うように編集できます。

```
/etc/fstab: static file system information.
#
file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
/dev/XXX /boot ext3 ro,nosuid,nodev 0 2
/dev/XXX /proc none swap sw 0 0
/proc /proc proc defaults 0 0
/dev/cdrom /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX /tmp ext3 rw,nosuid,nodev 0 2
/dev/XXX /var ext3 rw,nosuid,nodev 0 2
/dev/XXX /usr ext3 rw,nodev 0 2
/dev/XXX /home ext3 rw,nosuid,nodev 0 2
```

/etc/fstab で指定したファイルシステムを、すべてマウントするには mount -a としてください。また、ファイルシステムを別々にマウントするには、以下のようにしてください。

```bash
mount /path # e.g.: mount /usr
```
現在Debianシステムでは、リムーバブルメディアのマウントポイントを/mediaにしていますが、/にシンボリックリンクを置き互換性を保っています。以下の例のように、必要であれば作成してください。

```bash
cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom
```

procファイルシステムは、どこでも何度もマウントすることができますが、慣習的に/procにマウントします。mount -aを使用しなかった場合は、以下のように先に進む前に必ずprocをマウントしてください。

```bash
mount -t proc proc /proc
```

ls/procコマンドは、今度は空のディレクトリにはならないはずです。これが失敗するようなら、以下のようにchrootの外側からprocをマウントできるかもしれません。

```bash
mount -t proc proc /mnt/debinst/proc
```

### D.3.4.3 タイムゾーンの設定

/etc/adjtimeファイルの3行目に、「UTC」か「LOCAL」を設定し、システムがハードウェアの時計をUTCとして解釈するか、それぞれの現地時間として解釈するかを決定します。以下のコマンドで、上記の選択とタイムゾーンの選択を行えます。

```bash
editor /etc/adjtime
```

以下に例を示します。

```bash
0.0 0 0.0
0
UTC
```

以下のコマンドでタイムゾーンの選択ができます。

```bash
dpkg-reconfigure tzdata
```

### D.3.4.4 ネットワークの設定

ネットワークの設定をするには、/etc/network/interfaces,/etc/resolv.conf,/etc/hostnameand/etc/hostsを編集してください。

```bash
editor /etc/network/interfaces
```

次は、/usr/share/doc/ifupdown/examplesのシンプルな例です。

```bash
loopback インターフェイスは絶対に必要では無くになっていますが、必要になった時に使えます
auto lo
iface lo inet loopback

dhcp を使う:
#
auto eth0
iface eth0 inet dhcp

静的 IP 設定の例：(network, broadcast, gateway はオプション)
```

---

108
APPENDIX D. 雑多な事柄

D.3. UNIX/LINUX システムからの DEBIAN...

# auto eth0
# iface eth0 inet static
# address 192.168.0.42
# network 192.168.0.0
# netmask 255.255.255.0
# broadcast 192.168.0.255
# gateway 192.168.0.1

/etc/resolv.conf に、ネームサーバと search ディレクティブを入力してください。

# editor /etc/resolv.conf

以下は、/etc/resolv.conf の簡単な例です。

search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100

システムのホスト名 (2 から 63 文字) を入力してください。

# echo DebianHostName > /etc/hostname

また、IPv6 をサポートした基本的な /etc/hosts は以下のようにします。

127.0.0.1 localhost
127.0.1.1 DebianHostName

# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-locallnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

複数のネットワークカードを持っているなら、/etc/modules ファイルに希望の順番で、ドライバモジュールの名前を配置してください。その後起動中に、各カードは期待通りにインターフェース名（eth0, eth1 など）と結びつけられます。

D.3.4.5 apt の設定

debootstrap は、追加パッケージをインストールする、非常に基本的な /etc/apt/sources.list を作成します。しかし、他のパッケージ取得先を追加したくなると思います。以下の例はソースパッケージとセキュリティ更新を追加しています。

deb-src http://ftp.us.debian.org/debian bookworm main
deb http://security.debian.org/ bookworm-security main
deb-src http://security.debian.org/ bookworm-security main

sources list を更新したら、apt update を必ず実行してください。

D.3.4.6 ロケールとキーボードの設定

英語以外の言語を使用するようロケールの設定をするために、ロケールをサポートするパッケージ (locales) をインストール・設定してください。現在は UTF-8 ロケールを使用するのでお勧めします。

# apt install locales
# dpkg-reconfigure locales

（必要なら）以下のようにキーボードの設定を行ってください。

# apt install console-setup
# dpkg-reconfigure keyboard-configuration

chroot 内では、キーボードを設定できませんが、再起動後に有効になることに注意してください。
APPENDIX D. 雑多な事柄

D.3. UNIX/LINUX システムからの DEBIAN...

D.3.5 カーネルのインストール
このシステムを起動できるようにするなら、おそらく Linux カーネルとブートローダが必要でしょう。以下のようにして、パッケージ化済みカーネルを確認してください。

# apt search linux-image

その後、パッケージ名を指定して、選択したカーネルパッケージをインストールしてください。

# apt install linux-image-arch-etc

D.3.6 ブートローダのセットアップ
Debian GNU/Linux システムを起動できるようにするために、インストールしたカーネルを新しい root パーティションから読み込むように、ブートローダをセットアップしてください。debootstrap は、ブートローダをインストールしないことに注意してください。って言っても、セットアップするのに Debian chroot 内部の apt を使用できます。

ブートローダのセットアップについての説明は、info grub をチェックしてください。Debian をインストールするのに使用したシステムを保持する場合、既存の grub2 の grub.cfg か、Debian インストールへのエントリを単に加えてください。

grub2 のインストールと設定は以下のように簡単にです。

# apt install grub-pc
# grub-install /dev/sda
# update-grub

2つ目のコマンドで、grub2 を (この場合は sda の MBR に) インストールします。最後のコマンドで、正しく動作する /boot/grub/grub.cfg を作成します。

/dev/sda デバイスファイルは、作成済みだと仮定していることに注意してください。grub2 のインストールには別の方法もありますが、それはこの付録では扱いません。

D.3.7 リモートアクセス: SSH のインストールとアクセス方法の設定
コンソール経由でシステムにログインできる場合はこの節を飛ばせます。後でネットワーク経由でシステムにアクセスできるようにする必要がある場合は SSH をインストールしてアクセス方法を用意する必要があります。

# apt install ssh

パスワードによる root のログインはデフォルトで無効になっているため、パスワードを設定してパスワードによる root のログインを有効にしてアクセス方法を用意します。

# passwd
# editor /etc/ssh/sshd_config

有効にするオプション:

PermitRootLogin yes

root アカウントに SSH の鍵を追加してアクセス方法を用意することもできます:

# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF

最後に、root ユーザを追加してパスワードを設定してアクセス方法を用意することもできます:

# adduser joe
# passwd joe
D.3.8 仕上げに
すでに述べたように、インストールしたシステムは非常に基本的なものがなります。もっと成熟したシステムにしたいければ、優先度が「standard」のパッケージを、すべてインストールする簡単な方法があります。以下のようにしてください。

```bash
tasksel install standard
```
もちろんaptで、個々のパッケージをインストールすることもできます。

インストールが終わると、ダウンロードしたパッケージが/var/cache/apt/archives/に大量に残っています。以下のようにして、ディスク領域を解放できます。

```bash
apt clean
```

D.4 パラレルライン IP (PLIP) によるDebian GNU/Linuxのインストール

本節では、イーサネットカードがなくても、リモートゲートウェイコンピュータにヌルモデムケーブル（ヌルプリントケーブルとも呼ばれます）で接続してDebian GNU/Linuxをコンピュータにインストールする方法を説明します。ゲートウェイコンピュータは、Debian ミラーがあるネットワーク（例：インターネット）に接続していないければなりません。

この付録の例では、ダイアルアップ接続（ppp0）でインターネットに接続したゲートウェイを用いて、PLIP接続を設定します。targetシステムとsourceシステムそれぞれのPLIPインターフェースに対して、192.168.0.1と192.168.0.2のIPアドレスを使用します。（このアドレスは、あなたのネットワークアドレス空間で使われてはいけません）

PLIP接続をインストール中に設定しておくと、インストールしたシステムを再起動したときに有効になります。（第7章をご覧ください）

始める前に、sourceシステム、targetシステムの双方で、パラレルポートのBIOS設定（IOベースアドレスとIRQ）をチェックする必要があります。よく使用される共通の値は、io=0x378, irq=7です。

D.4.1 必要な物

- Debianをインストールする対象コンピュータ。（targetと呼びます）
- システムをインストールするメディア。項2.4をご覧ください。
- ゲートウェイとして機能する、インターネットに繋がっている別のコンピュータ。（sourceと呼びます）
- DB-25ヌルモデムケーブル。このケーブルの詳細や自分で作成する方法については、PLIP-Install-HOWTOをご覧ください。

D.4.2 sourceのセットアップ

以下のシェルスクリプトは、sourceコンピュータをインターネットへのゲートウェイ（ppp0利用）に設定する簡単なサンプルです。

```bash
#!/bin/sh

We remove running modules from kernel to avoid conflicts and to reconfigure them manually.
(カーネルから競合するモジュールを取り除き、手動で再設定します)
modprobe -r lp parport_pc
modprobe parport_pc io=0x378 irq=7
modprobe plip

Configure the plip interface (plip0 for me, see dmesg | grep plip)
(plip インターフェースの設定（私の環境では plip0。dmesg | grep plip 参照）)
ifconfig plip0 192.168.0.2 pointopoint 192.168.0.1 netmask 255.255.255.255 up
```
D.4.3 target のインストール
インストールメディアで起動してください。インストールするには、エキスパートモードで動作する必要がありません。ブートプロンプトで expert と入力してください。カーネルモジュールにパラメータをセットする必要がある場合は、ブートプロンプトにさらに設定しなければなりません。例えばインストーラ起動時に、parport_pc モジュールに「io」オプションと「irq」オプションを渡す場合、以下のようにブートプロンプトに入力します。

```
expert parport_pc.io=0x378 parport_pc.irq=7
```

以下の、インストール中の各段階で与える値です。

1. インストーラーコンポーネントをインストールメディアからロード
   一覧から plip-modules オプションを選択してください。これにより、インストールするシステムで PLIP ドライバが使用可能になります。

2. ネットワークハードウェアの検出
   - target にネットワークカードがある場合、ドライバモジュール一覧に検出したカードが表示されます。debian-installer で plip を使用するよう強制するには、一覧にあるドライバモジュールの選択をすべてはずさなくてはなりません。言うまでもありませんが、target にネットワークカードがなければ、このリストには何も現れません。
   - ネットワークカードの検出・選択が行われないと、インストーラは、ネットワークドライバモジュールを一覧から選択するようにうながします。plip モジュールを選択してください。

3. ネットワークの設定
   - 「DHCP でネットワークを自動的に設定していますか」には「いいえ」と答えます。
   - 「IP アドレス」は 192.168.0.1 とします。
   - 「Point-to-Point アドレス」は 192.168.0.2 とします。
   - 「ネームサーバアドレス」には、source で使用しているのと同じアドレスを指定します。（/etc/resolv.conf をご覧ください）

D.5 PPP over Ethernet (PPPoE) を用いた Debian GNU/Linux のインストール
いくつかの国でインターネットサービスプロバイダに接続するのに、ブロードバンド接続（ADSL やケーブル TV）の一般的なプロトコルは、PPP over Ethernet (PPPoE) です。インストーラでは、PPPoE を用いたネットワーク接続のセットアップをサポートしていませんが、非常に簡単に設定できます。この節ではその方法を説明します。

また、インストール中に PPPoE 接続をセットアップすると、インストールしたシステムを再起動した後でも有効になります（第7章参照）。
インストール中に PPPoE をセットアップし使用するには、CD-ROM/DVD イメージを使用する必要があります。その他のインストール方法（例: netboot）では、サポートしていません。
PPPoE でのインストールは、他のインストール方法とほとんど同じです。以下で説明するステップが異なるだけです。

- ブートパラメータに modules=ppp-udeb3 を指定してインストーラを起動してください。これにより、PPPoE のセットアップに使用するコンポーネント (ppp-udeb) を確実に読み込み、自動的に起動します。

3 ブートパラメータの追加方法は項 5.1.7 をご覧ください。
D.5. PPP OVER ETHERNET (PPPOE) を用いたインストール

・ 通常のインストール初期化手順（言語、国、キーボードの選択、追加インストーラーコンポーネントの読み込み）を行います。

・ 次のステップでは、システムにあるイーサネットカードを特定するのに、ネットワークハードウェアを検出します。

・ この後、実際のPPPoEのセットアップが始まります。インストーラーは、PPPoEコンセントレータ（PPPoE接続を扱う一種のサーバ）を見つけ、検出したすべてのイーサネットインタフェースを調べます。

最初の試行では、コンセントレータが見つからない可能性があります。これはネットワークが遅い・負荷が高い場合や、サーバ側のエラーで起こる可能性があります。ほとんどの場合、2回目の試行でコンセントレータの検出に成功します。再試行するには、インストーラのメニューにあるConfigure and start a PPPoE connectionを選択してください。

・ コンセントレータを検出した後、ログイン情報（PPPoEのユーザ名とパスワード）を入力してください。

・ インストーラーは、先ほど入力した情報を用いてPPPoE接続を確立します。正しい情報を入力していればPPPoE接続の設定を行い、インストーラーはその接続を用いてインターネットに接続し、（必要なら）パッケージを取得できます。ログイン情報が正しくない場合や、何かエラーが発生した場合、インストーラーは停止しますが、メニューのConfigure and start a PPPoE connectionを選択して、設定を再度行えます。

ppp-udebコンポーネントは、このステップの追加コンポーネントの一つとして読み込まれます。優先度を「中」「低」でインストールする場合（エキスパートモード）、ブートプロンプトの「modules」パラメータに入力する代わりに、ppp-udebを選択することもできます。
Appendix E

付記

E.1 この文書について

本マニュアルは、初期のDebianインストールマニュアルを元にした、boot-floppies用のwoodyインストールマニュアルを元に、sarge用debian-installerのために書かれました。また、2003年GPLでリリースした、Progenyディストリビューションマニュアルも元にしています。

この文書はDocBook XMLを用いて書かれています。出力形式は、docbook-xmパッケージやdocbook-xslパッケージの情報を使って、様々なプログラムで生成されます。

この文書では、そのメンテナンス性を高めるために、実体やプロファイル属性など数々のXMLの特徴を利用しています。これらは、プログラミング言語の変数や条件に似た機能を果たします。このXMLソースには、異なる各アーキテクチャの情報が含まれていますが、各アーキテクチャ固有の文章のまとまりを分離するために、プロファイル属性が使われています。


E.2 この文書への貢献

この文書に関する問題や提案がある場合には、それらをinstallation-guideパッケージに対するバグ報告として提出してください。その方法についてはreportbugパッケージやDebianバグ追跡システムのオンラインドキュメントをご覧ください。なお同じ問題が報告済みかどうかを調べるためには、installation-guideパッケージに関するバグ報告を確認するとよいでしょう。もし同じ問題が報告済みならば、XXX@bugs.debian.org宛に、確認のための追加情報や有益な情報を提供することができます。XXXには、報告済みのバグに付けられた番号を当てはめてください。

もちろんこの文書のDocBookソースを入手し、それに対するパッチを作成していただけるともっと助かります。DocBookソースはsalsa上のinstallation-guideprojectにあります。DocBookに慣れていなくても心配しないでください。あなたが始められるよう、マニュアルディレクトリに簡単なチートシートがあります。htmlに似ていますが、表示方法ではなく、テキストの意味の方を重視しています。パッチはdebian-bootメーリングリスト(以下を参照)に提出してください。gitでソースを取り出す方法については、ソースのルートディレクトリのREADMEをご覧ください。

どうか、この文書の著者に直接連絡をとるようなことはしないでください。このマニュアルの話題も含め、debian-installerに関する議論を行うメーリングリストがあります。その宛先はdebian-boot@lists.debian.orgです。またDebianメーリングリスト購読ページには、このメーリングリストの購読に関する説明があります。またDebianメーリングリストアーカイブでは、その写しをオンラインで読むこともできます。

E.3 多大な貢献

もともとこの文書はBrucePerens,SvenRudolph,IgorGrobman,JamesTreacy,AdamDiCarloが書きました。SebastianLeyがインストールHowtoを書きました。
Miroslav Kuře には、Sarge の debian-installer の新機能について、たくさん記述していただきました。Frans Pop は、Etch, Lenny, Squeeze の主任編集者で、かつリリースマネージャでした。
非常に多くの Debian ユーザや開発者がこの文書に貢献しています。特に、さまざまな文書を編集、著述している Michael Schmitz (m68k のサポート), Frank Neumann (Amiga install manual の原著者), Arto Astala, Eric Delaunay/Ben Collins (SPARC に関する情報), Tapio Lehtonen, Stéphane Bortzmeyer には多大なご協力をいただきました。また、Pascal Le Bail には USB メモリから起動する方法について、有益な情報をいただいたことに感謝いたします。
Jim Mintha によるネットワークブートに関する HOWTO (利用可能な URL が不明) や、Debian FAQ、Linux/m68k FAQ、SPARC プロセッサ向け Linux FAQ、Linux/Alpha FAQ やその他の文書には、極めて有用な文章や情報があります。これらの自由に利用できる素晴らしい情報源をメンテナンスされている方々は、高く評価されるべきでしょう。
本マニュアルの chroot してのインストールに関する節(項D.3) は、Karsten M. 自身が著作権を持つドキュメントの一部が元になっています。
本マニュアルの plip 越しのインストールに関する節(項D.4) は、Gilles Lamiral の PLIP-Install-HOWTO を基にしています。

E.4 商標表示

すべての商標には、それぞれに所有者がいます。
Appendix F

GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

F.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—such as LibreOffice—without making anyone else lose those freedoms.

This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

F.2 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".) Each licensee
is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not bring
the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and
2 above on a medium customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and \( \text{any later version} \), you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL AND COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

F.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the `Copyright` line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with absolutely no warranty; for details type show w. This is free software, and you are welcome to redistribute it under certain conditions; type show c
for details.

The hypothetical commands \texttt{show w} and \texttt{show c} should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than \texttt{show}
\texttt{w} and \texttt{show c}; they could even be mouse-clicks or menu items — whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign
a \texttt{copyright disclaimer} for the program, if necessary. Here is a sample; alter the names:

\begin{quote}
Yoyodyne, Inc., hereby disclaims all copyright interest in the
program Gnomovision (which makes passes at compilers) written
by James Hacker.
\end{quote}

\begin{quote}
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
\end{quote}

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License
instead of this License.