Debian GNU/Linux インストールガイド

December 26, 2021
本マニュアルはフリーソフトウェアです。GNU 一般公有使用許諾にそって、配布・改変する事ができ
ます。付録 F のライセンスを参照してください。
このマニュアルのビルドバージョン: 20210805.
Contents

1 ようこそDebianへ 1
 1.1 Debianとは？ 1
 1.2 GNU/Linuxとは？ 2
 1.3 Debian GNU/Linuxとは？ 2
 1.4 Debian GNU/kFreeBSDとは？ 3
 1.5 Debian GNU/Hurdとは？ 3
 1.6 Debian Installerとは？ 3
 1.7 Debianの入手 4
 1.8 このドキュメントの最新版の入手 4
 1.9 この文書の構成 4
 1.10 文書への支援のお願い 5
 1.11 著作権およびソフトウェアライセンスについて 5

2 必要なシステム 6
 2.1 サポートするハードウェア 6
 2.1.1 サポートするアーキテクチャ 6
 2.1.2 zSeriesやSystem zマシンタイプ 7
 2.1.3 PAVとHyperPAV 7
 2.1.4 マルチプロセッサ 7
 2.1.5 ネットワーク接続機器 7
 2.1.6 周辺機器やその他のハードウェア 7
 2.2 インストールに利用できるメディア 7
 2.2.1 ネットワーク 7
 2.2.2 ハードディスク 7
 2.2.3 Un*x・GNUシステム 8
 2.2.4 サポートする記憶装置 8
 2.3 必要なメモリとディスクスペース 8

3 Debian GNU/Linuxのインストール前に 9
 3.1 インストールプロセスの概要 9
 3.2 既存データをバックアップしてください！ 10
 3.3 必要な情報 10
 3.3.1 ドキュメント 10
 3.3.1.1 インストールマニュアル 10
 3.3.1.2 ハードウェアの文書 10
 3.3.1.3 S/390ハードウェアリファレンス 10
 3.3.2 ハードウェア情報の取得先 11
 3.3.3 ハードウェア互換性 11
 3.3.3.1 ライブシステムを使用したハードウェア互換性テスト ... 12
 3.3.4 ネットワークの設定 12
 3.4 必要な最低限のハードウェア 13
 3.5 マルチプートシステムでの事前パーティション分割 ... 13
 3.6 インストール前に行うハードウェア・OSの設定 14
 3.6.1 BIOS設定 14
 3.6.2 ネイティブなLPARへのインストール 14
 3.6.3 VMゲストとしてのインストール 14
 3.6.4 インストールサーバの設定 15

4 システムインストールメディアの入手 16
 4.1 公式Debian GNU/Linuxインストールイメージ 16
 4.2 Debianミラーサイトからのファイルのダウンロード .. 16
 4.2.1 どこでインストールファイルを探すか 16
 4.3 自動インストール 17
 4.3.1 Debianインストラを用いた自動インストール 17
4.4 インストールファイルの整合性の検証 17
5 インストールシステムの起動 .. 18
 5.1 S/390でのインストーラの起動 18
 5.1.1 S/390の制限 .. 18
 5.1.2 S/390起動パラメータ .. 18
 5.2 起動パラメータ .. 18
 5.2.1 Debian Installerパラメータ 19
 5.2.2 起動パラメータで質問に答える 21
 5.2.3 カーネルモジュールへパラメータを渡す 21
 5.2.4 カーネルモジュールのブラックリスト化 21
 5.3 インストールプロセスのトラブルシューティング 22
 5.3.1 起動設定 .. 22
 5.3.2 カーネルの起動時メッセージの意味 22
 5.3.3 インストールで発生した問題の報告 22
 5.3.4 インストールレポートの送信 22
6 Debianインストーラーの使用法 .. 24
 6.1 インストーラーの動作 .. 24
 6.2 コンポーネント入門 ... 25
 6.3 それぞれのコンポーネントの使用法 26
 6.3.1 Debianインストーラーのセットアップとハードウェアの設定 26
 6.3.1.1 利用可能なメモリのチェック／低メモリモード 26
 6.3.1.2 地域オプションの選択 27
 6.3.1.3 キーボード選択 ... 28
 6.3.1.4 Debian Installer isoイメージの検索 28
 6.3.1.5 ネットワークの設定 28
 6.3.1.5.1 自動ネットワーク設定 28
 6.3.1.5.2 手動ネットワーク設定 28
 6.3.1.5.3 IPv4とIPv6 29
 6.3.2 ユーザーとパスワードのセットアップ 29
 6.3.2.1 rootパスワードの設定 29
 6.3.2.2 一般ユーザーの作成 29
 6.3.3 時計とタイムゾーンの設定 30
 6.3.4 パーティションの分割とマウントポイントの選択 30
 6.3.4.1 サポートするパーティション分割オプション 30
 6.3.4.2 ガイドパーティション分割 31
 6.3.4.3 手動パーティション分割 32
 6.3.4.4 マルチディスクデバイス（ソフトウェアRAID）の設定 33
 6.3.4.5 論理ボリュームマネージャ（LVM）の設定 35
 6.3.4.6 暗号化ボリュームの設定 36
 6.3.5 基本システムのインストール 38
 6.3.6 追加ソフトウェアのインストール 38
 6.3.6.1 aptの設定 .. 38
 6.3.6.1.1 2枚以上のCD/DVDイメージでのインストール 39
 6.3.6.1.2 ネットワークミラーの利用 39
 6.3.6.1.3 ネットワークミラーの選択 40
 6.3.6.2 ソフトウェアの選択・インストール 40
 6.3.7 システムを起動可能にする 41
 6.3.7.1 他OSの検出 .. 41
 6.3.7.2 ziplインストーラー 42
 6.3.7.3 ブートローダなしで継続 42
 6.3.8 インストールの完了 .. 42
 6.3.8.1 システムの再起動 42
 6.3.9 トラブルシューティング ... 42
 6.3.9.1 インストールログの保存 42
 6.3.9.2 シェルの使用とログの参照 42
 6.3.10 network-consoleを利用したインストール 43
8 カスタム化 ... 44
CONTENTS

6.4.1 代替initシステムのインストール .. 44

7 新しいDebianシステムを起動してみる ... 45
7.1 決定的瞬間 ... 45
7.2 暗号化ボリュームのマウント ... 45
7.2.1 トラブルシューティング .. 46
7.3 ログイン ... 46

8 次のステップとそれから ... 47
8.1 システムをシャットダウンする ... 47
8.2 Debianに慣れる ... 47
8.2.1 Debianパッケージングシステム 47
8.2.2 Debianで利用できる追加ソフトウェア 48
8.2.3 アプリケーションのバージョン管理 48
8.2.4 cronジョブ管理 ... 48
8.3 さらなる文書や情報 ... 48
8.4 電子メールを使用するためのシステム設定 49
8.4.1 デフォルトの電子メール設定 49
8.4.2 システムの外に電子メールを送る 49
8.4.3 Exim4MailTransportAgentの設定 50
8.5 新しいカーネルのコンパイル ... 50
8.6 起動しなくなってしまったシステムの回復 51

A インストールHowto .. 52
A.1 前置き ... 52
A.2 インストーラを起動する .. 52
A.2.1 光学ディスク ... 52
A.2.2 ネットワークからの起動 ... 52
A.2.3 ハードディスクからの起動 .. 53
A.3 インストール ... 53
A.4 インストールレポートを送ってください 54
A.5 そして最後に ... 54

B preseedを利用したインストールの自動化 55
B.1 概要 ... 55
B.1.1 preseedの方法 ... 55
B.1.2 制限 ... 56
B.2 preseedの利用 .. 56
B.2.1 事前設定ファイルの読み込み 56
B.2.2 preseedが質問するブートパラメータの利用 57
B.2.3 自動モード .. 58
B.2.4 preseedで利用できるエイリアス 59
B.2.5 プートブロントのpreseedの例 59
B.2.6 事前設定ファイルを指定するためのDHCPの利用方法 60
B.3 事前設定ファイルの作成 ... 60
B.4 事前設定ファイルの内容 (bullseye用) 61
B.4.1 地域化 ... 61
B.4.2 ネットワーク設定 ... 62
B.4.3 ネットワークコンソール .. 63
B.4.4 ミラーサイト設定 ... 63
B.4.5 アカウント設定 ... 64
B.4.6 時計と時間帯の設定 .. 65
B.4.7 パーティション分割 .. 65
B.4.7.1 パーティション分割の例 65
B.4.7.2 RAID を用いたパーティション分割 67
B.4.7.3 パーティションマウントの制御 68
B.4.8 基本システムのインストール 68
B.4.9 apt設定 ... 69
B.4.10 パッケージ選択 ... 69
List of Tables

3 Debian GNU/Linux のインストール前に
 3.1 インストールに役立つハードウェア情報 .. 11
 3.2 最低限必要なシステム (推奨値) ... 13
この文書は S/390（「s390x」）アーキテクチャ用 Debian GNU/Linux 11 システム（コードネーム「bullseye」）のインストール説明書です。また、さらに詳しい情報へのポインタや、新しく Debian システムを構築する方法にも言及しています。

日本語訳については、debian-doc@debian.or.jp（要 subscribe）で議論を行っています。また、Debian JP Project: メーリングリストに購読に関する簡単な説明があり、debian-doc Mailing List Archive では過去のメールも読むことができます。
s390x 用 Debian GNU/Linux 11 のインストール

Debian を試していただきありがとうございます。Debian の GNU/Linux ディストリビューションは、他に類を見ないものであることを分かっていただけることでしょう。Debian GNU/Linux は、世界中から質の高い「自由なソフトウェア」をよりすくに、首尾一貫したディストリビューションとしてまとめられています。こうして集められたものは、個々のソフトウェア以上の力を発揮することででしょう。

多くの方は、このマニュアルを読まずに Debian をインストールしたいと思っていることでしょう。また、それが可能なように Debian インストーラは設計されています。インストールガイド全体を読む時間がなければ、インストール Howto（基本的なインストールプロセスを案内します）と、追加情報やうまくいかないときのための、マニュアルへのリンクを読むことをお勧めします。インストール Howto は、付録 A にあります。

そうは言っても、このマニュアルのほとんどを読んでくださることを望んでいますし、読むことでより多くの知識を得られ、よりインストールがうまくいくかやすくなるでしょう。
Chapter 1
ようこそ Debian へ

この章では、Debian プロジェクトと Debian GNU/Linux の概略を紹介します。Debian プロジェクトの歴史と Debian GNU/Linux についてすでにご存知でしたら、この章を飛ばして構いません。

1.1 Debian とは?

Debian は、有志の集まってできた団体で、フリーフットウェアを開発し、フリーフットウェアコミュニティの理想を推進することを目的としています。Debian プロジェクトは 1993 年に、比較的新しい Linux カーネルをもとに、完全で一貫性あるディストリビューションの制作のために、Ian Murdock が開発者を広く募ったときに始まりました。献身的なファンたちの比較的小さな団体は、最初 Free Software Foundation によって支援を受け、GNU の哲学に影響されていましたが、数年後には 1000 人もの Debian 開発者を抱える組織になりました。

Debian 開発者は様々な活動に参加しています。例えば、Web や FTP サイトの管理、グラフィックデザイン、ソフトウェアライセンスの法律的な分析、文書の執筆、そしてもちろん、ソフトウェアパッケージのメンテナンスです。

私たちの哲学を伝え、Debian が支持する原則を信じている開発者を引き寄せるために、Debian プロジェクトは、私たちの価値の概略を述べ、Debian 開発者であるとはどういうことかという指針とするために、多数の文書を発表しています:

• Debian 社会契約 は、Debian のフリーソフトウェアコミュニティへの関与について述べたものです。この社会契約を守ることに同意する人は、誰でもメンテナになることができます。メンテナは誰でも、Debian に新しいソフトウェアを追加することができます—そのソフトウェアが私たちの条件に照らしてフリーであり、パッケージの品質が基準を満たしているか。

• Debian フリーソフトウェアガイドライン (DFSG) は、フリーソフトウェアに関する Debian の基準を明確かつ簡潔に述べたものです。この DFSG は、フリーソフトウェア運動において非常に影響力のある文書で、オープンソースの定義のもととなったものです。

• Debian ポリシーマニュアルは、Debian プロジェクトの品質基準を詳しく定めたものです。

Debian 開発者は、びひの多数のプロジェクトにも関与しています。それらのプロジェクトには、Debian 固有のものもあり、Linux コミュニティの一部や全体に関係するものもあります。以下に例を挙げます。

• Filesystem Hierarchy Standard (FHS) は、Linux のファイルシステムのレイアウトを標準化しようという試みです。これによって、ソフトウェア開発者はパッケージが様々な GNU/Linux ディストリビューションにどのようにインストールされるかを心配することなしに、プログラムのデザインに努力を集中することができます。

• Debian Jr. は、Debian を若年ユーザーに提供できるようなものにするための内部プロジェクトです。

より一般的な情報については、Debian FAQ を参照して下さい。
1.2 GNU/Linuxとは？

GNU/Linuxはオペレーティングシステム（あなたとコンピュータの間に立ち、他のプログラムを実行させる一連のプログラム）です。オペレーティングシステムは、様々な基礎的なプログラムを含んでいます。それらによって、コンピュータは、ユーザーとの交信や指示を受け取り、ハードディスクやテープ、プリンタにデータを読み書きしたり、メモリの使い方を制御したり、他のソフトウェアを実行したりすることができます。オペレーティングシステムの最も重要な部分は、カーネルです。GNU/Linuxシステムにおいては、Linuxがカーネルです。システムの残りの部分は、他のプログラムでできており、その大部分はGNUプロジェクトによって書かれたものです。Linuxカーネルだけでは動作するオペレーティングシステムを構成できませんので、多くの人が日常的に「Linux」と呼ぶシステムのことを、私たちは「GNU/Linux」と呼ぶようになっています。

GNU/LinuxはUnixオペレーティングシステムを手本にしています。当初から、GNU/Linuxはマルチタスク、マルチユーザーシステムとして設計されました。この事実により、Linuxは他の有名なオペレーティングシステムに対し、充分差別化できています。しかし、GNU/Linuxはあなたが想像するよりもさらに異なっています。他のオペレーティングシステムとは対照的に、誰もGNU/Linuxを所有しません。その開発の多くは無償のボランティアによって行われます。後にGNU/Linuxになるものの開発は1984年、フリーソフトウェア財団がGNUというUnixライクなオペレーティングシステムの開発を始めたときに始まりました。GNUプロジェクトは、Unixや、GNU/LinuxなどのUnixライクなオペレーティングシステムと共に使うための一連のフリーソフトウェアツールを開発してきました。これらのツールは、ファイルのコピー・削除といった日常的な作業から、プログラムの作成やコンパイルや様々なドキュメントフォーマットの高度な編集といった作業までを可能にします。多くのグループや個人がGNU/Linuxに寄与する中で、最大の単独貢献者はいまだに（GNU/Linuxの中で使用されるほとんどのツールだけでなく哲学も作成した）フリーソフトウェア財団と、GNU/Linuxを可能にしたコミュニティです。

Linuxカーネルは、Linus Torvaldsというフィンランド人の計算機科学の学生が1991年に、Usenetのcomp.os.minixニュースグループにMinixの代替カーネルの初期バージョンを公表したのが始まりです。LinuxInternationalのLinux史のページ参照して下さい。Linus Torvaldsは、何人ものサブシステムのメンテナの協力を得て、数百人の開発者の作業を調整し続けています。Linuxカーネルの公式ウェブサイトがあります。linux-kernelメーリングリストの情報は、linux-kernelメーリングリストFAQで読むことができます。

GNU/Linuxユーザーは、それらのソフトウェアの大きな選択の自由を持っています。例えば、ユーザーは、1ダースの異なるコマンドラインシェルや数種のグラフィカルデスクトップの中から選ぶことができます。この選択できるということが、しばしばコマンドラインやデスクトップを変更できるという考えに慣れていない、他のオペレーティングシステムのユーザーを当惑させています。

GNU/Linuxはまた、ほとんどクラッシュせず、複数のプログラムを同時に実行するのに優秀で、多くのオペレーティングシステムより安全です。これらの利点により、Linuxはサーバ市場で最も急成長しているオペレーティングシステムです。さらに最近、Linuxは、ホーム・ビジネスユーザーにも人気が出始めました。

1.3 Debian GNU/Linux とは？

Debianの哲学や方法論と、GNUツール・Linuxカーネル・その他の重要なフリーソフトウェアとを組み合わせることにより、Debian GNU/Linuxと呼ばれるユニークなディストリビューションが形成されています。このディストリビューションは、多数のソフトウェアパッケージから構成されています。ディストリビューションに含まれる個々のパッケージは、実行ファイル・スクリプト・ドキュメント・設定情報などから構成されています。また各パッケージには、そのパッケージに責任を持つメンテナがいて、そのパッケージを最新に保ち、バグ報告を追跡し、パッケージにされているソフトウェアの上流開発者と連絡をとることについて、第一に責任を負います。大きなユーザーベースが、パブ追跡システムとあいまって、問題がすぐに発見・解決されることを保証しています。

Debianは、細部に注意を払うことで、高品質で安定したスケーラブルなディストリビューションとなっています。小さなファイアウォールから科学用途のデスクトップワークステーションやハイエンドネットワークサーバまで、様々な用途に合わせたインストールが可能です。

Debianは、技術的な優越性やLinuxコミュニティのニーズや期待への深いコミットメントによって、熟練したユーザーに特に人気があります。Debianはさらに、現在Linuxが普通に持っている多くの特徴を導入しました。
例えば、Debianはソフトウェアの簡単なインストール・削除用にパッケージ管理システムを持った初めてのLinuxディストリビューションでした。さらに、再インストールせずにシステムの更新ができる、初めてのLinuxディストリビューションでした。

DebianはLinux開発のリーダーであり続けている。その開発プロセスは、完全なオペレーティングシステムを構築し維持するような非常に複雑なタスクであったにもかかわらずオープンソース開発モデルが、どれほどうまくいくことができるかの好例となっています。

Debianは、他のGNU/Linuxディストリビューションと区別する最大の特徴は、パッケージ管理システムです。Debianシステムの管理者は、システムにインストールされるパッケージに関して、ひとつずつパッケージのインストールからオペレーティングシステム全体の自動アップデートまで、完全に制御することができます。個々のパッケージをアップデートしないように設定することもできます。あなたがコンパイルしたソフトウェアについては、その依存関係を設定することもできます。「トロイの木馬」や他の悪意あるソフトウェアからあなたのシステムを守るために、Debianのサーバは、アップロードしてきたパッケージが開発者からのものかどうかを確かめます。また、Debianの各パッケージはより安全な設定となるように細心の注意が払われています。もしリリースされたパッケージにセキュリティ上の問題が発生すれば、その修正版は通常すぐに利用可能になります。Debianの簡単なアップデートオプションによって、セキュリティ修正はインターネットを通じて自動的にダウンロード・インストールすることができます。

あなたのDebianシステムについてサポートを受けたり、Debianの開発者たちと連絡したりする第一の、そして最良の方法は、Debianプロジェクトが運営する多数のメーリングリストを用いることです（この文章の執筆時点で322以上のメーリングリストがあります）。メーリングリストを簡単に読むためには、Debianメーリングリスト読者として、フォームに必要事項を入力するとよいでしょう。

1.4 Debian GNU/kFreeBSD とは？

Debian GNU/kFreeBSDは、kFreeBSDカーネルを用いたDebian GNUシステムです。このDebianの移植版は、現在のところ、i386とamd64アーキテクチャでのみ開発されていますが、その他のアーキテクチャにも移植される可能性があります。

Debian GNU/kFreeBSDはLinuxシステムではないので、Linuxシステム向けの情報を適用できない場合もあることに注意してください。

詳しくは、Debian GNU/kFreeBSD移植ページまたはdebian-bsd@lists.debian.orgメーリングリストを参照して下さい。

1.5 Debian GNU/Hurd とは？

Debian GNU/Hurdは、GNU Hurd (GNU Machマイクロカーネルの上で走る一群のサーバ)を用いたDebian GNUシステムです。

Hurdはまだ完成しており、日々の利用には不適ですが、作業は継続しています。現在のところ、Hurdはi386アーキテクチャでのみ開癈されていますが、システムが安定してくれば、他のアーキテクチャにも移植される予定です。

Debian GNU/HurdはLinuxシステムではなく、Linuxシステム向けの情報を適用できない場合もあることに注意してください。

詳しくは、Debian GNU/Hurd移植ページまたはdebian-hurd@lists.debian.orgメーリングリストを参照して下さい。

1.6 Debian Installer とは？

Debianインストーラ(「d-i」としても知られています)は基本的な動作を行うDebianシステムをインストールするためのソフトウェアシステムです。組込みシステム・ラップトップ・デスクトップ・サーバーマシンのような幅広いハードウェアをサポートしており、様々な目的に使われる膨大な量のフリーソフトウェアを提供します。

インストール作業は簡単な質問群に答えることで進みます。インストール作業での全設定をコントロールすることができるエキスパート・モードや、自動インストールを実行する拡張機能も提供されています。インストールしたシステムはそのまま使うことも、さらにカスタマイズすることもできます。インストールは多数のソースから実行できます: USB、CD/DVD/Blu-ray、そしてネットワーク経由です。インストーラーは、80以上の言語で翻訳されたインストール画面をサポートしています。
インストーラーは boot-floppies プロジェクトを起源としており、これは Joey Hess によって 2000 年に初めて言及されています。以来インストールシステムは継続してボランティアらによって開発されており、改善と機能追加が行われています。

Debian インストーラーのページ、Wiki、debian-boot メーリングリストなどで、より詳細な情報を確認できます。

1.7 Debian の入手

インターネットを通じて Debian GNU/Linux をダウンロードしたり Debian の公式インストールメディアを購入したりするための情報については、入手方法についてのページを参照して下さい。Debian のミラー一覧には、Debian の公式ミラーリストがすべて載っていますので、もっとも近いサイトを簡単に探すことができます。

Debian は、インストール後に非常に簡単にアップグレードできます。このインストール手順では、システムの設定についてお助けします。一度インストールが済んでも、必要に応じてこのようなアップグレードを行うようになります。

1.8 このドキュメントの最新版の入手

この文書には絶えず変更が加えられています。Debian GNU/Linux システムの 11 リリースに関する最新情報については、Debian11 ページにて確認してください。このインストールマニュアルの最新版は、公式インストールマニュアルページからも利用できます。

1.9 この文書の構成

この文書は、初めて Debian をお使いになるユーザーのために書かれたマニュアルです。お手持ちのハードウェアの動作に関しては一般的な知識があることを前提としていますが、なるべく専門的な知識がなくてもお読みいただけるよう心がけています。

また熟練したユーザーであっても、この文書で、最低限インストールに必要な容量や、Debian インストールシステムでサポートされるハードウェアの詳細など、参考になる情報を得ることができるでしょう。熟練したユーザーの方には、この文書のあちこちをかいつまんでお読みになることをお勧めします。

基本的にこの文書は、実際に体験するインストールのプロセスに沿って、順に説明するように構成されています。Debian GNU/Linux のインストールの各作業段階と、それに関連するこの文書の各節は以下の通りになっています。

1. 第2章では、お手持ちのハードウェアがインストーラのシステム要件を満たしているかどうかを調べます。

2. 第3章では、既存のシステムをバックアップし、Debian のインストールに先だつシステム設計やハードウェアの設定を行います。もしマルチプルシステムを考えているのなら、ハードディスク上に、Debian 用パーティションを作るための空き領域を作っておく必要があるかもしれません。

3. 第4章では、あなたのインストール方法のためのインストールファイルを入手します。

4. 次の第5章では、インストーラを起動します。またこの章では、起動に問題があった際のトラブルシューティングの手順についても紹介します。

5. 第6章に従って実際のインストールを実行してください。ここでは言語選択、周辺機器のドライバモジュールの設定、(CD/DVD インストールイメージセットからインストールしていない場合) 残りのインストールするファイルを Debian サーバから直接取得するようなネットワーク接続の設定、ハードディスクのパーティション分割、基本システムのインストールを行います。その後、インストールするタスクの選択を行います。(Debian システムのパーティションセットアップについては、付録Eで背景を説明しています)

6. 第7章では、新しくインストールした基本システムを起動します。

システムのインストールが完了したら、第8章を読んで下さい。この章では、Unix や Debian に関する情報の探し方や、カーネルの切り替えの方法を説明します。

最後に、付録Eには、この文書に関する情報や貢献の方法が載っています。
1.10 文書への支援のお願い

どんな支援、提案、(特に)パッチも非常にありがたいです。この文書の作業中の版は https://d-i.debian.org/manual/ にあります。そこで、この文書の各アーキテクチャ向けの版や各言語版があります。

ソースも公開されています。貢献するための情報については、付録Eを参照して下さい。提案、コメント、パッチ、バグ報告(パッチには installation-guide というパッケージ名を使って下さい。ただしパッチがすでに報告されていないかどうか、まずチェックしてください)を歓迎します。

1.11 著作権およびソフトウェアライセンスについて

この文書を読んでいる方は、多数の商用ソフトウェアにあるようなライセンス(購入したソフトウェアのコピー1部を、1台のコンピュータで使用できる)はご存知のことでしょう。しかし、このシステムはそのようなものとは違います。私たちは、あなたの通っている学校や仕事場にあるすべてのコンピュータにDebian GNU/Linuxをインストールすることを奨励します。また、友達に貸して、彼らのコンピュータにインストールするのを手伝ってあげましょう。さらには、わずかな制限にさえ気をつけば、何千部ものコピーを作って売るのも可能です。なぜなら、Debianはフリーソフトウェアに基づいているからです。

フリーソフトウェアとは、著作権を持っていないという意味ではありません。また、このソフトウェアを含むインストールメディアが、無償で配布されなければならないという意味でもありません。フリーソフトウェアとは、ひとつには、個々のプログラムのライセンスにおいて、プログラムの利用や再配付の権利に、お金を払う必要がないことを意味しています。また誰でも、そのソフトウェアを拡張したり、改造したり、修正すること、さらにその成果を再配付することが可能であることも意味しています。

このシステムに入っているプログラムの多くは、「GPL」と略される GNU General Public License にしたがって利用許諾されています。この GPL は、プログラムのコピーを配布するときには、必ずプログラムのソースコードを利用可能にしておくことを要求しています。これは、ユーザーがそのソフトウェアを変更できることを保証するものです。そのため、私たちは、Debianシステムに含まれる GPL 準拠のプログラムのソースコードをすべて収録しています。

Debianに収録されたプログラムの著作権やソフトウェアライセンスの形式には、他にも数種あります。それぞれのプログラムの著作権やライセンスは、一度システムをインストールすれば、/usr/share/doc/パッケージ名/copyrightファイルを探せば見つけることができます。

ライセンスや、Debianがmainディストリビューションにソフトウェアを収録する際に用いているフリーの基準に関してより詳しい情報をお求めの場合は、Debianフリーソフトウェアガイドラインをご覧ください。

最も重要な法律上の注意点は、このソフトウェアが無保証であることです。これは、このソフトウェアを作成したプロジェクト自体がコミュニティの利益を考えてのことです。ソフトウェアは、いかなる目的への利用に対しても保証されていません。しかし、ソフトウェアがフリーであるゆえに、ユーザーには必要に応じてソフトウェアを修正する権限を与えられます。また、このようにしてソフトウェアの拡張が誰かによってなされれば、その利益も享受できます。

Debianソースパッケージの探し方や展開の仕方やバイナリの作成方法に関する情報については、Debian FAQの「Debianパッケージ管理システムの基本」をご覧ください。
必要なシステム

この節では、Debianを始めるために必要なハードウェアに関する情報を扱います。また、GNUやLinuxでサポートされるハードウェアに関するより詳しい情報へのリンクも用意しました。

2.1 サポートするハードウェア

Debianは、Linux・kFreeBSDカーネルやGNUツールセットが必要とする以上のハードウェアを要求しません。それゆえ、Linux・kFreeBSDカーネル、libc、gccなどが移植されていて、Debianの移植版が存在すれば、どんなアーキテクチャやプラットフォームでもDebianを動作させることができます。すでにDebian GNU/LinuxでテストされているS/390アーキテクチャシステムの詳細は、https://www.debian.org/ports/s390/にある移植版のページを参照してください。

この節では、S/390でサポートされるハードウェアの様々な設定のすべてに触れることは避け、一般的な情報とさらなる情報が見つける場所へのポインタを紹介します。

2.1.1 サポートするアーキテクチャ

Debian GNU/Linux11は9の主要なアーキテクチャと、「フレーバー」と呼ばれる各アーキテクチャのバリエーションをサポートしています。

<table>
<thead>
<tr>
<th>アーキテクチャ</th>
<th>Debianでの名称</th>
<th>サブアーキテクチャ</th>
<th>フレーバー</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 & Intel 64</td>
<td>amd64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel x86 ベース</td>
<td>i386</td>
<td>デフォルトのx86マシン</td>
<td>デフォルト</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xen PVドメインのみ</td>
<td>xen</td>
</tr>
<tr>
<td>ARM</td>
<td>armel</td>
<td>MarvellKirkwood及びOrion</td>
<td>marvell</td>
</tr>
<tr>
<td>ハードウェアFPUがあるARM</td>
<td>armhf</td>
<td>複数プラットフォーム対応</td>
<td>armmp</td>
</tr>
<tr>
<td>64bit ARM</td>
<td>arm64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64bit MIPS (リトルエンディアン)</td>
<td>mips64el</td>
<td>MIPS Malta</td>
<td>5kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 3</td>
<td>loongson-3</td>
</tr>
<tr>
<td>32bit MIPS (リトルエンディアン)</td>
<td>mipsel</td>
<td>MIPS Malta</td>
<td>4kc-malta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cavium Octeon</td>
<td>octeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loongson 5</td>
<td>loongson-5</td>
</tr>
<tr>
<td>Power Systems</td>
<td>ppc64el</td>
<td>IBM POWER8以降のマシン</td>
<td></td>
</tr>
<tr>
<td>64bit IBM S/390</td>
<td>s390x</td>
<td>VM-readerやDASDからのIPL</td>
<td>generic</td>
</tr>
</tbody>
</table>

この文書はLinuxカーネルを用いたS/390アーキテクチャへのインストールを扱います。Debianがサポートしている他のアーキテクチャに関する情報を探しているなら、Debian移植版のページをご覧ください。
CHAPTER 2. 必要なシステム

2.1.2 zSeries や System z マシンタイプ
最低限必要な z/Architecture のプロセッサタイプは z196 です。IBM の Linux サポートに関する最新情報は、developerWorks 内の Linux on System z® ページにあります。

2.1.3 PAV と HyperPAV
PAV と HyperPAV を透過的にサポートしており、ストレージシステムの機能を活かすためには、マルチパス機能が必要です。DASD デバイス選択中に、必ず設定してください。エリアデバイスでは、フォーマットやパーティション分割、直接利用のいずれも提案されません。

2.1.4 マルチプロセッサ
このアーキテクチャでは、マルチプロセッササポート (「対称型マルチプロセッシング」や SMP とも呼ばれる) が利用できます。もとより、複数のプロセッサがあるコンピュータは、ハイエンドサーバシステムのミドルまででした。近年では「マルチコア」と呼ばれるプロセッサの登場により、どこでも当たり前のものです。これには、1 つの物理的なチップに、「コア」と呼ばれる複数のプロセッサユニットが搭載されています。

標準の Debian 11 カーネルイメージは、SMP をサポートしてコンパイルされています。非 SMP システムでも、問題なく動作します。

2.1.5 ネットワーク接続機器
Linux カーネルがサポートしているネットワークインタフェースカード (NIC) なら、インストールシステムでもほとんどサポートしています。ドライバモジュールは、通常自動的に読み込まれます。
以下にサポートしているネットワークデバイスを挙げます。
- Channel to Channel (CTC) や ESCON 接続 (リアルもしくはリマネーション)
- OSA-2 Token Ring/Ethernet や OSA-Express Fast Ethernet (非 QDIO)
- QDIO モードの OSA-Express, HiperSockets, Guest-LAN

2.1.6 周辺機器やその他のハードウェア
XPRAM やテープからのパッケージのインストールは、このシステムではサポートしていません。全てのパッケージは、DASD を有効にするか、NFS, HTTP, FTP を使ってネットワークからインストールする必要があります。

2.2 インストールに利用できるメディア
本節は、Debian をインストールするのに、どのメディアを使用するかを決めるのに、参考になるでしょう。全体をメディアに費やした章 (第4章) があり、そこではメディアごとに利点と欠点を挙げています。その章から、このページにもう一度戻ってくるかもしれませんね。

2.2.1 ネットワーク
インストールに必要なファイルをインストール中に取得するのに、ネットワークを使用できます。ネットワークを使用するかどうかは、あなたが選択したインストール方法と、インストール中の質問への答えに依存します。インストールシステムは、ネットワークへのほとんどの接続法 (PPPoE を含む, ISDN や PPP は不可) 上での, HTTP と FTP のどちらもサポートしています。インストール完了後に、ISDN や PPP を使用するようにシステムの設定ができます。

2.2.2 ハードディスク
ハードディスクからインストールシステムを直接ブートするのには、多くのアーキテクチャで使えるもうひとつの方法です。ハードディスク上にあるインストーラをロードするため、他の OS が必要になります。この方法は、他のインストール方法が利用できないという、特殊な場合にだけ使用してくださ
2.2.3 Un*x・GNU システム

他の Unix 系システムが稼動していれば、このマニュアルで説明している debian-installer を使用せずに、Debian GNU/Linux をインストールに使用できます。このインストール方法なら、他の方法ではサポートしないハードウェアや、ダウンタイムを用意できないユーザにとって便利です。この方法に興味があれば、項D.3 ヘスキップしてください。このインストール方法は、他にインストール方法のない、慣れたユーザにとってのみ、おすすめします。

2.2.4 サポートする記憶装置

Debian インストラーのカーネルは、なるべくどのシステムでも実行できるように構築されています。Linux カーネルでサポートされる外部記憶装置は、すべてこのブートシステムでもサポートされています。これは FBA や ECKD DASD が古い Linux ディスクレイアウト (ldl) や、新しい S/390 共通ディスクレイアウト (cdl) をサポートすることです。

2.3 必要なメモリとディスクスペース

通常のインストールを行うには、少なくとも 44MB の RAM と 920MB のハードディスク領域が必要です。これは、本当に最小限の値だということに注意してください。現実的な値は、項3.4をご覧ください。

インストーラは通常自動でメモリ節約トリックを有効にしてそのような低メモリシステム上でも動作しますが、あまりテストが行われていないアーキテクチャではそれが働かないかもしれません。ただそれでも手動で lowmem=1 や lowmem=2 というブートパラメータを追加することで有効にできます(項6.3.1.1と項5.2.1もご覧ください)。

警告

s390x では低メモリ (lowmem) レベルがテストされていないため、自動検出がおそらく旧式のものになっているので、システムのメモリが少ない場合はおそらくこのブートパラメータを渡す必要があります。

Installation on systems with less memory or disk space available may be possible but is only advised for experienced users.
Chapter 3

Debian GNU/Linux のインストール前に

本章は、インストーラを起動する前の、Debianをインストールする準備について扱います。ここでは、データのバックアップ、ハードウェアに関する情報収集、必要な情報の特定といったことを含みます。

3.1 インストールプロセスの概要

はじめに、再インストールについて述べておきます。Debianで、システムの完全な再インストールが必要になる状況は、非常にまれです。おそらく、もっともありそうなケースはハードディスクの機械的な故障でしょう。

多くの場合、初期インストールの際に完全インストールを要求するかもしれません。完全な新インストールを要求されなくても、使用するプログラムを新OSで適切に動かすために再インストールしなければなりません。

Debian GNU/Linuxでは、うまく行かない場合、OSを取り替えるのではなく修理できるケースの方がはるかに多いでしょう。アップグレードでは大量のインストールは必要ありませんし、常にその場でアップグレードできます。またOSのリリースが続いても、プログラムにはほとんど常に互換性があります。プログラムの新バージョンが、より新しい依存するソフトウェアを要求する場合、Debianパッケージングシステムは、必要なソフトウェアをすべて自動的に識別し、確実にインストールします。再インストールが必要なときは力尽くしておいて、再インストールをしなくてはならないというのは、最後の手段であるということがポイントです。インストーラは、既に存在するシステムに対して、再インストールするように設計されていません。

ここでは、インストールプロセスの中で行う処理を一段階ずつまとめておきましょう。

1. インストールするハードディスクにある、既存のデータや文書のバックアップ。
2. インストールを始める前に、コンピュータの情報と必要な文書を集める。
3. ハードディスクにDebianのパーティションに使える領域を確保する。
4. インストーラソフトウェアと、そのマシンで必要になる、特殊なドライバファイルやファームウェアファイルについて、場所の確認・ダウンロード。
5. CD・DVD・USBメモリといったブートメディアをセットアップや、インストーラを起動できるネットワークブートインフラの準備。
6. インストールシステムを起動する。
7. ネットワークインターフェースをどれかひとつ設定する。
8. 新しいシステムにssh接続する。
9. ひとつ以上のDASD(Direct Access Storage Device)にアタッチする。
10. Debianをインストールするパーティションを作成し、マウントする。
11. 自動で行われる基本システムのダウンロード・インストール・セットアップを監視する。
12. 追加のソフトウェアを選んでインストール。
13. Debian GNU/Linuxと既存システムを起動するブートローダをインストールする。
3.2 既存データをバックアップしてください！

インストールを始める前に、現在使用しているシステムのすべてのファイルをバックアップしてください。今回初めて、最初から入っていた以外のOSをインストールするのなら、おそらくディスクのパーティション分割をやり直してDebian GNU/Linux用の領域を作る必要があるでしょう。ディスクのパーティション分割作業では、どんなプログラムを使ったとしても、ディスク上のすべてのデータを消してしまう危険があります。Debian GNU/Linuxのインストールに用いられるプログラム群は、極めて信頼性が高く、何年も使用されてきたものです。しかし、これらは強力な機能を持つこととなるので、誤動作が起こったときの被害も大きくなります。バックアップを取った後でも、質問に答える前に充分注意し、よく考えて行動に移してください。ほんの数分間余裕に対して、何時間もの不要な作業を避けることができるかもしれません。

また、システムをマルチブートシステムにする（複数のオペレーティングシステムを共存させる）場合には、既にインストールされているオペレーティングシステムの配布メディアが手元にあることを確かめてください。通常は必要ないとはいえ、システムをブートするために、OSのブートローダを再インストールする必要があったり、最悪の場合、完全にOSをインストールし、以前のバックアップをリストアする必要がある可能性もあります。

3.3 必要な情報

3.3.1 ドキュメント

3.3.1.1 インストールマニュアル

現在ご覧になっている文書は、Debianの次期リリース用インストールガイドの開発版です。これは様々な形式と様々な言語で利用できます。

3.3.1.2 ハードウェアの文書

しばしば、ハードウェアの設定や使用についての有用な情報を含んでいます。

3.3.1.3 S/390ハードウェアリファレンス

S/390 特有のブートシーケンス、コマンド、デバイスドライバの文書（例：DASD, XPRAM, コンソール, OSA, ハイパーソケット, z/VMインタラクション）

- デバイスドライバ、機能、コマンド (Linux カーネル 3.2)

zSeries と S/390 ハードウェアの z/VMへの Linux の組み込み方を説明した IBMの仕様書です。

- Linux for S/390
メインフレームで使える Linux ディストリビューションについて説明した IBM の仕様書です。Debian に関する章はありませんが、基本的なインストールの考え方はすべての S/390 ディストリビューションで同じです。

- Linux for IBM eServer zSeries and S/390: Distributions

3.3.2 ハードウェア情報の取得先

多くの場合、インストーラはハードウェアを自動的に検出することができます。しかし、準備としてインストール前にハードウェアに習熟することをお勧めします。

ハードウェア情報は次のようなところから集められます。

- 各ハードウェアに付属してきたマニュアル。
- コンピュータの BIOS/UEFI 設定画面。この画面を表示させるには、コンピュータの起動時に何らかのキーの組合せを押します。この組合せについてはマニュアルを見てください。Delete キーや F2 キーの場合が多いようです。いくつかのメーカーは、別のキーを使用することもあります。大抵、コンピュータの起動時に設定画面に入ることを表すキーを表示します。
- 各ハードウェアのケースや箱。
- 他の OS のシステムコマンドやシステムツール、ファイルメニュージャの表示など。こちらからは、RAM やハードドライブのメモリに関する情報が得られることが多いです。
- あなたの部門のシステム管理者や、インターネットサービスプロバイダ。こちらからは、ネットワークや電子メールに関する設定情報が得られます。

<table>
<thead>
<tr>
<th>ハードウェア</th>
<th>必要な情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASD</td>
<td>デバイス番号</td>
</tr>
<tr>
<td></td>
<td>利用できる空き領域</td>
</tr>
<tr>
<td>ネットワーク</td>
<td>アダプタの形式</td>
</tr>
<tr>
<td></td>
<td>デバイス番号</td>
</tr>
<tr>
<td></td>
<td>OSA カードの相対アダプタ番号</td>
</tr>
</tbody>
</table>

3.3.3 ハードウェア互換性

製品の多くは、問題なく Linux で動作します。また Linux でサポートするハードウェアも日々進歩しています。しかし、それでも Linux は、ある種の OS ほどには多種多様なハードウェアに対応していません。

Linux に収録されているドライバはほとんどの場合特定の製造者の一部の「製品」や「商標」向けではなく、あるハードウェア/チップセット向けに書かれています。一見異なるように見える製品/商標が同一のハードウェア設計を基にしています。チップ製造者が自社チップを基に「リファレンス設計」と呼ばれる製品を提供し、それが複数の異なるデバイス製造者により利用され、多くの異なる製品や商標名で売られる傾向が見られます。

これには利点と欠点があります。利点は、製品が同一チップセットを基にしている限りは製品や製造者が異なっていても、一つのチップセットが一つのドライバで動作することです。欠点はある製品/商標で実に多くのチップセットが使われているのか判定するのが常に簡単なことではないことです。残念なことに、デバイス製造者は製品のベースとなるハードウェアを変更してもその製品名や製品のバージョン番号すら変えないことが時々あり、そのために別々に買った商標/製品名が同一の製品が二つある場合、異なる二種のチップセットを基にしているため異なるドライバを使う必要があったり、一方には使えるドライバが何もないこともあることもあります。

USB や PCI/PCI-Express/ExpressCard 用のデバイスが基にしているチップセットを調べるにはデバイス ID を確認するのが良い方法です。USB/PCI/PCI-Express/ExpressCard デバイスには全て、「ベンダーおよび「製品」ID というものがあり、同一チップセットを基にしている製品であればこれは通常同じ組み合わせになります。

Linux システムでは、この ID は USB デバイスでは lsusb コマンド、PCI/PCI-Express/ExpressCard デバイスでは lspci -nn コマンドで読み取ることができます。ベンダーおよび製品 ID は通常「1d6b:0001」のように二つの 16 進数をコロンで区切った形式になっています。
Isusbの出力例: 「Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub」の場合、1d6bがベンダー ID で0002が製品 IDです。

イーサネットカードに対するIspci -nnの出力例: 「03:00:00 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168]」のIDは最も右側の[]内にあります。つまりこの場合10ecがベンダー、8168が製品のIDです。

また別の例として、あるグラフィックスカードでは次のような出力になります: 「04:00:00 VGA compatible controller [0300]: Advanced Micro Devices [AMD] tee ATIRV710 [Radeon HD4350]」 [1002:954f]。

Windowsシステムでは、デバイスのIDはWindowsデバイスマネージャの「詳細」タブで確認できます。ベンダーIDには先頭にVEN_、製品IDには先頭にDEV_が付けられます。Windows7システムではデフォルトでは表示されていないため、実際にIDを確認するにはデバイスマネージャの詳細タブのプロパティから「ハードウェアID」を選択する必要があります。

ベンダー/製品ID、「Linux」、「ドライバ」を検索語としてインターネットで検索すると多くの場合そのチップセット向けドライバの対応状態に関する情報が得られるでしょう。ベンダー/製品IDを検索してあまり有効な検索結果が得られなかった場合は、多くの場合IsusbやIspciでも提供されるチップのコード名(ネットワークカードの例では「RTL8111」/「RTL8168」、グラフィックスカードの例では「RV710」)を検索することで手がかりが得られるかもしれません。

3.3.3 ライブシステムを使用したハードウェア互換性テスト

Debian GNU/Linuxは一部のアーキテクチャで「ライブシステム」というのも利用できます。ライブシステムは設定済みですぐに使える圧縮形式のシステムで、CDやDVDのような読み込み専用メディアから起動して使えます。デフォルトでの使用では、コンピュータ上への恒久的な変更は一切行いません。ライブシステム内でユーザ設定を変更したりプログラムを追加でインストールすることはできませんが、全てコンピュータのRAM上でのみ発生します。つまり、コンピュータの電源を落としてライブシステムを起動し直すと、全てがデフォルトにリセットされます。手持ちのハードウェアがDebian GNU/Linuxでサポートされているか確認する最も簡単な方法はDebianライブシステムを使って試してみることです。

ライブシステムの使用にはいくつか制限があります。まず、ライブシステム内の変更は全てコンピュータのRAMに保持する必要があることで、そのため十分なRAMのあるシステムでないと機能しません。巨大なソフトウェアパッケージを追加でインストールすることはメモリの制約のために失敗するかもしれません。もう一つの制限はハードウェア互換性テストに関するもので、公式のDebian GNU/Linuxライブシステムにはフリーなものしか含まれません。つまり、フリーでないファームウェアファイルは一切含まれません。そういったフリーでないパッケージを手作業でシステムにインストールすることはもちろんできますが、debian-installerのように必要なファームウェアファイルを自動的に検出すようなものは一切ないため、フリーでないものが必要であれば全て手作業によってインストールしなければなりません。

利用可能なDebianライブイメージの種類についての情報はDebianライブイメージのウェブサイトにあります。

3.3.4 ネットワークの設定

コンピュータが固定ネットワークに接続されているならば(つまり、PPP接続ではなくEthernetやそれと同等な接続の場合)、ネットワーク管理者に以下の情報を確認しておいてください。

- ホスト名(自分で決められるかもしれませんが)
- ドメイン名
- コンピュータのIPアドレス
- ネットワークのネットマスク
- ネットワークにゲートウェイがある場合は、経路を通じてデフォルトゲートウェイシステムのIPアドレス
- DNS(Domain Name Service)サーバとして使用するネットワーク上のホスト

接続するネットワークを、DHCP(Dynamic Host Configuration Protocol)を用いて設定する場合で、DHCPサーバがインストールプロセスの間、コンピュータに直接提供するので、この情報は必要ありません。
CHAPTER 3. DEBIAN GNU/LINUX のインストール

3.4 必要な最低限のハードウェア

コンピュータのハードウェアに関する情報が集まったら、そのハードウェアが今から行おうとしているインストールの条件に足るものであるかどうかをチェックしましょう。

Table 3.2 最低限必要なシステム（推奨値）

<table>
<thead>
<tr>
<th>インストールタイプ</th>
<th>RAM（最小）</th>
<th>RAM（推奨）</th>
<th>ハードディスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>デスクトップなし</td>
<td>256メガバイト</td>
<td>512メガバイト</td>
<td>2ギガバイト</td>
</tr>
</tbody>
</table>

The minimum values assumes that swap will be enabled and a non-liveCD image is used. The 「No desktop」 value assumes that the non-graphical (text-based) installer is used.

実際に必要な最小メモリはこの表に挙げたものよりも少なくなります。スワップを有効にすれば、最小32MBでDebianをインストールできます。必要なディスクスペースに必要なディスクスペースについての追加情報は、項D.2をご覧ください。

インストール時に必要なメモリやディスクの量は、どのようなサーバとして使用するかによって異なるため、一般的な量の提示は事実上不可能です。

3.5 マルチブートシステムでの事前パーティション分割

ディスクのパーティション分割」とは、ディスクをセクションに分けることです。各セクションは他セクションから独立しています。この作業は要するに、家の中に壁を作るようなものです。ある部屋に家具を入れても、それは他の部屋には影響しないというわけです。

このセクションで「ディスク」という言葉が出てきた場合、S/390の世界ではこれをDASDやVMミニディスクと置き換えてください。またこの場合「マシン」とはLPARやVMゲストと置き換えてください。

システム上に既にオペレーティングシステム（VM、z/OS、OS/390、…）が入っていてディスク全体を使っているときに同じディスクにDebianを入れたい場合には、ディスクのパーティション分割をやり直す必要があります。DebianはWindowsやMacOSのパーティションにはインストールできません。他のUnixシステムではパーティションを共有することも可能かもしれませんが、ここではそれは取り扱いません。少なくとも、Debianのrootファイルシステムには専用のパーティションが必要となります。

現在のパーティションの設定は、VM diskmapのような、現在のOSに対応したパーティション分割ツールを使えばわかります。パーティション分割ツールには、必ず既存のパーティションを（変更せずに）表示する機能が付いている。

一般的に、新しくファイルシステムの入っているパーティションを変更すると、中の情報はすべて破壊されています。そのため、パーティション分割をやり直す前に、必ずバックアップを取っておいてください。家の例でいうと、壁を動かす前には、家具が壊れないよう、あらかじめどかしておきます。

今のOSの中には、既存のパーティションをその内容を壊ずに移動、サイズ変更できる機能を提供しているものがいます。この機能を使うと既存データを失うことなくスペースを作ることができ、これはほとんどの場合問題なく成功しますが、ディスクのパーティションを変更することは本質的に危険な操作であり、全データを完全にバックアップした上で行うべきものです。
パーティションの作成や削除は既存のOSから同じようにdebian-installerからもできます。経験則ですが、パーティションはそれを使うシステムから作成すべきです。つまり、Debian GNU/Linuxにより使われるパーティションはdebian-installerから作成すべきで、他のOSから利用するパーティションはそちらから作成すべきです。debian-installerにはLinux以外のパーティションを作成する機能があり、そうやって作成したパーティションは他のOSから通常問題なく使えますが、ごくレアな状況でこれが問題となる可能性があります。そのため、確実を期するのであれば、他のOSで利用するパーティションの作成にはネイティブのパーティション用ツールを使ってください。

同じマシンに複数のOSをインストールするつもりでしたら、Debianをインストールする前に、他のOSを全部先にインストールしておきましょう。Windowsなどの他のOSをインストールすると、Debianを起動する機能が破壊されてしまったり、あるいはそのOSのものでないパーティションをフォーマットし直すよう促されたりするからです。

このような動作から復旧したり、そのような提案を断ったりすることはできますが、先にそちらのシステムをインストールしておくと、最初からトラブルを避けることができます。

3.6 インストール前に行うハードウェア・OSの設定

この節では、Debianのインストールに先立って必要となるハードウェアの設定について見ていきます。通常この作業では、システムのBIOS/UEFI/システム用ファームウェアの設定をチェックし、場合によってはその設定を変更することになります。「BIOS/UEFI」や「システムファームウェア」は、ハードウェアが利用する中核的なソフトウェアで、電源投入後のブートプロセスの間に起動される、最も重要なものです。

3.6.1 BIOS 設定

Debian GNU/LinuxをS/390やzSeriesマシンにインストールするには、まずカーネルをこれらのシステムで起動しなければなりません。これらのプラットフォームにおける起動メカニズムは、そもそも異なる立ちからのプラットフォームで作業をしている間には、大きな違いに気付くことになります。（すべてではないにせよ）ほとんどの作業を、telnetやブラウザのようなクライアントセッションソフトウェアを用いて、リモートで行うことになるのです。これは3215/3270コンソールがキャラクタベースではなくラインベースであるという、特殊なシステムアーキテクチャだからです。

このプラットフォームでのLinuxは、マシン本体そのもので、LPAR(Logical Partition)と呼ばれるものの上、あるいはVMシステムから与えられた仮想マシン上で動作させることが可能です。ブートメディアはランタイムモードにより異なります。例えば仮想マシンでは仮想カードドライバを使うのに、LPARではHMC(Hardware Management Console)から起動することもあります。

実際にインストールを行うまえに、設計したり準備したりする段階をいくつか踏まなければならない。全体の手順、例えばインストールメディアの準備や、そのメディアからの実際の起動などは、IBMからの文書で説明されています。ここでの情報は繰り返すほど不要ですが、必要でしょう。しかし、必要となるDebian特有の情報や、その取得方法については、ここでの述べたいと思います。両方の情報源を元に、マシンと起動用インストールメディアを起動前に準備してください。クライアントセッションでwelcomeメッセージを見たら、またこの文書に戻り、Debianのインストール手順を行ってください。

3.6.2 ネイティブなLPARへのインストール

LPARをLinux向けに設定するには、Linux for S/390 Redbookの5章とLinux for IBM eServer zSeries and S/390: Distributions Redbookの3.2章をご覧ください。

3.6.3 VMゲストとしてのインストール

Linuxを動作させるVMゲストの設定については、Linux for S/390 Redbookの6章と、Linux for IBM eServer zSeries and S/390: Distributions Redbookの3.1章をご覧ください。

すべてのファイルをgenericサブディレクトリからCMSディスクにコピーする必要があります。kernel.debianとinitrd.debianは、必ず80文字の固定レコード長としたバイナリモードで転送してください（FTPクライアントにBINARΥとLOCSITE_FIX 80を指定）。parmfile.debianはASCII形式でEBCDIC形式でかまいません。ファイルを適切な順番にパッチする、debian.execサンプルスクリプトには、イメージを含んでいます。
3.6.4 インストールサーバの設定

(直接にせよ web プロキシ越しにせよ) インターネットに接続していなければ、インストールしようと
している S/390 からアクセスできる場所にローカルなインストールサーバが必要です。このサーバ
は、インストールを行いたいすべてのパッケージを、NFS, HTTP, FTP のいずれかで提供できなければ
なりません。

インストールサーバには、Debian GNU/Linux ミラーのいずれかから、ディレクトリ構造をそのまま
コピーしてこなければなりません。ただし必要なのは S/390 とアーキテクチャに依存しないファイル
だけです。あるいは、インストールイメージの内容をこのディレクトリツリーにコピーしたのでも
構いません。

FIXME: more information needed — from a Redbook?
Chapter 4
システムインストールメディアの入手

4.1 公式 Debian GNU/Linux インストールイメージ

現在、Debian GNU/Linux をインストールする最も簡単な方法は、公式 Debian インストールイメージセットを使うことです。ベンダからこの CD/DVD セットを購入できます（CD ベンダページをご覧ください）。高速なネットワーク接続と CD/DVD 書き込み装置があれば、Debian ミラーサイトからインストールイメージをダウンロードしてもかまいません（詳細説明は Debian CD ページと Debian CD FAQ をご覧ください）。そのような光学インストールメディアを持っていて、マシンをこれらから起動できるなら、第 5 章の項目までスキップできます。よく使用するファイルが CD や DVD の最初のイメージにあることを保証するために、大きな労力が費やされています。そのため、基本的なデスクトップは最初の DVD だけで足りますし、限られた範囲内では、最初の CD イメージのみでもインストールできます。

昨今の標準としては、CD は少々容量に制限があり、グラフィカルデスクトップ環境のすべてを、先頭の CD だけではインストールできなかったため、いくつかのデスクトップ環境では、CD でのインストールに、ダウンロード用のネットワーク接続か、追加 CD から残りのファイルの取得が必要となります。

もう一点、留意しておいてください：あなたが使っているインストールメディアが必要なパッケージを含んでいない場合、その後動作している新たな Debian システムからこれらのパッケージをインストールできます（インストール完了後になります）。特定のパッケージを見つけるためにどのインストールメディアにあるかを知る必要がある場合は、https://cdimage-search.debian.org/ を見てください。

あなたのマシンが光学メディアからの起動をサポートしていない場合、CD/DVD のセットを持っているので、インストールメディアから VM リーダー、ディスクからカーネルの手動起動といった別の方法が用意されます。これらの方法による起動に必要なファイルもディスクに収録されており、Debian ネットワークアーカイブとディスクのフォルダ構成は同じです。そのため、CD で起動に必要なファイルがディスク内のアーカイブファイルからインストールメディアの同じディレクトリやサブディレクトリからファイルを探せます。

いったんインストールが起動すれば、ほかの必要なファイルはすべてディスクから取得できます。インストールメディアセットを持っている場合は、インストールのシステムステートをダウンロードして、VM minidisk、のいずれかに保存します。そしてそこからインストラを起動します。

4.2 Debian ミラーサイトからのファイルのダウンロード

もっとも近い（そしておそらくもっとも速い）ミラーサイトを探すには、Debianミラーサイト一覧を参照してください。

4.2.1 どこでインストールファイルを探すか

様々なインストールファイルが各 Debian ミラーサーバの debian/dists/bullseye/main/installer-s390x/-current/images/ にあります。各イメージとその用途が、MANIFEST に記載されています。
4.3 自動インストール

複数のコンピュータにインストールするため、完全自動インストールが可能です。このためのDebianパッケージは、fai-quickstart（インストールサーバとして使用可能）とDebianインストーラそのものです。詳細情報はFAI home pageをご覧ください。

4.3.1 Debianインストーラを用いた自動インストール

Debianインストーラは、preconfigurationファイルによる自動インストールをサポートしています。preconfigurationファイルは、ネットワークやリムーバブルメディアから読み込まれ、インストール中の質問に対する回答を、埋めていくのに使われます。

編集できる動作サンプルを含むpreseedの完全なドキュメントは、付録Bにあります。

4.4 インストールファイルの整合性の検証

ダウンロードしたファイルの整合性をDebianミラー上にあるSHA256SUMSまたはSHA512SUMSファイルで提供しているチェックサムに対して検証できます。これらのファイルはインストールイメージ自体と同じ場所にあります。次の場所を見てください。

• CDイメージのチェックサムファイル、
• DVDイメージのチェックサムファイル、
• 他のインストールファイルのチェックサムファイル。

ダウンロードしたインストールファイルのチェックサムを計算するには、それぞれ

```
sha256sum filename.iso
```

もしくは

```
sha512sum filename.iso
```

を使い、そして表示されたチェックサムを対応するファイルSHA256SUMSもしくはSHA512SUMSで比較してください。

Debian CD FAQにはこのトピックのもっと有用な情報（例えばスクリプトcheck_debian_isoで上の手順を半自動化できます）があり、説明や上のチェックサムファイル自体の整合性の検証方法もあります。
インストールシステムの起動

5.1 S/390でのインストーラの起動

5.1.1 S/390の制限
S/390でインストールシステムを動かすには、ネットワークの設定がすんでおり、sshセッションが使えることが必要となります。ブートプロセスはネットワーク設定からはじまり、ここでネットワークのパラメータがいくつか聞かれます。この設定に成功したら、sshセッションを起動してシステムにログインします。すると標準のインストールシステムが起動されます。

5.1.2 S/390起動パラメータ
S/390では、起動パラメータはparmファイルに追加します。このファイルはASCIIフォーマットないしEBCDICフォーマットになります。1行につき80文字の固定長でなければなりません。サンプルparmファイルparmfle.debianを、インストールイメージで提供しています。パラメータが80文字の制限よりも長い場合は、単純に次の行の先頭から続きを読みます。すべての行を空白で区切ることなく、結合してカーネルに渡します。

論理パーティション(LPAR)や、たくさんのデバイスがある仮想マシン(VM)でインストーラをブートする場合、デバイスの固定セットにリストを制限するよう、カーネルに指示できます。LPARモードでよくあるのですが、たくさんのデバイスが見えている場合、インストールのブートプロセスに、何を使用するか知らせます。「cio_ignore」オプションは、ブラックリスト(指定したデバイスのみ使禁)とホワイトリスト(指定したデバイスのみ使用許可)の両方を、以下のようにサポートしています。

```bash
# blacklist: just ignore the two devices 300 and 301
cio忽略=0.0.0300-0.0.0301
# whitelist: ignore everything but 1150, FD00, FD01 and FD02
cio忽略=all,10.0.1150,10.0.fd00-0.0.fd02
```

デバイス名の16進表記は、すべて小文字である必要があることに注意してください。さらに、この起動パラメータを使用する場合、デバイスをすべて記述する場合が必要があります。ここには少なくともディスクとネットワークデバイス、コンソールを含めてください。インストールのブートプロセス中に考慮されるためには、上記のオプションをparmfle.debianに追加する必要があります。

5.2 起動パラメータ
起動パラメータとはLinuxカーネルのパラメータのことで、一般には周辺機器を適切に扱うために用います。ほとんどの場合、カーネルは周辺機器の情報を自動的に検出します。しかし、場合によっては少々カーネルを助けあげないとけないこともあるのです。

システムを初めて起動する場合は、デフォルトの起動パラメータを試して(つまりなにもパラメータを設定せずに)、正確に動作するか観察してください。たいていはうまくいくと思います。なかに問題が起こったら、そのハードウェアに関する情報をシステムに伝えるためのパラメータを調べ、あとで再起動します。
多くの起動パラメータの情報は(曖昧なハードウェア用のtips込みで)、Linux BootPrompt HOWTOで見つけられます。本節は、最も顕著なパラメータの概要だけを含んでいます。いくつか共通のものは項5.3以下に含まれています。

5.2.1 Debian Installer パラメータ

インストールシステムは、おそらく便利だと思われる、追加起動パラメータをいくつか認識します。多くのパラメータは、カーネルコマンドラインオプションの制限を避けたり、パラメータの入力を簡単にするため、「短縮形」を持っています。パラメータに短縮形がある場合、(通常の) 長い形式の後にはカッコで囲っています。本マニュアルの例は、通常、短縮形も使用しています。

debconf/priority(priority) このパラメータには、表示するメッセージのもっとも低い優先度を設定します。

デフォルトのインストールでは、priority=highを使用します。優先度が「高」のものと、「重要」のもののにメッセージを表示し、「標準」や、「低」のメッセージはスキップします。問題にぶつかった場合、インストーラは必要な優先度に調整します。

起動パラメータにpriority=mediumを追加すると、インストールメニューが表示され、インストールについて、さらに多くの制御を行うことができます。priority=lowを使った場合は、すべてのメッセージを表示します (expert起動法と等価)。priority=criticalの場合は、インストールシステムは重要なメッセージだけを表示し、大騒ぎせずに正しい設定をしようとします。

DEBIAN_FRONTEND この起動パラメータはインストーラで使うユーザインターフェースを制御します。現在有効な設定は以下の通りです。

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=gtk

デフォルトのフロントエンドは DEBCONF_FRONTEND=newt です。シリアルコンソールでインストールするには、DEBIAN_FRONTEND=text とすべきでしょう。専用に調整されている種類のインストールメディアでは限られたフロントエンドしか選択できないようになっている場合がありますが、newtフロントエンドとtextフロントエンドは、デフォルトインストールメディアのほとんどで利用可能です。サポートしているアーキテクチャでは、グラフィカルインストーラがgtkフロントエンドを使用します。

BOOT_DEBUG この起動パラメータに2を設定すると、インストールの起動プロセス中に詳細なログを出力します。3を設定すると、起動プロセスの要所でデバッグ用のシェルが利用できます。 (シェルを終了すると起動プロセスを継続します)

- BOOT_DEBUG=0 デフォルトです。
- BOOT_DEBUG=1 通常よりも詳細です。
- BOOT_DEBUG=2 デバッグ情報を大量に表示します。
- BOOT_DEBUG=3 詳細なデバッグを行うよう、プートプロセスの様々な箇所でシェルが実行されます。起動を続けるにはシェルから抜けてください。

log_host, log_port これによりインストーラは、ローカルファイルと同様に、指定したホストとポートを持つリモートのsyslogに対して、ログメッセージを転送します。指定しない場合、ポートのデフォルト値を、標準 syslog ポートの 514 とします。

lowmem インストーラが、利用可能なメモリを元に算出するデフォルト値よりも、より高レベルな低メモリ (lowmem) レベルに制御するのに使用できます。有効な値は、1か2です。項6.3.1.1もご覧ください。

noshell インストーラが tty2, tty3 の対話シェルを提供しないようにします。物理的セキュリティが限定されている、ネットインストールの際に便利です。

1現在のカーネル (2.6.9 以降) では、コマンドラインオプションを 32 個と環境オプションを 32 個使用できます。それを越えると、カーネルはパニックしてしまいます。また、カーネルコマンドライン全体で 255 文字という制限もあります。いずれも、制限を超えた場合は避けのうちに作り出される可能性があります。
インストールシステムの起動 5.2. 起動パラメータ

debian-installer/framebuffer (fb) いくつかのアーキテクチャでは、多くの言語でインストールを行うために、カーネルフレームバッファを使用します。フレームバッファが問題となるシステムの場合、パラメータ fb=false によってこの機能を無効にできます。bterm や bogl に関するエラーメッセージや、真っ暗な画面、インストールが始まって数分後にフリーズがおきる問題の兆候です。

netcfg/disable_autoconfig デフォルトで debian-installer は、IPv6 オートネゴシエーションや DHCP により、ネットワークの設定を自動検出します。検出に成功すると、確認する機会がなく検出値を変更できません。自動設定が失敗する場合のみ、手動ネットワーク設定を行えます。ローカルネットワークに IPv6 ルータや DHCP サーバがあるのに、それを回避したい場合 (例: 誤った値を返す等)、ネットワークの自動設定をせず (v4, v6 とも) 手動で情報を入力するには、netcfg/disable_autoconfig=true でוקら設定をします。

hw-detect/start_pcmcia PCMCIA サービスが原因で問題が発生する場合、false を設定することで、起動しないようにすることができます。いくつかのラップトップコンピュータには、そういう行儀悪さがあることが知られています。

disk-detect/dmraid/enable(dmraid) インストーラで、Serial ATA RAID (ATA RAID, BIOS RAID, fake RAID とも呼ばれる) のサポートを有効にする場合 true にセットします。このサポートは現在実験中であることご注意ください。追加情報を Debian Installer Wiki にあります。

preseed/url(url) preconfiguration ファイルをダウンロードする URL を指定します。これは自動インストールで使用します。項 4.3 を参照してください。

preseed/file(file) 自動インストールで読み込む preconfiguration ファイルの PATH を指定します。項 4.3 を参照してください。

preseed/interactive preseed で質問を表示する場合には、true を設定します。事前設定ファイルのテストやデバッグに便利でしょう。これは、起動パラメータに渡すパラメータには影響を及ぼしませんが、特殊な文法が使えるようになります。詳細は、項 B.5.2 をご覧ください。

auto-install/enable(auto) 通常 preseed の前に行われる質問を、ネットワークの設定が終わるまで遅らせます。自動インストールでこのパラメータを使用する際には、項 B.2.3 をご覧ください。

finish-install/keep-consoles シリアル端末や管理コンソールからインストール中に、通常の仮想コンソール (VT1 から VT6) は、通常 /etc/inittab で無効にされています。これを回避するには true をセットしてください。

cdrom-detect/eject デフォルトで debian-installer は、再起動の前にインストールに使用した光学メディアを、自動的に排出します。自動的にそのようなメディアから起動しないようなシステムでは、これは必要ありません。自動設定が失敗する場合のみ、手動でメディアの排出機能を無効にできます。自動的にメディアをリロードできない場合は、false に設定すると、光学メディアを無効にできます。また、システムの初期インストール後に、光学ドライブから自動起動しないことを保証する必要があります。

base-installer/install-recommends(recommends) このオプションを false にすると、インストール中でも、またインストール後でも、「推奨」パッケージを自動的にインストールしないように、パッケージ管理システムを設定します。項 6.3.5 をご覧ください。

これにより、より無駄のないシステムを得られます。通常可能であると期待する機能が欠落するかもしれないことに注意してください。完全な機能が必要な場合には、推奨パッケージを手でインストールすることになるでしょう。そのためこのオプションは、経験豊富なユーザにしか有用ではないでしょう。

debian-installer/allow_unauthenticated デフォルトでは、既知の gpg キーで認証されたリポジトリが、インストールには必要です。この認証を無効にするのに true と設定してください。警告: 危険です。お勧めしません。

rescue/enable 通常のインストールではなく、レスキューモードを実行する場合、true に設定してください。項 8.6 をご覧ください。
5.2.2 起動パラメータで質問に答える

例外的に、インストール中の質問に起動パラメータで答を与えることができます。これは、特殊な状況でのみ便利です。この方法の概要は、項B.2.2にあります。特殊な例を以下に示します。

```
debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale)
```

インストール中やインストール後で使用する、言語・国・ロケールを指定する方法はふたつあります。

最初の、最も簡単な方法は locale パラメータを渡すことだけです。言語や国はその値から導かれます。例えば、言語にドイツ語、国にスイスを指定する場合、locale=de_CH とします（インストールしたシステムのデフォルトロケールは de_CH.UTF-8 にセットされます）。制限は、言語、国、ロケールのすべての組み合わせを、この方法で得られるわけではないということです。

ふたつ目のもっと柔軟な選択肢は、language と country を別々に指定することです。この場合、特定のデフォルトロケールをインストールしたシステムに指定するため、任意に locale を加えられます。例: language=en country=DE locale=en_GB.UTF-8

```
anna/choose_modules (modules)
```

デフォルトではロードされないインストーラコンポーネントを、自動的に読み込むのに使用します。追加コンポーネントの例として、openssh-client-udeb（インストール中にscp コマンドを使用できる）が便利です。

```
netcfg/disable_autoconfig (ipv6)
```

IPv6 オートネゴシエーションや DHCP を無効にし、静的ネットワーク設定を強制するには、true と設定します。

```
mirror/protocol (protocol)
```

デフォルトでインストーラは、Debian のミラーサイトからファイルをダウンロードするのに http プロトコルを使用し、通常の優先度ではインストール中にftpに変更できません。このパラメータに ftp と設定すると、インストーラに ftp を使用するように強制できます。一覧から ftp ミラーを選択できますが、ホスト名を手入力しなければならないことに注意してください。

```
tasksel:tasksel/first (tasks)
```

kde-desktop タスクのような、タスク一覧に表示されないタスクを選択するのに使用します。さらなる情報は項6.3.6.2をご覧ください。

5.2.3 カーネルモジュールヘパラメータを渡す

カーネル内にコンパイルされているドライバの場合、カーネルのドキュメントに記載されている方法でパラメータを渡します。しかし、ドライバがモジュールとしてコンパイルされており、インストールしたシステムの起動時に、インストール時と比べてカーネルモジュールの読み込みが若干異なる場合、通常の方法ではモジュールにパラメータを渡せません。代わりに、インストーラが認識できる特殊文法を使って適切な設定ファイルにパラメータを格納しなければなりません。パラメータは自動的にインストールしたシステムに伝播します。

モジュールにパラメータを渡さなければならないというのは、本当にまれな状況だということに注意してください。ほとんどの場合、カーネルはシステムにあるハードウェアから得られる値を検出し、適切な値を設定してくれます。しかしある状況下では、未だにパラメータを手で設定しなければなりません。モジュールにパラメータを設定する文法は以下のようになります。

```
module_name.parameter_name=value
```

1つないし複数のモジュールに、複数のパラメータを渡す場合は繰り返してください。例えば、古い3ComのネットワークインターフェースカードでBNC(coax)を使用し、IRQ 10 を設定する場合は、以下のようになります。

```
3c509.xcvr=3 3c509.irq=10
```

5.2.4 カーネルモジュールのブラックリスト化

時には、カーネルやudevが自動的にモジュールを読み込むのを防ぐために、ブラックリストに載せる必要があるかもしれません。目的の1つには、特定のモジュールが、あなたのハードウェアで問題を起こす場合が挙げられます。カーネルに、同じデバイスに対して複数の異なるドライバがある場
5.3 インストールプロセスのトラブルシューティング

5.3.1 起動設定

ブートプロセスの最中にカーネルがハングしたり、搭載されている周辺機器やドライブが正確に認識されていないなどの問題が起こったら、まず項5.2の説明に従って起動パラメータを確認してください。

5.3.2 カーネルの起動時メッセージの意味

ブートシーケンスの途中で、can’t find something (~が見つからない), something not present (~が存在しない), can’t initialize something (~を初期化できない), this driver release depends on something (このドライバには〜が必要だ)などのメッセージがたくさん出力されることがあります。これらのメッセージのほとんどは無害です。これらのメッセージが出力される理由は、インストールシステムのカーネルが、いろいろな周辺デバイスのできるだけ多くに対応しようとしているからです。そのため、OSが実際には存在しない周辺機器を探すことになるので、文句を吐くわけです。システムがしばらく止まったように見えることもあります。これはデバイスが反応していないために起こるものです(実際にはそのデバイスは存在しないので、止まってみえるわけです)。システムの起動に要する時間が遅い場合は、後で自前のカーネルを作ることもできます(項8.5参照)。

5.3.3 インストールで発生した問題の報告

最初の起動段階は通過したのに、インストールが完了できなかった場合は、メニューからデバッグログを保存を選択するとよいかもしれません。インストーラからのシステムのエラーログや設定情報をストレージメディアに格納したり、webブラウザでダウンロードしたりできるようになります。この情報は、何か問題が発生しているように修正するか、いった状況を示しているかもしれません。バグ報告を送る際は、この情報に付けることができます。また、その他のインストールメッセージは、インストール中では/var/log/で、インストールしたシステムが起動した後では/var/log/installer/にあるはずです。

5.3.4 インストールレポートの送信

まだ問題がある場合には、インストールレポートをお送りください。また、インストールが成功したときのインストールレポートもお送りください。そうすると、たくさんのハードウェア設定情報の手に入れることができます。あなたのインストールレポートは、Debian バグ追跡システム (BTS) で公開され、公開メールフォーラムのアーカイブに転送されることになります。このモニタリングは、問題が修正されているかを確認するのに役立ちます。

動作するDebianシステムがある場合、インストールレポートを送る最も簡単な方法は以下のようになります。installation-reportとreportbugパッケージを使用すれば、簡単な設定をした上でreportbugを実行して報告が送信されます。

代わりに、インストールレポートを記入する際には、以下のテンプレートを参照できます。テンプレートの空欄を埋めた上で、installation-reports疑似パッケージのバグ報告としてsubmit@bugs.debian.org宛に送布してください。

Package: installation-reports

Boot method: <インストールの起動方法は? CD/DVD/USB メモリ? ネットワーク?>
Image version: <イメージをダウンロードした URL 全体がベストです>
CHAPTER 5. インストールシステムの起動

5.3. インストールプロセスのトラブルシューアイニング

Date: <インストールした日時>

Machine: <マシンの説明（例 IBM Thinkpad R32）>
Processor:
Memory:
Partitions: <df -Tl の結果；生のパーティションテーブルが望ましいです>

Output of lspci -nn and lspci -vnn:

Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn’t try it

Initial boot: []
Detect network card: []
Configure network: []
Detect media: []
Load installer modules: []
Detect hard drives: []
Partition hard drives: []
Install base system: []
Clock/timezone setup: []
User/password setup: []
Install tasks: []
Install boot loader: []
Overall install: []

Comments/Problems:

＜インストールに関すること。初期インストール時に抱いた感想、コメント、アイデアなどがあればそれらもお書きください＞

バグ報告の際には、カーネルがハングした直前に表示されたカーネルメッセージを添えて、何が問題なのかを説明してください。また、問題が起きるまでにシステムに対して行ったことも記述してください。
Chapter 6

Debian インストーラーの使用法

6.1 インストーラーの動作

For this architecture the installer uses a text-based user interface. A graphical user interface is currently not available.

Debian Installerは各インストールタスクを実行するために、たくさんの特定用途コンポーネントから成ります。各コンポーネントは、必要ならユーザーに質問をして、そのタスクを実行します。この質問には優先度が設定されており、この優先度はインストーラの起動時に設定することができます。

デフォルトのインストールでは、不可欠な（優先度が高い）質問しかありません。これにより、ユーザーの入力をほとんど行わず、高度な自動インストールを行うことができます。コンポーネントは自動的に順番に実行されます。どのコンポーネントを実行するかは、主に使用するインストール法やハードウェアに左右されます。インストーラーは、質問しない項目についてはデフォルト値を使用します。

問題がある場合はエラー画面を表示し、インストーラーメニューに、代替アクションを選択するように表示するかもしれません。いずれも問題なければ、ユーザーは各コンポーネントの質問に答えて行くだけでしょう。重大なエラー通知は優先度を「重要」に設定されているため、常に表示されます。

インストーラーが使用するデフォルト値は、debian-installer の起動時にパラメータで渡して指定できます。たとえば、強制的に静的ネットワーク設定をしたい場合（デフォルトでは可能なら IPv6 オートネゴシエーションと DHCP を利用）、ブートパラメータに netcfg/disable_autoconfig=true を加えられます。利用できるオプションは項 5.2.1 を参照してください。

パワーユーザーは、メニュー駆動インターフェース（自動で順に各ステップを実行するインストーラーではなく、ユーザーが各ステップを制御する）の方が、満足するかもしれません。手動（メニュー駆動）でインストーラーを使用するには、起動引数に priority=medium を加えてください。

ハードウェアをインストールする際に、オプションをカーネルモジュールへ渡す必要がある場合は、「エキスパート」モードでインストーラーを起動する必要があります。これは、インストーラーを起動するコマンドに expert を使用する、あるいは起動引数に priority=low を加えることで行います。エキスパートモードでは debian-installer をフルコントロールできます。

In the text-based environment the use of a mouse is not supported. Here are the keys you can use to navigate within the various dialogs. The Tab or right arrow keys move 「forward」, and the Shift-Tab or left arrow keys move 「backward」between displayed buttons and selections. The up and down arrow select different items within a scrollable list, and also scroll the list itself. In addition, in long lists, you can type a letter to cause the list to scroll directly to the section with items starting with the letter you typed and use Pg-Up and Pg-Down to scroll the list in sections. The space bar selects an item such as a checkbox. Use Enter to activate choices.

ダイアログには、追加分ヘルプ情報があるものがあります。ヘルプがある場合、画面の最下行に表示されています。F1 キーを押してアクセスできます。

S/390 は仮想コンソールをサポートしません。以下で説明するように、ログの参照用に第 2 第 3 の ssh セッションを開いてください。

エラーメッセージとログは第 4 コンソールにデフォルトで表示されます。このコンソールへは左 Alt-F4（左 Alt キーを押しながら F4 ファンクションキーを押す）を押してアクセスしてください。左 Alt-F1 で、メインのインストーラープロセスに戻ります。

これらのメッセージは /var/log/syslog で見つけることもできます。インストールの後、これらのログ はあなたの新システムの /var/log/installer/syslog にコピーされます。他のインストールメッセージは、インストール中には /var/log/ に、インストールしたシステムでコンピュータが起動した後には
6.2 コンポーネント入門

ここではインストーラーコンポーネントを各コンポーネントの簡単な説明を添えて一覧します。特定のコンポーネントを使用するにあたり、知る必要があるかもしれない詳細は項6.3 にあります。

main-menu インストーラーの操作中にユーザーにコンポーネントのリストを見せ、選択されたコンポーネントを起動します。main-menu では質問の優先度が「中」に設定されています。そのため、優先度が「高」や「重要」(デフォルトは「高」) に設定されている場合は、メニューを見ることはないでしょう。一方、あなたの入力が必要なエラーが起きた場合、その問題を解決するために、質問の優先度が一時的に格下げされるかもしれません。その場合、メニューが表示される可能性があります。

現在実行しているコンポーネントから抜けるために、Go Back ボタンを繰り返し選択してメインメニューに戻れます。

localechooser インストール中・インストールしたシステムの、地域オプション（言語、国、ロケール）の選択を行います。インストーラーは選択した言語でメッセージを表示しますが、その言語でのメッセージの翻訳が完了していない場合は、英語で表示します。

console-setup キーボード（レイアウト）のリストを表示します。お持ちのキーボードモデルに一致するものを選択してください。

hw-detect システムのほとんどのハードウェアを自動検出します。これには、ネットワークカード、ディスクリング、PCMCIA が含まれます。

cdrom-detect Debian インストールメディアを探しマウントします。

netcfg インターネットへ通信できるように、コンピュータのネットワーク接続を設定します。

iso-scan ハードディスクにある ISO イメージ (.iso ファイル) を探します。

choose-mirror Debian アーカイブミラーのリストを表示します。インストールするパッケージの取得元を選択できるでしょう。

cdrom-checker インストールメディアの整合性チェック。これにより、インストールイメージが壊れているか自分で保証できます。

lowmem lowmem はシステムの搭載するメモリが少ないかを確認し、少なければ debian-installer の不必要な部分を、メモリから（いくつかの機能を犠牲にして）削除する様々なトリックを行います。

anna Anna's Not Nearly APT. (AnnaはちっともAPT(適切)じゃない) 選択したミラーサーバーやインストールメディアから、パッケージを取得してインストールします。

user-setup root パスワードの設定や、root 以外のユーザーの追加を行います。

clock-setup システム時計を更新して、時計を UTC にあわせるかどうかを決定します。

tzsetup あらかじめ選択した場所を元に、タイムゾーンを選択します。

partman システムの内蔵ディスクを分割し、選択したパーティションのファイルシステムを作成し、マウントポイントにそのファイルシステムをマウントすることができます。完全自動モードや LVM サポートといったさらに面白い機能があります。これは Debian での好ましいパーティショング分割ツールです。

partitioner システムのディスクを分割することができます。あなたのコンピュータのアーキテクチャに最適な、パーティション分割プログラムが選ばれます。

partconf パーティションのリストを表示します。また、選択したパーティションにファイルシステムを作成します。

partman-lvm LVM (Logical Volume Manager) の設定について、ユーザーの補助を行います。

/var/log/installer/ にあります。
CHAPTER 6. DEBIAN インストーラーの使用法 6.3. それぞれのコンポーネントの使用法

partman-md ソフトウェア RAID (Redundant Array of Inexpensive Disks) の設定をユーザーに許可します。このソフトウェア RAID は、新しめのマザーボードに見られる、安い IDE (疑似ハードウェア) RAID コントローラより通常優秀です。

base-installer 再起動時に、コンピュータが Debian GNU/Linux として動作するための、もっとも基本的なパッケージセットをインストールします。

apt-setup インストーラーを起動したメディアを元に、ほとんど自動で apt の設定を行います。

pkgsel 追加ソフトウェアをインストールするのに tasksel を使用します。

os-prober コンピュータに現在インストールされている OS を検出し、この情報を (bootloader のスタートメニューに発見した OS を加える機能を提供する) bootloader-installer へ渡します。これに、起動時にどの OS で起動するかを、ユーザーが簡単に決める方法です。

bootloader-installer 様々なブートローダインストーラーがそれぞれ、ハードディスクにブートローダプログラムをインストールします。これは、USB メモリや CD-ROM を使用しないで Linux を起動するのに必要です。ブートローダの多くは、コンピュータが起動することに代替オペレーティングシステムを選ぶことができます。

shell メニューから、もしくは第 2 コンソールで shell を実行できます。

save-logs 後で Debian 開発者へ、インストーラーソフトウェアの障害を正確に報告するために、障害に遭遇した際の、USB メモリ、ネットワーク、ハードディスク、その他メディアに情報を記録する方法を提供します。

6.3 それぞれのコンポーネントの使用法

本節では、各インストーラーコンポーネントの詳細について述べていきます。コンポーネントは、ユーザーに認識できる段階へグループ化されました。それらは、install 中に現われる命令の形で示されます。すべてのモジュールを、インストール時に使用するとは限らない、ということに注意してください。どのモジュールを実際に使用するかは、使用するインストール法やハードウェアに左右されます。

6.3.1 Debian インストーラーのセットアップとハードウェアの設定

Debian インストーラーが起動して、最初の画面が表示されているとしましょう。このとき、debian-installer の機能はまだ制限されています。ハードウェア、希望する言語、実行するタスクなどに関しても、まだ知りません。しかし心配しないでください。debian-installer は非常に賢いので、ハードウェアの自動検出をしたり、コンポーネントの残りを見つけたり、高性能なインストールシステムに自分自身をアップグレードすることができます。しかし、(希望する言語、キーボードレイアウト、使用するネットワークミラーの選択のように) いくつかのタスクでは自動で決められませんので、debian-installer を助けてあげる必要があります。

この段階で debian-installer がハードウェア検索を数回行うことになることがありますが。最初の検出では、インストーラーのコンポーネントをロードするのに欠かせないハードウェア（例: CD-ROM ドライブやネットワークカード）を認識することが目標です。初回の実行ですべてのドライバが使用可能になるわけではないので、ハードウェア検出をこのプロセスの後で繰り返す必要があります。

6.3.1.1 利用可能なメモリのチェック / 低メモリモード

debian-installer がますます行うことの一つが、利用可能なメモリをチェックすることです。利用可能なメモリに制限がある場合、このコンポーネントは、システムに Debian GNU/Linux をインストールできるように、インストールプロセスにいくらかの変更を加えます。

インストーラーで消費メモリを抑えるには、翻訳を無効にすることです。これは、英語でしかインストールできないと言うことでもあります。もちろん、インストール完了後に、インストールしたシステムを地域化することができます。

これで充分でなければ、インストーラーは、基本的なインストールを完了するのに必要なコンポーネントのみを読み込み、メモリ消費をさらに抑えようとしています。これはインストールシステムの機能を制限します。手動で機能を追加する手段を提供していますが、それよりさらにメモリを消費し、結果インストールに失敗する可能性を考慮する必要があります。
インストーラーが低メモリモードで動作する場合、比較的大きなswapパーティション（64–128MB）を作成するのをお勧めします。swapパーティションは仮想メモリとして使用され、システムで利用できるメモリの量を増やします。インストーラーは、インストールプロセスで可能な限り早くswapを有効にします。swapを有効とすると、ディスク負荷が増加し、システムのパフォーマンスが低下する事に注意してください。

こういった措置にもかかわらず、まだシステムがフリーズしたり、予期しないエラーが発生したり、システムがメモリ範囲外で動作（VT4 と syslog に「Out of memory」メッセージを出力）して、プロセスがカーネルに強制終了される可能性があります。

例えば、swap パスが不十分な場合、低メモリモードで大きなext3 ファイルシステムを作成すると、エラーを報告します。swapをもっと大きくしてもだめな場合、ext2（インストーラーの必須コンポーネント）で作成してください。ext2パーティションをインストール後にext3に変更できます。

インストーラーは章5.2.1で説明している「lowmem」ブートパラメータを使用すると、利用可能なメモリを元にしたlowmemレベルよりも高いレベルにできます。

6.3.1.2 地域オプションの選択

ほとんどの場合、最初の質問はインストール中とインストールしたシステム双方の、地域オプションの選択に関することです。地域オプションは、言語、場所、ロケールからなっています。

異なるダイアログの翻訳が利用できるなら、選んだ言語をインストールプロセスの残りで使用できます。選択した言語で、有効な翻訳が利用できなければ、インストーラーは自動的に英語になります。選択した地理的場所（ほとんどの場合で国）は、インストールプロセスの後半で、デフォルトのタイムゾーンの抽出と、その国に適切なDebian ミラーライストの抽出に使用されます。言語と国は、ともにシステムのデフォルトロケールの決定や、正しいキーボードレイアウトの選択を支援します。

最初に好みの言語を選択することになります。言語名は英語（左側）と原語（右側）の両方で表示しています。右側の名称は、その言語そのもので書かれた表記です。このリストは英語名順に並んでいます。このリストの先頭には言語の代わりに「C」ロケールを選択する追加オプションもあります。 「C」ロケールを選択するとインストールプロセスは英語で行われます。また、インストールしたシステムにはlocalesパッケージがインストールされず、いずれの地域もサポートしません。

次に地理的な場所を選択するよう求められます。言語選択時に、その言語が複数の国で公用語となっている場合、その国だけのリストを表示します。そのリストにない国を選択する場合、その他（最後の選択肢）を選択してください。すると、大陸のリストを表示します。大陸を選択すると、関連する国のリストを表示します。

言語に対して国がひとつしかない場合、国のリストには、その国が属する大陸か地域を表示し、その国をデフォルトで選択状態とします。別の大陸にある国を選択したければ、Go Back を選択してください。

注意

インストールしたシステムのタイムゾーンを設定するため、あなたが住む、あるいは設置する国を選択することが重要です。

ロケールが定義されていない言語と国組み合わせを選択して、その言語に複数のロケールが存在する場合、インストールしたシステムのデフォルトロケールを、その中から選ぶことになります。そうでなければ、デフォルトロケールを選択した言語と国をもとに選択されます。

前の段落で説明したように選択されたデフォルトロケールは、文字コードにUTF-8を使用します。

優先度が低でインストールしている場合、選択したロケール（いわゆる「レガシー」ロケール）を含むを選択して、インストールしたシステムに生成できます。この場合、選択したロケールの中からどれをデフォルトロケールにするか選択されます。

1技術的な用語として、言語に対し国コードが異なるぶんだけ、複数のロケールが存在します。
2優先度が中や低では、選択した言語で有効なロケールの中から、常に好みのものを選択することになります（複数ある場合）。
3レガシーロケールとは、UTF-8を使用しないけれども、ISO 8859-1（西欧言語で利用）や EUC-JP（日本語で利用）といった文字エンコードを使用する旧標準の一種です。
6.3.1.3 キーボード選択

キーボードは、しばしば言語で使用する文字に合わされています。使用しているキーボードに一致するレイアウトを選択するか、希望のキーボードレイアウトが表示されなければ、近いものを選択してください。いったんシステムのインストールが完了すれば、もっと広い範囲からキーボードレイアウトを選ぶことができます（インストールが完了した後に、rootでdpkg-reconfigure keyboard-configurationを実行してください）。

希望のキーボードにハイライトを移動させて、Enterを押してください。ハイライトの移動には矢印キーを使用してください。どの言語のキーボードでも同じ場所にあるため、キーボードの設定に依存しません。

6.3.1.4 Debian Installer isoイメージの検索

hd-mediaでインストールを行う場合、インストールするファイルの残りを得るために、Debian Installer isoイメージを見つけてマウントする必要があるでしょう。iso-scanコンポーネントはその名の通り行います。

初めにiso-scanは、既知のファイルシステムがあるブロックデバイス(例えばパーティションや論理ボリューム)を自動的にすべてマウントし、.iso(もっと言えば.ISO)で終わるファイル名を順番に検索します。初回の試行でルートディレクトリ中、およびそのサブディレクトリ内しか検索しないことに注意してください(つまり/whatever.isoや/data/whatever.isoを検出ますが、/data/tmp/whatever.isoは検出しないということです)。isoイメージの検出後、iso-scanは、そのイメージが有効なDebian isoイメージであるか否かを決定するため、その内容をチェックします。前者の場合は完了しますが、後者の場合はiso-scanは別のイメージを探します。

インストーラーisoイメージを探す試行が失敗する場合、iso-scanはより徹底的に検索するか確認します。このパスは最上位のディレクトリのみ調査しませんが、実際にファイルシステム全体を全探索します。

iso-scanがインストーラーisoイメージを検出しない場合、元のOSを起動し直して、イメージが(.isoで終わる)正しい名前になっているか、debian-installerが認識できるファイルシステムに配置しているか(チェックサムを検証して壊れていないかチェックしてください。Unixの経験があるユーザーは、再起動せずに第2コンソール上でデバッグできます。

ISOイメージをホストするパーティション(またはディスク)はインストーラーで利用されているので、インストールプロセス中に再利用できない点をご注意ください。これの回避策としては、十分なシステムメモリがある場合ですが、インストーラーがISOイメージをマウントする前にRAMにコピーできます。これはlow priorityのiso-scan/copy_iso_to_ram debconf設定で管理されています（メモリ要件が合致した場合のみ尋ねられます）。

6.3.1.5 ネットワークの設定

このステップに入って、ネットワークデバイスが1つ以上あることをシステムが検出すると、どのデバイスを主要（つまりインストールに使用する）ネットワークインタフェースとするか質問されます。その他のインターフェースはここでは設定しません。インストールが完了したところで、さらにインターフェースを設定できるでしょう。interfaces(5) manページを参照してください。

6.3.1.5.1 自動ネットワーク設定

デフォルトでは、debian-installerはコンピュータのネットワークを、可能な限り自動的に設定しようと思います。自動設定に失敗した場合、ネットワークケーブルが繋がっていないか、自動設定用のインフラが見つからないことまで、幅広い原因が考えられます。エラー発生時に何が起きたかを確認するには、4番目のコンソールに表示するエラーメッセージをチェックしてください。いずれの場合も、再実行するか、手動設定を実行するか、を質問されます。自動設定に使用するネットワークサービスは、時にそのレスポンスが遅いことがあります。そのため、適切な場所にあるかどうか確認してから、自動設定を再実行してください。繰り返し自動設定に失敗する場合、手動でネットワークの設定を行なってください。

6.3.1.5.2 手動ネットワーク設定

ネットワークの手動設定では、ネットワークについて、いくつか質問をしてきます。特に、IPアドレス、ネットマスク、ゲートウェイ、ネームサーバーのアドレス、ホスト名について質問します。さらに、無線ネットワークインタフェースがあるなら、無線ESSID（「無線ネットワーク名」）とWEPキ
CHAPTER 6. DEBIAN インストーラーの使用法

6.3. それぞれのコンポーネントの使用法

6.3.1.5.3 IPv4 と IPv6

Debian GNU/Linux 7.0（「Wheezy」）以降から、debian-installer は IPv6 を「クラシックな」IPv4 と同様にサポートしています。IPv4 と IPv6 のすべての組み合わせ（IPv4 のみ、IPv6 のみ、デュアルスタック構成）をサポートします。

IPv4 の自動設定は、DHCP（ダイナミックホストコンフィギュレーションプロトコル）を用いて行います。IPv6 の自動設定は、NDP（リカーシブ DNS サーバー（RDNSS）の任務に含まれる近隣者発見プロトコル）を用いたステートレス自動設定と、DHCPv6 を用いたステートフル自動設定、ステートレス・ステートフル混合（アドレスの設定を NDP で、追加パラメータを DHCPv6 で行う）自動設定をサポートします。

6.3.2 ユーザーとパスワードのセットアップ

クロックの設定直前に、インストーラーは「root」アカウントや、最初のユーザーアカウントのセットアップを行います。その他のユーザーアカウントは、インストール完了後に作成してください。

6.3.2.1 root パスワードの設定

root アカウントは、ログインするとシステムのすべてのセキュリティ保護をバイパスしてしまうので、スーパーユーザーとも呼ばれています。root アカウントはシステム管理のみに使用し、可能な限り短時間使用するのが望ましいです。

作成するパスワードは、少なくとも 6 文字以上で、大文字小文字、カンマやピリオドを混ぜるべきです。root パスワードを設定するときには、強力なアカウント故に特別注意を払ってください。辞書にある単語や推測される個人情報を使用するのは避けてください。

誰であっても、root パスワードが必要だと言う人がいる場合には、決して用心してください。他のシステム管理者と共に機械の管理をしているのでなければ、root パスワードを教える必要はありません。

ここで「root」ユーザーのパスワードを指定しなかった場合ですが、このアカウントは無効になりますが、新しいシステム上で管理作業が実施できるよう、後ほど sudo パッケージがインストールされます。デフォルトでは、システムで作成された最初のユーザーが root になるので、sudo コマンドを使います。

6.3.2.2 一般ユーザーの作成

システムは、この時点で一般ユーザーアカウントを作成するかどうか質問します。このアカウントを、個人でログインする場合のメインアカウントにするべきでしょう。root アカウントを日常的に使用したり、個人的な用途でログインするべきではありません。

なぜいけないのでしょうか？root 権限を使用しないようにする理由のひとつは、root により簡単に取り返しのつかない損害を与えられるということです。他には、だまされてトロイの木馬（あなたの隠れ、スーパーユーザー権限を利用してシステムに感染するプログラム）を動かしてしまうこともあります。UNIX システム管理に関するいずれの良書でも、この件に関して詳細に扱っています。今までご存じなかったら、ご一読ください。
まず初めに、ユーザーのフルネームの入力を求められます。次にユーザーアカウントの名前を求められます。一般的にファーストネームか、必要十分な名前に似た何かがデフォルトになります。最後にこのアカウントのパスワードを求められます。

インストール後いつでも、別のアカウントを作成する場合は、adduser コマンドを使用してください。

6.3.3 時計とタイムゾーンの設定

インストーラーは、S/390 プラットフォームのシステムクロックを修正しません。インストール処理のはじめの方で選択した所在地をもとに、その場所に関連するタイムゾーンの一覧を表示します。あなたの所在地にタイムゾーンがひとつしかなく、デフォルトインストールを行っている場合、システムは一覧を表示せず、そのタイムゾーンであると仮定します。エキスパートモードや優先度中でインストールしている場合、タイムゾーンに「協定世界時」(UTC)を使用する、という選択肢が追加されます。

何らかの理由で、インストールしたシステムのタイムゾーンを、選択した場所とは異なるものにしたい場合は、2つの選択肢があります。

1. シンプルな方法は、インストールが完了し、新しいシステムが起動した後で、異なるタイムゾーンを選択することです。以下のようなコマンドになります。

 # dpkg-reconfigure tzdata

2. その他には、インストールシステムの起動時に、パラメータ time/zone=value を渡すと、インストールの最初からタイムゾーンを設定できます。もちろん値は妥当なタイムゾーン(例えばEurope/LondonやUTC)であるべきです。

自動インストール用に、preseed を用いて、タイムゾーンをお好みの値に設定できます。

6.3.4 パーティションの分割とマウントポイントの選択

最後のハードウェア検出が完了した時点で、debian-installer はユーザーのニーズ通りにカスタマイズされ、実際の作業ができるような、準備万端の状態にあります。本節のタイトルが表すように、以下、少数のコンポーネントの主なタスクは、ディスクのパーティションを分割し、ファイルシステムを作成し、マウントポイントを割り当てて、LVM や RAID、暗号化デバイスのような密接に関係する件のオプション設定を行うことになります。

パーティション分割に不安があったり、詳細を知りたければ、付録 C をご覧ください。

最初に、ドライブのすべてか、またはドライブの有効な空き領域を、自動的にパーティション分割するか選択する機会が与えられます。これを「ガイド」パーティション分割とも呼びます。自動分割を望まなければ、手動を選びください。

6.3.4.1 サポートするパーティション分割オプション

debian-installer で使用するパーティション分割ツールは、かなり万能です。これにより、さまざまなパーティションテーブル、ファイルシステム、高度ブロックデバイスを用いて、たくさんの異なるパーティション構成を作成できます。

厳密に、どのオプションが利用できるかは、主にアーキテクチャに依存しますが、他の要因もあります。例えば、内部メモリが制限されたシステムでは、いくつかのオプションは使用できないでしょう。さらにデフォルトも変わるかもしれません。例えば、大容量ハードディスクに対する、デフォルトのパーティションテーブルのタイプは、より小さいハードディスクのものと異なっている場合があります。debconf 優先度が中程度でインストールしているときのみ、いくつかのオプションを変更できます。もっと高い優先度の場合は、実用的な値がデフォルトで使用されます。

インストーラーは、さまざまな形の高度なパーティションやストレージデバイスを(ほとんどの場合組み合わせて)サポートします。

• 論理ボリュームマネージメント
• 暗号化
• マルチパス(実験的)

情報は私たちのWikiをご覧ください。現在のところ、マルチパスはインストーラー起動時に有効にした場合にのみ利用できます。
以下のファイルシステムをサポートしています。

- ext2, ext3, ext4
 ほとんどの場合、デフォルトのファイルシステムにext4が選択されています。ガイドパーティション分割を使用する際、/bootパーティションのデフォルトにはext2が選択されます。
- jfs（全アーキテクチャで使用できるわけではありません）
- xfs（全アーキテクチャで使用できるわけではありません）
- reiserfs（オプション。全アーキテクチャで使用できるわけではありません）
 Reiserファイルシステムは、もはやデフォルトではサポートされません。インストーラが、中ないし低deconf優先度で動作させると、partman-reiserfsコンポーネントを選択して有効にできます。バージョン3のみサポートします。
- FAT16, FAT32

6.3.4.2 ガイドパーティション分割

ガイドパーティション分割を選択した場合、選択肢が3つあります。ハードディスクに直接パーティションを作成する（クラシック）方法、論理ボリューム管理（LVM）を利用する方法、暗号化LVM4を利用する方法です。

注意

(暗号化LVMを含む) LVMを使用する方法は、すべてのアーキテクチャで使用できるわけではありません。

LVMや暗号化LVMを使用する場合、インストーラが作成するほとんどのパーティションを、大きなパーティションの中に作成します。この利点は、大きなパーティションの中に大きなパーティションを、後から簡単に大きさを変更できることです。暗号化LVMの場合、特殊なキーフレーズを知らずに大きなパーティションを読むことができません。そのため、あなたの(個人)データにさらなるセキュリティを提供します。

暗号化LVMを利用する場合、インストーラーは、自動的にランダムなデータを書き込んでディスクを消去します。この機能は、ディスクの使用中領域を分からなくし、以前インストールしていたものの痕跡を消去してセキュリティを向上しますが、ディスクのサイズにより、時間がかかることがあります。

注意

LVMや暗号化LVMを使用してガイドパーティション分割を選択した場合、パーティションテーブルでの変更は、LVMのセットアップで選択したディスクに書き込まれる必要があります。この変更によって、選択したハードディスクの現在のデータはすべて消去され、後で元に戻すことができなくなります。しかし、ディスクに書き込む前に、インストーラーは変更してよいか確認してきます。

ディスク全体に対してガイドパーティション分割を選択した場合（クラシックでも暗号化）LVMでも、まず最初に、選択したディスクを使用してよいか尋ねられます。複数ディスクがある場合、すべてのディスクが一覧され、正しいものが選択されていることを確認してください。表示順は、普通使用しているものでない可能性があります。ディスクサイズを確認の手がかりにしてください。

ここで特に、ディスクのすべてのデータが失われますが、ディスクに書き込む前に変更してよいか、必ず確認してきます。パーティション分割にクラシック法を選択した場合は、終了する前に元に戻せますが、(暗号化) LVMを使用する場合は元に戻せません。

このインストーラーでは、LVMボリュームグループを256bit AESキーで暗号化し、カーネルの「dm-crypt」サポートを利用します。
次に、以下の表から分割案を選択できます。どの案でも賛否両論あり、付録Cの議論があります。

よくわからなければ、最初の項目を選択してください。ガイドパーティション分割は、最低限動作する空き領域が必要なことを、心に留めておいてください。少なくとも1GBの空き領域（選択した方法に依存します）がなければ、ガイドパーティション分割は失敗してしまいます。

<table>
<thead>
<tr>
<th>パーティション分割方法</th>
<th>最低容量</th>
<th>作成するパーティション</th>
</tr>
</thead>
<tbody>
<tr>
<td>All files in one partition</td>
<td>600MB</td>
<td>/, swap</td>
</tr>
<tr>
<td>Separate /home partition</td>
<td>500MB</td>
<td>/, /home, swap</td>
</tr>
<tr>
<td>Separate /home, /var and /tmp partitions</td>
<td>1GB</td>
<td>/, /home, /var, /tmp, swap</td>
</tr>
</tbody>
</table>

(LVMを利用してガイドパーティション分割を行うと決まった場合、インストーラは独立した/bootパーティションも作成します。スワップパーティションも含むその他のパーティションは、LVMパーティションの内部に作成します。)

分割案を選択後、新しいパーティションテーブルが次の画面に表示されます。ここでは、パーティションがどのようにフォーマットされるか、どこにマウントされるかといった情報が含まれています。

この例では、2つのハードディスクをいくつかのパーティションに分割しています。第1ディスクには空き領域がいくらかあります。パーティション行ごとに、パーティション番号、パーティションタイプ、サイズ、追加フラグ、ファイルシステム、マウントポイントを（あれば）表示しています。注意: こういった詳細なセットアップはガイドパーティション分割では行えませんが、手動パーティション分割で使用できる変化を示します。

これでガイドパーティション分割を終えます。生成されたパーティションテーブルでよければ、(本節の最後に書かれているように)新しいパーティションテーブルを反映するよう、パーティションの終了とディスクへの変更の書き込みをメニューから選べます。そうでなければ、もう一度ガイドパーティション分割をしたり、以下に述べる手動パーティション分割で提案する変更を修正するのにパーティションへの変更を元に戻すを選択し、ガイドパーティション分割を再実行してください。または、以下に述べる手動パーティション分割で修正してください。

6.3.4.3 手動パーティション分割

手動パーティション分割を選択すると、既存のパーティションテーブルがマウントポイントなしで表示されるのを除き、前述と同様の画面が表示されます。パーティションテーブルの手動セットアップの方法と、新しいDebianシステムでのパーティションの使用法については、本節の残りで扱います。

パーティションも空き領域もない、素のハードディスクを選択すると、新しいパーティションテーブルを作成するか確認されます。新しいパーティションテーブル作成の必要がなければ、指定されたディスクのパーティションテーブルに「FREE SPACE」(空き領域)という新しい行が現れます。

空き領域を選択すると、新しいパーティションテーブルを作成できるようになります。サイズやタイプ（基本が論理か、場所（空き領域の先頭か最後からか）といった、一連の簡単な質問に答えなければならないかもしれません。この後、新しいパーティションの詳細な設定が示されます。選択したディスクのパーティションテーブルに「FREE SPACE」(空き領域)という新しい行が現れます。
ムに、このパーティションを変更できます。新しいパーティションに満足したら、パーティションのセットアップを終了を選択してpartmanのメイン画面に戻ってください。

パーティションに対して変更を加えた場合は、単にそのパーティションを選択して下さい。パーティションの設定メニューに戻ります。新しいパーティションを作成する際に使用すると同じ画面ですので、同様に設定を変更できます。一見分かりづらいのは、表示されているパーティションのサイズを選択して、サイズ変更ができます。動作することがわっているファイルシステムは、少なくともfat16, fat32, ext2, ext3, swapです。このメニューではパーティションを削除することもできます。

少なくとも2つのパーティションを必要と作成してください。1つはswapで、もう1つは(/にマウントする)ルートファイルシステムです。ルートファイルシステムをマウントし忘れると、この問題を修正する前にpartmanは先に進みません。

partmanの機能は、インストーラーモジュールで拡張できますが、システムのアーキテクチャに依存します。あるはずの機能を確認できなければ、すべての必要なモジュールが読み込まれているか確認してください。例: partman-ext3, partman-xfs, partman-lvm)

パーティション分割に満足したら、パーティション分割メニューからパーティショニングの終了とディスクへの変更の書き込みを選択してください。ディスクに行われる変更内容が表示され、その通りファイルシステムを作成するかどうか確認することになります。

6.3.4.4 マルチディスクデバイス (ソフトウェアRAID) の設定

コンピュータに複数ハードディスクドライプがあるなら、ドライブのパフォーマンスの向上やデータの信頼性向上のためにpartman-mdを使用できます。この結果をマルチディスクデバイス (ソフトウェアRAID) に名付けます。

MDは基本的に別のディスクにあるパーティションを束ねて、論理ディスクの形に結合したもので、このデバイスは通常のパーティション (例: partmanでフォーマットでき、マウントポイントに割り当てられ等) と同様に使用できます。

どんな恩恵を受けるかは、作成するMDデバイスの種類に依存します。現在、以下をサポートしています。

RAID0
RAID0はパフォーマンスに主眼をおいています。RAID0は全入力データをstripesへ分割し、均等にディスクアレイの各ディスクに分配します。これにより、読み取り、書き込みの処理速度を向上できますが、ディスクのうちの1つが破損したら、すべてを失ってしまいます。情報の一部は正常なディスク上にありますが、他の部分は破損したディスク上にあるからです。

RAID0の典型的な使用法は映像編集のパーティションです。

RAID1
RAID1 信頼性第一である場合、RAID1を構成するとよいでしょう。全パーティションが正確に同じデータを含むよう、いくつかの同等のパーティションから作成されます。これにより、ディスクのうちの1つが破損した場合、残ったディスクにデータミラーリが残ります。次に利用可能領域の断片が自動的に修正される。 RAID1に含まれるディスクは、1つで十分です。RAID1では、利用可能領域の断片が保持され、ファイルの読み込みロードバランスの評価が行われます。これにより、ファイルサーバーのような、書き込みよりも読み込みの方が負荷が高くなる傾向のあるサーバーのパフォーマンスを改善できます。

RAID5
RAID5 は速度と信頼性、データの冗長性をうまく折衷しています。RAID5はストライプへ入力するデータをすべて分割し、1つ以外の全ディスクに (RAID0のように) 逆順に分配します。RAID0と同じ、RAID5は（残りのディスクに書かれている）パリティ情報も計算します。パリティディスクを静的に（これをRAID4と呼ぶ）ではありません。計算されたパーティー情報は全ディスクに逆順に分配されます。パーティションの破損したディスクに故障した場合、パーティションのデータが失われます。RAID5は、ディスクのうちの1つが破損した場合、残ったディスクにパリティを計算します。RAID5は、ディスクのうちの1つが破損した場合、パーティションのデータが失われます。この場合、任意に予備ディスクを追加することができます。

RAID6
RAID6はパリティディスクが1つでなく2つであるという点を除き、RAID5と似ています。RAID6はアレイは、2つのディスクが故障するまで存続できます。

RAID6
RAID6はパリティディスクが1つでなく2つであるという点を除き、RAID5と似ています。
RAID10 RAID10はストライピング (RAID0) とミラーリング (RAID1) を組み合わせたものです。格納データの n 個のコピーを作成し、パーティションをまたがって分配するため、同じデバイスに同じデータを格納することはありません。n のデフォルト値は 2 ですが、エキスパートモードで別の値を設定できます。使用するパーティションの数は、少なくとも n 個必要です。RAID10 はコピーを分配するために、様々なレイアウトを用意しています。ディフォルトは near コピーです。near コピーは、全ディスクにおいて同一のオフセットで全てのコピーを分配します。far コピーは、全ディスクにおいて異なるオフセットで全てのコピーを分配します。offset コピーは、個々のコピーではなく、ストライピングしたものをコピーします。

RAID10 はパリティを計算するという難点を回避しつつ、信頼性と冗長性を確保するのに使用できます。

まとめると以下のようにになります。

<table>
<thead>
<tr>
<th>タイプ</th>
<th>デバイス最小構成数</th>
<th>予備デバイス</th>
<th>ディスク破損に耐えるか?</th>
<th>利用可能領域</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID0</td>
<td>2</td>
<td>no</td>
<td>no</td>
<td>RAIDにある最小パーティションのサイズ × デバイス数</td>
</tr>
<tr>
<td>RAID1</td>
<td>2</td>
<td>任意</td>
<td>yes</td>
<td>RAIDにある最小パーティションのサイズ</td>
</tr>
<tr>
<td>RAID5</td>
<td>3</td>
<td>任意</td>
<td>yes</td>
<td>RAIDにある最小パーティションのサイズ × (デバイス数 - 1)</td>
</tr>
<tr>
<td>RAID6</td>
<td>4</td>
<td>任意</td>
<td>yes</td>
<td>最小パーティションのサイズ × (RAIDにあるデバイス数 - 2)</td>
</tr>
<tr>
<td>RAID10</td>
<td>2</td>
<td>任意</td>
<td>yes</td>
<td>全パーティションサイズ ÷ チャンクのコピー数 (デフォルトは 2)</td>
</tr>
</tbody>
</table>

ソフトウェア RAIDに関して、もっと知りたい場合は Software RAID HOWTO をご覧ください。

MD デバイスを作成するには、RAID で使うための (これは利用方法: → RAID の物理ボリュームを選択して出てくる、パーティション設定メニューの partman で行えます)

注意

計画しているパーティション分割方式で、システムがブートできることを確認してください。通常、ルート (/) ファイルシステムに RAID を使用する際には、/boot を独立したファイルシステムにする必要があります。ほとんどのブートローダは、ミラーリングした (ストライピングではなく!) RAID1 をサポートしています。そのため、/ に RAID5 を用い、/boot に RAID1 を用いる例が選択したり得ます。

次にメインの partman メニューからソフトウェア RAID の設定を選んでください。このメニューは、少なくともパーティションをひとつ RAID の物理ボリュームとしてマークしないと表示されません partman-md の最初の画面では、単に MD デバイスの作成を選択してください。サポートされる MD デバイスのリストも提供されます。この中から 1 つ (例: RAID1) を選択してください。その後は選択した MD デバイスに依存します。

RAID0 は単純です。利用可能な RAID パーティションの一覧が提供されますので、単に MD にするパーティションを選択してください。
6.3. それぞれのコンポーネントの使用法

RAID1は少しトリッキーです。まずMDにするアクティブなデバイスの数、スペアデバイスの数を入力します。次に利用可能なRAIDパーティションの一覧からアクティブのものを、次にスペアのものを選ぶ必要があります。選択したパーティションの数と先ほど入力した数は一致しなければなりません。心配しないでください。間違って違う数のパーティションを選択した場合、debian-installerは問題を修正するまで、先に進ませません。

RAID5では、少なくとも3つのアクティブパーティションを使用する必要があるという例外を除き、RAID1と同様のセットアップ手順を行います。

RAID6では、少なくとも4つのアクティブパーティションを使用する必要があるという例外を除き、RAID1と同様のセットアップ手順を行います。

RAID10もまた、エキスパートモードであることを除き、RAID1と同様のセットアップ手順を行います。エキスパートモードでは、debian-installerはレイアウトについて確認します。レイアウトは2段階に分かれています。第1段階はレイアウトタイプです。n(near コピー)、f(far コピー)、o(offset コピー)のどれかになります。第2段階はデータから作るコピーの数です。少なくとも、コピーをすべて異なるディスクに分配するには、たくさんのアクティブデバイスが必要となります。

同時に数種のMDを持つことは完全に可能です。例えば、3つの200GBのMD専用ドライブがあると、どれか2つの100GBのパーティションに分かれている場合、3つのドライブすべての最初のパーティションをRAID0(高速な300GBのピボイオ編集パーティション)で結合でき、その他の3つのパーティション(アクティブ2基、スペア1基)をRAID1(/home用に信頼できる100GBのパーティション)で結合できます。

好みの通りにMDデバイスの設定をした後で、完了partman-mdとしてpartmanに戻れます。新しいMDデバイスにファイルシステムを作成し、マウントポイントなどの通常の属性を設定してください。

6.3.4.5 論理ボリュームマネージャ(LVM)の設定

システム管理者や「上級」ユーザーとしてコンピュータを動かしていると、ディスク内のあるパーティション(たいてい最も重要なもの)が足らなくなり、他のパーティションは全体的にあまり使用されていないという状況が確実にあります。このような場合は、内容を移動したりシンボリックリンクを張ったといった管理を行うことになります。

上記のような状況を避けるために、論理ボリュームマネージャ(LVM)を利用できます。簡単に言うと、LVMでは複数のパーティション(LVM用語で物理パーティション (physical volumes))を仮想ディスク(いわゆるボリュームグループ (volume group))の形に結合でき、このディスクを仮想パーティション(論理ボリューム (logical volumes))に分割できます。ポイントは、論理ボリュームは(もちろんその下のボリュームグループも)、複数の物理ディスクをまたがって定義できるということです。

例えば、古い160GBの/homeパーティションに、もっと容量を追加することを考えます。単にあたたは新しい300GBのディスクをコンピュータに追加し、既存のボリュームグループに入れます。その後/homeファイルシステムを保持したまま論理ボリュームをリサイズします。するとともに、パーティションが460GBへと新品交換されたので、ユーザーの空き容量がすこし増えましたことになります。もちろんこの例は少し単純にすぎます。まだ読んでいないようななら、LVM HOWTOを調べるべきです。

debian-installerでのLVMのセットアップはかなりシンプルで、partman 内部で完全にサポートしています。始めるにあたり、パーティションをLVMの物理ボリュームとして使用するよう、マークをつけてください。これは、パーティション設定メニューのpartman内で利用方法: -> LVMの物理ボリュームを選ぶことで行います。

警告

注意: 新規のLVM 設定はLVMタイプコードがマークされた全てのパーティション上の全データを破壊します。そのため、既にディスク上にLVM があってそのマシンやDebianを追加インストールしたい場合、古い(既存)のLVMは消去されます! 同じことが(何らかの理由で)誤ってLVMタイプコードがマークされているものの、別のものが含まれている場合(例えば暗号化ボリューム)のパーティションにも言えます。新たにLVM設定を実施する前にその様なディスクをシステムから取り除きましょう!
メインのpartman画面に戻ると、論理ボリュームマネージャの設定が新しく選択できるようになっています。これを選択すると、まず決定していないパーティションテーブルへの変更（があれば）確認を行い、その後LVM設定メニューを表示します。メニューの上部にはLVM設定の概要を表示します。メニュー自体はそのときに実行できる操作のみ表示します。行える操作は以下の通りです。

設定の詳細表示: LVMデバイスの構造、論理ボリュームの名称やサイズなどを表示します。

- ボリュームグループの作成
- 論理ボリュームの作成
- ボリュームグループの削除
- 論理ボリュームの削除
- ボリュームグループの拡張
- ボリュームグループの縮小

完了: メインのpartman画面に戻ります

はじめにボリュームグループを作成し、その中に論理ボリュームを作成するのに、このメニューのオプションを使用してください。

メインのpartman画面に戻ると、作成した論理ボリュームが通常のボリュームと同じように表示されています（そして同じように扱われています）。

6.3.4.6 暗号化ボリュームの設定

debian-installerでは暗号化パーティションを設定できます。暗号化パーティションに保存したファイルはすべて、暗号化した形で即座にデバイスに書き込まれます。暗号化したデータへアクセスは、暗号化パーティションを作成した際の設定したパスフレーズを入力した後に有効になります。この機能は、ノートPCやハードディスクが盗難に遭った際に、機密データを保護するのに便利です。盗人がハードディスクの物理データにアクセスしようとする際、正しいパスフレーズを知らないと、ハードディスクのデータはランダムな文字列にしか見えません。

暗号化するのに最重要なパーティションが2つあります。個人的なデータを格納するhomeパーティションと、操作中に機密データを一時的に格納するswapパーティションです。もちろん、その他のパーティションの暗号化を妨げるものはなしにありません。たとえば、データベースサーバー、メールサーバー、プリンターサーバがそれぞれファイルを格納する/varや、様々なプログラムが潜在的に興味深い一時ファイルを作成する/tmpです。システム全体を暗号化したいと考える方もいます。

一般にここで暗号化をしない方がよい場合の例外パーティションは、/bootパーティションです。歴史的に、暗号化されたパーティションが起動する問題がなかったためです。（GRUBは暗号化されたパーティションから起動できるようになりましたが、debian-installerは現在暗号化された/bootからの起動をネイティブにサポートしていません。そのため設定は別の文書で取り扱っています。）

注意
データの読み書き時に常に暗号化・復号を行うため、暗号化パーティションのパフォーマンスは、暗号化していないものよりも低下する事に注意してください。パフォーマンスは、CPUのスピード、選択した暗号方式、暗号化キーの長さに影響を受けます。

暗号化を用いるには、メインパーティションメニューで空き領域を選択して、新しいパーティションを作成する必要があります。他には既存のパーティション（例、通常のパーティション、LVM論理ボリューム、RAIDボリューム）を選択するという手もあります。パーティション設定メニューの、利用方法: で暗号化の物理ボリュームを選択する必要があります。そうすると、メニューにパーティションを暗号化するオプションが追加されます。

debian-installerでサポートしている暗号化方法はdm-crypt（新しきのLinuxカーネルに収録されているLVM物理ボリュームをホストできる）です。

暗号化するにあたりDevice-mapper（dm-crypt）を選択した場合に利用できるオプションを見ていきましょう。いつのものように、よくからなければデフォルト値を指定してください。セキュリティを念頭にして選択されています。
CHAPTER 6. DEBIAN インストーラーの使用法 6.3. それぞれのコンポーネントの使用法

Encryption: aes このオプションで、パーティションのデータを暗号化するのに使用する、暗号化アルゴリズム（暗号方式）を選択します。現在、debian-installer は以下の暗号方式をサポートしています。aes, blowfish, serpent, twofishです。それぞれのアルゴリズムの品質についての議論は、この文書の範囲を越えていますが、それはあなたの決断の助けになるかもしれません。AES は、2000 年に米国商務省標準技術局により、21 世紀の機密情報を保護する標準暗号化アルゴリズムとして採用されました。

Key size: 256 ここでは暗号化キーの長さを指定できます。一般的に暗号化キーが長くなると暗号強度が向上します。一方、暗号化キーが長くなると、大抵パフォーマンスにマイナスの影響を与えます。利用できる暗号化キーのサイズは暗号方式に依存しています。

IV algorithm: xts-plain64 初期化ベクトルや IV アルゴリズムは、同じ平文データと同一の暗号化キーで、常に異なる暗号文の出力を保証し、安全に暗号を解読するために利用されます。これにより、暗号化データ中に繰り返されるパターンから、攻撃者が情報推測できないようにします。デフォルトの xts-plain64 は現在のところ、攻撃される恐れがもっとも少ないです。その他の選択肢は、新しいアルゴリズムに対応していない、以前インストールしたシステムと互換をとる場合のみ使用してください。

Encryption key: Passphrase ここでは、このパーティションの暗号化キーのタイプを選択できます。

Passphrase 暗号化キーを、プロセスの後で入力するパスフレーズに基づいて計算します。

Random key 暗号化パーティションを作成するたびに、新しい暗号化キーをランダムに生成します。言い換えれば、シャットダウン時に暗号化キーがメモリから削除され、パーティションの内容を失うということです。（もちろん、総当たりで暗号化キーを推測することはできませんが、暗号アルゴリズムに未知の弱点がない限り、生きているうちに解読されないでしょう）

Random key は swap パーティションで使うと便利です。というのも、パスフレーズを覚えておく必要がありますが、コンピュータをシャットダウンする前に、機密情報を swap パーティションから削除することとはできません。しかし、最近の Linux カーネルで利用できる「suspend-to-disk」機能では使用できないということでもあります。（次の起動中に）swap パーティションからサスペンドデータを、復元できなくなってしまうのです。

Erase data: yes 暗号化の前に、このパーティションの内容をランダムなデータで上書きするかどうかを決めます。そうしないと攻撃者が、パーティションのどの部分を使用中で、どの部分が使用していないかを見分けられますので、上書きすることをお勧めします。その上、以前インストールしていて残ってしまったデータを、復元しきくくなります。

暗号化パーティション用に必要なパラメータを選択すると、メインパーティション分割メニューに戻ります。そこに今度は暗号化されたボリュームの設定という項目があるはずです。これを選択すると、削除するようにマークしたパーティションを本当に削除してよいかを確認し、新しいパーティションテーブルを書き込むというアクションを起こします。大きなパーティションではしばらく時間がかかるでしょう。

次に、パスフレーズを使用するよう設定していれば、パスフレーズを証されます。よいパスフレーズは、8 文字以上で、文字・数字・その他の記号が混ざり、辞書に載っていないか、容易に連想される情報（誕生日、趣味、ペットの名前、家族や親戚の名前など）でないものです。

警告

パスフレーズを入力する前に、キーボードが正しく設定され、期待した文字が入力できるようになっているければなりません。よくわからなければ、別の仮想端末に切り替えて、プロンプトに入力してください。これにより、例えば、インストール中に azerty 配列を使用しているのに、qwerty 配列でパスフレーズを入力することに、あなたが後で驚くようなことはならないでしょう。この状況はいくつかの原因が考えられます。インストール中に別のキーボード配列に切り替えたか、ルートファイルシステムのパスフレーズを入力する時に、まだ選択したキーボードレイアウトが有効でなかったのかもしれません。

6 暗号化キーにパスフレーズを使用するのは、LUKS を使用して設定するという意味です。
7 3 文字の機関では、磁気光学メディアを何度も書き換えた後でも、データを優元できると信じられています。
6.3. それぞれのコンポーネントの使用法

暗号化キーの作成に、パスフレーズ以外の方法を選択した場合、すぐに暗号化キーを生成します。インストールの初期では、カーネルが充分なエントロピーを集めていないので、このプロセスに長時間をかかるかもしれません。カーネルを起動することの一部は、ランダムにキーを押す、別の仮想コンソールに切り替え(ファイルのダウンロードや、大きなファイルを/dev/nullに流すなど)ネットワークやディスクのトラフィックを起こすなどがあります。暗号化するパーティションの数だけ繰り返します。

メインパーティション分割メニューに戻ると、暗号化ボリュームが、通常のパーティションと同様に追加パーティションとして見えてきます。以下の例では dm-crypt で暗号化したボリュームを示します。

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper
#1 115.1 GB F  ext3
```

今度は、ボリュームをマウントポイントに割り当てます。また、デフォルトのファイルシステムタイプが変わっている場合は変更も行います。

括弧内の識別子(ここでは sda2_crypt)と、暗号化ボリュームを割り当てるマウントポイントに注意を払ってください。後で新しいシステムを起動するときに、この情報が必要になります。通常の起動プロセスと、暗号を伴う起動プロセスの相違点は、項 7.2 で扱います。

パーティション分割の内容に納得いったら、インストールに進んでください。

6.3.5 基本システムのインストール

この段階が最重要ではないとはいえ、全体の基本システムをダウンロード、確認、展開にインストールのかなりの部分を費やします。遅いコンピュータや遅いネットワーク接続しなければ、ある程度時間がかかるかもしれません。

基本システムのインストール中、パッケージの展開・セットアップメッセージは、tty4 にリダイレクトされます。左 Alt-F4 を押すと、この端末 (terminal) にアクセスできます。元のインストーラー画面に戻るには、左 Alt-F1 を押してください。

このフェーズでの展開・設定メッセージは、/var/log/syslog に保存されます。シリアルコンソールでインストールする場合、これをチェックできます。

インストールの途中で、Linux カーネルをインストールします。デフォルトの優先度では、インストーラーはハードウェアと最も適合するカーネルを選びます。より低い優先度モードでは、利用可能なカーネルのリストから選ぶことができます。

パッケージ管理システムを使用してパッケージをインストールした際、デフォルトでは、そのパッケージが推奨しているパッケージもインストールされます。推奨パッケージは、選択したソフトウェアの核となる機能に限って厳密には必要ではありませんが、ソフトウェアを拡張し、パッケージメンテナ視点で、通常そのソフトウェアと同時に入っているべきパッケージです。

注意

技術的な理由で、ベースシステムのインストール中にインストールされるパッケージは、「推奨」が含まれていません。前述の規則は、インストールプロセス中のこの時点以降でのみ効力を持ちます。

6.3.6 追加ソフトウェアのインストール

この時点では、制限されたシステムが利用できるようになります。ほとんどのユーザーは、お好みに調整するのに、追加ソフトウェアをシステムにインストールするでしょう。これはインストーラーから行えます。遅いコンピュータやネットワーク接続を使用していると、このステップは基本システムのインストールよりも時間がかかります。

6.3.6.1 apt の設定

Debian GNU/Linux システムにパッケージをインストールするツールの 1 つに apt パッケージの apt プログラムがあります。パッケージ管理のその他のフロントエンドには、aptitude や synaptic にも使われるaptパッケージを実際にインストールするプログラムは、dpkg であることに注意してください。ですが、このプログラムは、どちらかというと下位のツールです。apt はもっと上位のツールで、適切に dpkg を起動します。また、インストールメディアに
われます。これらのフロントエンドは追加機能（パッケージの検索や状態チェック）を、すばらしいユーザーサーバーと統合しているので、新しいユーザーにお勧めします。

パッケージをどこから取得するか、`apt`を設定しておかなくてはなりません。この設定の結果は、`/etc/apt/sources.list`ファイルに書き込まれます。インストール完了後に、お好みに合わせて検査・編集できます。

デフォルトの優先度でインストールしている場合、インストール方法と、可能であればインストールの初期に選択した内容から、大部分の設定を自動で面倒みてくれます。ほとんどの場合、インストーラーは自動でセキュリティミラーを追加します。また、安定版をインストールしている場合、「stable-updates」更新サービスのミラーを追加します。

低い優先度でインストールしている場合（例：エキスパートモード）、もっと多くのことを自分で決定できます。セキュリティやstable-updates更新サービスの有無や、アーカイブの「contrib」や「non-free」からのパッケージ追加の有無を選べます。

6.3.6.1.1 2枚以上のCD/DVDイメージでのインストール

複数枚からなるCDやDVDイメージでインストールする場合、さらにインストールメディアをスキャンするか、インストールが行なえます。追加するメディアがある場合、そこからパッケージをインストールするため、スキャンしたくなると思います。

追加するメディアがない場合、これは必須ではないので、問題ありません。ネットワークミラーも使用しない場合（次節で説明します）、次のステップで選択する、タスクに属するすべてのパッケージをインストールできるわけではないことを意味します。

注意

CDおよびDVDイメージにあるパッケージは、人気のある順に納められています。これにより、ほとんどの人はセットの1枚目のイメージのみを使い、非常に少数の人だけが、最後のイメージに入っているパッケージを使用することになります。

これはフルCDセットのうち、まったく使わないものを買ったたり、ダウンロードして焼いたりといったことは、お金の無駄になってしまうことかもしれません。ほとんどの場合、3〜8枚のCDを用意し、さらにパッケージを追加する必要がある場合には、ミラーサービスを利用してインターネットから取得する方が安です。DVDの場合は同じことが言えます。1枚目のDVDか、もしかすると2枚目のDVDで必要なものをカバーできるでしょう。

複数のインストールメディアをスキャンする場合、現在ドライブに入っているものとは別のインストールメディアにあるパッケージが必要になると、インストーラーは交換するよう促します。注意：ディスクは、同じセットに属するもののみをスキャンするべきです。スキャンする順番はあまり重要ではありませんが、昇順にスキャンすると、失敗する可能性が低くなります。

6.3.6.1.2 ネットワークミラーの利用

インストールに関するよくある質問に、パッケージの取得元にネットワークミラーを使用するかどうかがあります。ほとんどの場合、デフォルトの回答でうまくいきますが、中には例外もあります。

完全なCD/DVDイメージからインストールしない場合、非常に最小限のシステムで完了するなら、ネットワークミラーを使用する必要です。しかし、インターネット接続に制限がある場合、インストールの次のステップで、desktopタスクを選択しない方が最善でしょう。

1枚の完全なCDイメージからインストールしている場合は、ネットワークミラーを使用する必要はありませんが、1枚のCDイメージには非常に限られた数のパッケージしか含まれていないため、ネットワークミラーを使用するのを強くお勧めします。インターネット接続に制限がある場合は、またここでネットワークミラーを設定しない方がよいでしょう。CDイメージでのみ使用の限りのインストールを行い、追加パッケージのインストールは、新しいシステムで起動した後など、後で行うのがよいでしょう。

DVDでインストールしている場合、インストールに必要なパッケージは、1枚目のDVDイメージで提供されているはずです。ネットワークミラーの使用はオプションとなります。

やネットワーク、その他から、パッケージをどのように取得するかも知っています。さらに、インストール作業が正しく行えるように、パッケージが必要とする他のパッケージも自動的にインストールできます。
ネットワークミラーの追加する利点は、CD/DVDイメージが作成された後にポイントリリースに含まれた更新が、インストールできるということです。つまり、インストールしたシステムのセキュリティや安定性を傷つけることなく、CD/DVDの寿命を延ばすことができます。

まとめると、ネットワークミラーを使えない場合を除き、一般的によい考えです。パッケージの最新版がインストールメディアで利用できる場合には、インストーラーは常にそちらを使用します。従って、ミラーを選択した場合のダウンロードするデータ量は、以下に依存します。

1. インストールの次のステップで選択するタスク。
2. どのパッケージがそのタスクに必要か。
3. そのパッケージがスキャンしたインストールメディアに収録されているかどうか。
4. インストールメディアに収録したパッケージの最新版が、ミラーサイト(通常のパッケージのミラーサイトだけでなく、セキュリティのミラーサイトやstable-updatesのミラーサイト)に用意されているかどうか。

最後の点については、ネットワークミラーを使わないように選択したとしても、セキュリティやstable-updatesに更新があり、そのサービスを使用するように設定している場合は、パッケージをダウンロードする可能性が残っている、ということに注意してください。

6.3.6.1.3 ネットワークミラーの選択

ネットワークミラーを使わない選択をした場合を除き、インストールプロセスの初期で行った国選択を元にしたネットワークミラーのリストが与えられています。提示されたデフォルト値を選択すると、大抵うまく行きまきます。

提供されるデフォルトはdeb.debian.orgです。これ自体はミラーではなく、最新かつ高速なミラーにリダイレクトされます。これらのミラーはTLS (httpsプロトコル) とIPv6をサポートします。このサービスはDebianシステム管理(DSA)チームによって維持されています。

「情報を手動で入力」を選択することで、ミラーを手で指定することもできます。そうするとミラーのホスト名とオプションでポート番号を指定できます。これは実際のURLベースで、つまりIPv6アドレスを指定する場合には[]で囲まなければならない。例えば「[2001:db8::1]」。

コンピュータが、IPv6のみのネットワークにつながっている（おそらくユーザーの大多数に一致しない場合、あなたの国のデフォルトミラーはうまく動作しないかもしれません）場合、あなたの国のデフォルトミラーはうまく動作しないかもしれません。リスト内のすべてのミラーは、IPv4だけでなくIPv6でも通信用できます。個々のミラーの接続は、時間とともに変わる可能性があり、その情報をインストーラーに持たせられません。あなたの国向けのデフォルトミラーにIPv6接続がない場合、提示される他のミラーを試すか、「情報を手動で入力」オプションを選択し、ミラー名に「ftp.ipv6.debian.org」を指定できます。これは、IPv6が有効なミラーのエイリアスで、おそらく可能な限り速い、とはいかないと思います。

6.3.6.2 ソフトウェアの選択・インストール

インストール処理中に、追加ソフトウェアをインストールする機会があります。個々の利用可能パッケージから、個々のパッケージを取り上げるよりも、インストール処理のこの段階では、いち早く様々なコンピュータのタスクをセットアップするよう、定義済みのソフトウェア集合を選択・インストールするのに集中します。

タスクは、様々なジョブやあなたがコンピュータにやらせたいことを、いくつか大まかに表しています。"デスクトップ環境"、"Webサーバー"、"SSHサーバー"といった具合です9。項D.2に、利用可能タスクの必要容量一覧があります。

いくつかのタスクは、インストールするコンピュータの特性により、あらかじめ選択されている可能性があります。選択されているものが合わない場合は、そのタスクの選択をはずせます。全くタスクを選ぶ余地、というかならないと思います。

9表示されるリストは、インストール者が単にtaskselプログラムを起動しているだけ、ということを知っておいてください。インストールの後で、他のパッケージをインストール(または削除)するのにいつでも実行できます。またaptitudeのような、より強力なパッケージ管理ツールも利用できます。インストール完了後、特定1パッケージの選択の後、単にaptitude installパッケージ名を実行してください。パッケージ名は、選択したいパッケージ名です。
6.3. それぞれのコンポーネントの使用法

ティップ
インストーラーの標準ユーザーアンタフェースでは、タスクの選択をスペースバーでトグルできます。

注意
「デスクトップ環境」タスクは、グラフィカルデスクトップ環境をインストールします。
デフォルトでdebian-installerはデスクトップ環境をインストールします。インストール中に異なるデスクトップ環境を、インタラクティブに選択することが可能です。デスクトップ環境を複数インストールすることもできますが、組み合わせによっては互いに排他的でインストールできない可能性もあります。

希望のデスクトップ環境に必要なパッケージが実際に利用できる場合にのみ動作することに注意してください。フルCDイメージ1枚でインストールしている場合、容量が限られているそのCDイメージに入ってるます、ミラーサイトからダウンロードする必要があるかもしれません。DVDイメージやその他のインストール方法では、利用可能なデスクトップ環境のインストールがうまくいくでしょう。

各サーバータスクでは、おおまかに以下のソフトウェアをインストールします。Webサーバー: apache2; SSHサーバー: openssh。
「標準システム」タスクは、優先度が「標準」のパッケージをインストールします。ここには、通常どんなLinuxやUnixのシステムでも有効な、たくさんの共通ユーティリティを含んでいます。何をしようとしているのか解っていて、本当に最小限のシステムが必要なのでなければ、このタスクを選択したままにしてください。

言語選択で、デフォルトロケールに「C」ロケール以外を選択した場合、taskselは、そのロケールで定義されている地域化タスクがあるかチェックし、関連する地域化パッケージを自動的にインストールしようとします。これには例えば単語集や、あなたの言語の特殊なフォントが含まれます。デスクトップ環境を選択している場合、適切な地域化パッケージも(有効なら)インストールします。
タスクを選択したら、Continueを選択してください。ここでaptが選択したタスクの一部をインストールし始めます。個々のプログラムで、ユーザーからのもっと詳細な情報が必要な場合、このプロセス中に問い合わせが発生します。

デスクトップタスクは非常に大きいことを意識してください。特に、通常のCD-ROMと、ミラーサイトにあるCD-ROM外のパッケージを組み合わせる場合、インストール時間がネットワークから大量のパッケージを取得しようとするかもしれません。インターネット接続が低速な場合、長い時間がかかるでしょう。一度、パッケージのインストールを始めたら、キャンセルするオプションはありません。
パッケージがCD-ROMに含まれている場合でも、CD-ROMにあるパッケージよりもミラーサイトにあるパッケージの方が新しければ、インストーラーはミラーサイトから取得しようとします。安定版をインストールしている場合はポイントリリース(オリジナルの安定版リリースの更新)後に、テスト版をインストールしている場合は古いイメージを使用していると、こういったことが起こり得ます。

6.3.7 システムを起動可能に

6.3.7.1 他OSの検出

プートローダがインストールされる前に、インストーラーは既にインストールされている他のOSの検出を試します。サポートするOSを見つけると、プートローダインストールステップの間にそれを通知します。また、Debianに加えて他のOSをプートできるように、このコンピュータを設定します。

複数のOSを同一の機械で起動するのは、いまだに魔術的だということに注意してください。他のOSを検出し起動するようにプートローダをセットアップする自動サポートは、アーキテクチャごとに
(サブアーキテクチャそれぞれでさえ)異なります。作動しない場合は、詳細についてブートマネージャの文書を調べるべきです。

6.3.7.2 ziplインストーラー

S/390上のブートローダ「zipl」です。ZIPLは、少数の例外を除いて、LILOに設定と使用法が似ています。ZIPLについてもっと知りたい場合は、IBMのdeveloperWorksウェブサイトから「LINUX for S/390 Device Drivers and Installation Commands」を見てください。

6.3.7.3 ブートローダなしで継続

このオプションは、アーキテクチャ/サブアーキテクチャにブートローダがない、あるいはインストールする気がない（例えば、既存のブートローダを使用するつもりであるとか）時に、ブートローダをインストールしていなくても、インストールを完了するのに利用できます。

手動でブートローダを設定する場合、/target/bootにインストールしたカーネルの名前をチェックしてください。またそのディレクトリにinitrdが存在するかチェックしてください。存在するなら、ブートローダにそれを使うよう指定しなければなりません。他に必要な情報は、/ファイルシステムとするディスクがないしパーティション、(/bootを個別のパーティションとする場合)/bootファイルシステムとするディスクがないしパーティションが必要です。

6.3.8 インストールの完了

これからインストーラーが行ういくつかのタスクが、Debianのインストール過程での最終段階です。ほとんどがdebian-installerの後片付けです。

6.3.8.1 システムの再起動

最後のプロンプトの後、システムを停止させてください。この場合、S/390では再起動がサポートされていないのです。その後、インストールの最初にルートファイルシステムとして選択したDASDからGNU/LinuxをIPLしてください。

6.3.9 トラブルシューティング

本節に挙げるコンポーネントは、通常インストールプロセスに関係しませんが、何かうまく行かない時に、ユーザーの助けになるようバックグラウンドで待っています。

6.3.9.1 インストールログの保存

インストールが成功したら、インストールプロセス中のログファイルが、新しいDebianシステムの/var/log/installer/に自動的に作成されています。

メインメニューからデバッグログを保存を選択すると、ログファイルをUSBメモリやネットワーク、ハードディスク、その他メディアに保存できます。これは、インストール中に致命的な問題に遭遇してしまい、別システムでそのログを調査したいときや、インストールレポート向けにログを添付したいときに便利です。

6.3.9.2 シェルの使用とログの参照

インストール中にシェルを起動する方法はいくつかあります。ほとんどのシステムでは、さらにリアルコンソールでインストールしていない場合、左Alt-F2を押して（Macのキーボードでは、Option-F2）、第2仮想コンソールに切り替えるのが簡単です。左Alt-F1でインストーラー自体に戻ってください。

コンソールに切り替えられない場合、メインメニューにあるシェルの実行でもシェルを起動できます。ほとんどのダイアログから、Go Backボタンを何度か押して、メインメニューに戻れます。exitと入力すると、シェルを終了してインストーラーに戻ります。

この段階ではRAMディスクから起動しています。また、使用には制限がありますがUnixユーティリティが利用可能です。どのプログラムが利用できるかはコマンドls/bin/sbin/usr/bin/usr/sbinスペースバーの左側にあるAltキーと、F2ファンクションキーを同時に押してください。
やhelpとタイプするとわかります。シェルはashというBourne shellのクローンで、自動補完や履歴のような、気の利いた機能を備えています。

ファイルの編集や表示をするには、nanoというテキストエディタを使用してください。インストールシステムのログファイルは、/var/logディレクトリにあります。

注意
シェルの中では、有効なコマンドを許可されている限り、基本的になんでもできますが、何か問題が発生したときのデバッグ用に、シェルを使用するオプションはここにしかありません。

シェルから手動で何かを行うと、インストールプロセスや結果にエラーが発生したり、インストールが完了しなかったりといった恐れがあります。特に、インストーラーでswapを有効にするようにし、シェルから手動で行わないようにしましょう。

6.3.10 network-consoleを利用したインストール
S/390のインストールでは、ネットワークの設定の後、これがデフォルトの方法です。

インストールするシステムに接続するための新しいパスワード(とその確認)を入力してください。これで以上です。今、リモートでログインするよう促す画面が出ているはずです。ユーザー名はinstaller、パスワードは先ほど入力した物を使用してください。この画面にある重要な細かい点として、このシステムの指紋(fingerprint)があります。この指紋を、リモートでインストールを続ける人に、安全に転送する必要があります。

ローカルでインストールすると決めた場合は、Enterを押してください。メインメニューに戻ります。そこで別のコンポーネントを選択してください。

それでは回線の向こう側へ行きましょう。前提として、あなたの端末がインストールシステムで使用するUTF-8エンコードを使用できるように設定されている必要があります。そうでなければ、リモートインストールは可能ですが、ダイアログの枠線が化けたりASCII以外の文字が読めないといった妙な表示になってしまうます。インストールシステムへの接続を確立するには、単に以下のように入力してください。

```bash
$ ssh -l installer install_host
```

Install_hostに、インストールするコンピュータの名前かIPアドレスのどちらかをセットします。実際にログインの前に、リモートシステムの指紋を表示するのでそれが正しいかどうか確認してください。

注意
インストーラーのsshサーバーは、keep-aliveパケットを送らないというデフォルト設定を使用します。原則的に、インストールするシステムへの接続は、無期限に保たれるべきです。しかし、ある状況下(あなたのローカルネットワークの設定に依存する)では、不使用時間が続くと接続を失う可能性があります。よくある状況は、クライアントとインストールするシステムの間のどこかに、ネットワークアドレス変換(NAT)があることです。接続が失われた際のインストールのポイントにより、再接続後にインストールを再開できるかどうかが決まるでしょう。

ssh接続を開始する際や、sshの設定ファイルに、オプション-o ServerAliveInterval=valueを追加して、接続が切れるのを回避できるかもしれません。しかし、ある状況下では、このオプションを追加すると、接続が切れる原因になるかもしれないことにご注意ください(例えば、普段ならsshが復旧してしまうような、短時間のネットワーク障害中にはkeep-aliveパケットを送るなど)。そのため、使用は必要最小限にすべきです。
注意

順番にいくつかのコンピュータにインストールして、同じ IP アドレスやホスト名を持っていたりすると、ssh はそういったホストへの接続を拒否します。指紋が異なっているというのは、通常なりすまし攻撃のサインです。なりすまし攻撃ではないことが確かなら、~/.ssh/known_hosts から関連する行を削除して①、もう一度行う必要があります。

①以下のコマンドで、既存のホストエントリを削除できます。ssh-keygen -R <hostname>IP address>

ログインするとメニューの開始、シェルの開始という 2 つのメニューがある初期画面が表示されます。前者はメインのインストールメニューに移動し、通常のインストールを進めることができます。後者はリモートシステムの検査と（可能なら）修正できるようなシェルを起動します。インストールメニュー用の SSH セッションを起動するのは 1 つだけにするべきですが、シェル用には複数のセッションを起動できます。

警告

SSH を使ってリモートでインストールを始めた後で、ローカルコンソールのインストールセッションに戻るべきではありません。新システムの設定を保持しているデータベースが破壊する可能性があるからです。それによりインストールが失敗したり、インストールしたシステムに何か問題が発生するかもしれません。

6.4 カスタム化

シェル（項 6.3.9.2 参照）を使えば、インストール作業を例外的なユースケースに合わせるため、じっくりとカスタマイズできます。

6.4.1 代替 init システムのインストール

Debian は systemd をデフォルトの init システムとして利用しています。ですが、他の init システム（sysvinit や OpenRC など）もサポートされていて、別の init システムを選択するのに最も楽なタイミングはインストール作業時となります。どのようにして切り替えるかの詳細な作業内容は Debian wiki の Init のページを参照してください。
新しい Debian システムを起動してみる

7.1 決定的瞬間

新しいシステムが初めて自力で起動することを、電気技術者は「スモークテスト」と呼びます。たとえシステムが正常に起動しなかったとしても、パニックにならないでください。インストールが正常に終了したのなら、システムが Debian を起動するのを妨げる比較的小さな問題だけがある可能性が高いです。ほとんどの場合、そのような問題はインストールを繰り返すことなしに解決することができます。ブート時の問題を修正する一つの選択肢は、インストーラ内蔵のレスキューモード（項 8.6 をご覧ください）を使用することです。

もし Debian や Linux に不慣れなら、より経験のあるユーザの手助けが必要かもしれません。S/390 やそれほど一般的でないアーキテクチャでは、debian-s390 メーリングリストで尋ねるのが最も良い方法です。項 5.3.4 にインストールレポートを提出することもできます。レポートには、問題についてはっきりと説明され、表示されたすべてのメッセージが含まれており、他の人が問題の原因を突き止める助けになるようにしてください。

7.2 暗号化ボリュームのマウント

インストール中に暗号化ボリュームを作成し、マウントポイントに割り当てるとき、そのボリュームに対して、起動中にパスフレーズを入力するように訊いてきます。

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

プロンプトの最初の行の part は、たとえば sda2 や md0 のような、基本的なパーティション名です。おそらく、ボリュームごとにパスフレーズを入力することに、違和感を覚えるのではないでしょう。これは /home や /var それぞれでパスフレーズを入力させられるのでしょうか？もちろんそうです。暗号化したボリュームが一つだけなら、話は簡単で、セットアップのときに入力したパスフレーズを入力するだけです。インストール時に、暗号化ボリュームを少なくとも一つは設定しているなら、項 6.3.4.6 の最後のステップに書き留めたパスフレーズを入力するだけです。ブラウザで、暗号化されたルートファイルシステムがマウントされる時、プロンプトは少し違って見えるかもしれません。それは、システムの起動に使用される initrd を生成するために、どの initramfs ジェネレータが使われたかによります。以下の例は、initramfs-tools で生成された initrd の場合です。

```
Begin: Mounting root file system... ...
Begin: Running /scripts/local-top ...
Enter LUKS passphrase:
```

パスフレーズの入力時には、入力した文字（やアスタリスク）は表示されません。パスフレーズを間違えた場合、訂正するために 2 回まで試行できます。入力を 3 回間違えると、そのボリュームをスキップして、次のファイルシステムをマウントしようとします。詳細は、項 7.2.1 をご覧ください。

パスフレーズをすべて入力すると、通常と同様に起動を継続します。
7.2.1 トラブルシューティング
パスフレーズを間違えて、暗号化ボリュームをマウントできなかった場合、ブート後に手動でマウントする必要があります。以下の状況が考えられます。

- まずはじめの状況は、ルートパーティションに関することです。正しくマウントできないとブートプロセスが停止し、再起動してもう一度行わなければなりません。
- 最も考えられる状況は /home や /srv のようにデータを保持する暗号化ボリュームです。単純にブート後に手作業でマウントできます。
 dm-crypt の場合は少しトリッキーです。まず device mapper を実行して、ボリュームを登録する必要があります。

```bash
# /etc/init.d/cryptdisks start
```

/etc/crypttab に記述されたボリュームすべてを検査し、正しいパスフレーズを入力すると、/dev ディレクトリ以下に、適切なデバイスを作成します。（既に登録されたボリュームはスキップするので、何度実行しても警告がでません）登録に成功すると、以下のよろ方法でマウントできます。

```bash
# mount /mount_point
```

- クリティカルでないシステムファイルを扱うボリューム（/usr や /var）がマウントできなかった場合、それでもシステムが起動し、前述の状況のように手動でボリュームをマウントできるでしょうか。しかし、デフォルトのランレベルで通常動作しているサービスを、起動していない可能性があるので、(再) 起動する必要があります。最も簡単なのはコンピュータの単純な再起動です。

7.3 ログイン
システムが起動するとすぐに、ログインプロンプトが現れます。インストールプロセス中にあなたが指定した一般ユーザのアカウント名とパスワードを入力して、ログインしてください。これで、システムは準備完了です。

初心者のユーザは、システムを使い始めながら、すでにインストールされている文書を読んでみると良いでしょう。現在はまだ文書システムが数種類存在しており、別の形式の文書を統合するための作業が進められているところです。以下に出発点をいくつか示します。

インストールしたプログラムに付属する文書は、/usr/share/doc/以下のそのプログラム（より正確には、そのプログラムを含む Debian バッケージ）にちなんで命名されたサブディレクトリの下で見ることができます。しかし多くの場合、より豊富な文書が、独立した文書パッケージ（ほとんどの場合、デフォルトではインストールされません）として特別に用意されます。例えば、パッケージ管理ツール apt に関する文書は、apt-doc や apt-howto パッケージで見ることができます。

また、/usr/share/doc/階層構造の中には、いくつか特別なフォルダがあります。Linux HOWTO は、/usr/share/doc/HOWTO/en-txt/の中に、.gz（圧縮）フォーマットで収められています。dhlp をインストールした後に、/usr/share/doc/HTML/index.html に拾い読みできる文書のインデックスを見つけるでしょう。

テキストベースのブラウザを使用して以下のコマンドを入力することで、以下のようにそれらの文書を簡単に見られます。

```bash
$ cd /usr/share/doc/
w3m
```

w3m コマンドの後のドットは、カレントディレクトリの内容を表示させるためのものです。

グラフィカルデスクトップ環境をインストールした場合には、Web ブラウザも利用できます。アプリケーションメニューから Web ブラウザを起動し、アドレスバーに /usr/share/doc/ と入力してください。

また、コマンドプロンプトから使えるほとんどのコマンドに対し、info コマンドまたは man コマンドによってその文書が参照できます。help でヘルプを表示すると、シェルコマンドのヘルプが読めます。コマンドを --help つきで入力すると、たいいていそのコマンドの簡単な使い方が表示されます。その結果が画面からスクロールして消えてしまう場合には、コマンドのあとに | more を追加すると、画面ごとに一時停止してくれます。あら文字で始まるコマンドの一覧を知りたいときは、その文字を入力してからタブを 2 回押します。
Chapter 8
次のステップとそれから

8.1 システムをシャットダウンする

稼働中のDebian GNU/Linuxシステムをシャットダウンする際には、コンピュータの前面や背面にあるリセットスイッチで再起動させたり、いきなり電源を落したりしてはいけません。Debian GNU/Linuxは適切な手順でシャットダウンすべきで、さもないとファイルを失ったりディスクにダメージがもたらされたりします。デスクトップ環境を実行している場合は、通常システムのシャットダウン（または再起動）を可能にする、アプリケーションメニューから利用できる「ログアウト」用のオプションがあります。

もう一つの方法として、Ctrl-Alt-Delのキーを同時に押す方法が使えます。このキーの組合せが効かない場合、最後の選択肢として、rootでログインして必要なコマンドを打ち込んでください。システムを再起動するにはrebootと打ち込んでください。電源を入れたままシステムを停止するにはhaltを使ってください。マシンの電源を落とすにはpoweroffまたはshutdown-hnowを使ってください。systemdinitシステムでは例えばsystemctlrebootやsystemctlpoweroff等、同一の機能を果たす追加のコマンドを提供しています。

8.2 Debianに慣れる

Debianは他のディストリビューションとは少々異なっています。他のディストリビューションでLinuxに精通された方でも、システムを整然とした状態に保つためには、Debianについて知っておかなくてはならないことがあります。この章ではDebianに慣れる手助けとなる資料を紹介します。Debianの使い方を逐説明することは意図していません。すごく急いでいる人にシステムをざっと伝えただけのものです。

8.2.1 Debianパッケージングシステム

まず理解すべき最も重要な考え方に、Debianのパッケージングシステムがあります。基本的には、システムの大部分はパッケージングシステムの管理下にあると考えられています。このパッケージングシステムによって管理されるディレクトリには、以下のディレクトリが含まれています。

- /usr（/usr/localを除く）
- /var（/var/localを作成し、それ以下のディレクトリを自由に使うことは可能です）
- /bin
- /sbin
- /lib

例えば、/usr/bin/perlをあなたが別に用意したファイルで置き換えたとしても、その動作には問題はありません。ただし、後でperlパッケージを更新すると、あなたが置いたファイルはパッケージによって置き換えられてしまうのです。

1SysVinitシステムではhaltはpoweroffと同じ効果がありましたが、initシステムがsystemd(jessieからデフォルト)の場合は異なる効果があります
8.3 さらなる文書や情報

Debianウェブサイトには、Debianに関するたくさんの文書があります。特に、Debian GNU/Linux FAQとDebianリファレンスをご覧ください。Debianドキュメンテーションプロジェクトには、Debianドキュメンテーションに関するより多くのインデックスが用意されています。Debianのコミュニティでは、ユーザがお互いにサポートを行っています。Debianのマーリングリストの講話ページをご覧ください。大事なことを言い忘れましたが、DebianマーリングリストアーカイブにはDebianに関する豊富な情報が含まれています。

もし特定のプログラムに関する情報が必要ならば、まずはmanプログラム名やinfoプログラム名を実行してみてください。

/usr/share/docにも有用な文書がたくさんあります。特に、/usr/share/doc/HOWTOや/usr/share/doc/FAQには興味深い情報がいくつかあります。バグを報告するには/usr/share/doc/debian/bug*をご覧ください。特定のプログラムについてDebian固有の問題を読むためには/usr/share/doc/(パッケージ名)/README.Debianをご覧ください。

GNU/Linuxの情報の一般的なソースは、Linux Documentation Projectです。そこで、GNU/Linuxシステムの部分について、他の非常に価値ある情報のためのHOWTOやポインタを得られるでしょう。

LinuxはUnix実装の一つです。Linux Documentation Project（LDP）ではLinuxに関するたくさんのHOWTOやオンライン書籍をまとめてます。

Unixを初めてお使いになる方は、出かけて何冊か本を買い、少し読んでみるといいでしょう。このUnix FAQのリストには、素晴らしい歴史的な参考文献を提供するUsenetドキュメントがたくさん紹介されています。
8.4 電子メールを使用するためのシステム設定

今日では、電子メールは多くの人々にとって生活の重要な一部になっています。電子メールを使うように設定するまでには、たくさんの選択肢があり、さらに電子メールが正確に設定されていることが重視されるDebianユーティリティがあります。本節では、基本的なことのみ説明します。

電子メールシステムは、三つの重要な機能で構築されています。最初に、ユーザがメールを読む書きるために実際に使用するプログラムである Mail User Agent (MUA) があります。次に、あるコンピュータから別のコンピュータまでメッセージの転送処理をする Mail Transfer Agent (MTA) があります。そして最後に、ユーザの受信箱に受信メールの配送処理をする Mail Delivery Agent (MDA) があります。

これら三つの機能は個別のプログラムによって実行されます。一つあるいは二つのプログラムに組み込むこともできます。また、異なるタイプのメールのために、これらの機能を処理する異なるプログラムを使用することもできます。

LinuxやUnixシステムにおいては、muttが歴史的にとてもよく知られているMUAです。従来のほとんどのLinuxプログラムがそのようであるようにテキストベースのプログラムで、MTAとしてeximまたはsendmail、そしてMDAとしてprocmailと組み合わせてよく使用されます。

グラフィカルデスクトップシステムの人気の高まりとともに、GNOMEの evolution、KDEのkmail、あるいはMozillaの thunderbirdとして利用可能)のようなグラフィカルな電子メールプログラムの使用がより一般的になっています。これらのプログラムは、MUA、MTAおよびMDAの機能が組み合わせられていますが、従来のLinuxソースと組み合わせることもでき、そして多くの場合は組み合わせて使用されます。

8.4.1 デフォルトの電子メール設定

デフォルトの電子メール設定

グラフィカルなメールプログラムを使用するつもりでも、Debian GNU/Linuxシステムに従来のMTA/MDAをインストールし、正確に設定するのには有用かもしれません。システムで起動している様々なユーティリティが、システム管理者に（潜在的な）問題や変更を通知するために、電子メールで重要な通知を送ることができかからです。

そのために、exim4とmuttをapt install exim4 muttでインストールできます。exim4は、比較的小さなMTA/MDAの組み合わせで、とても柔軟性のあるMTA/MDAの組み合わせです。デフォルトでは、システム内のローカルな電子メールの処理のみで設定され、システム管理者（rootアカウント）宛ての電子メールは、インストールの際に作成した標準のユーザアカウントに配送されます。

システムから配送された電子メールは/var/mail/account_name中のファイルに加えられます。メールはmuttを使って読むことができます。

8.4.2 システムの外に電子メールを送る

システムの外に電子メールを送る

先に述べたように、インストールしたDebianシステムは、システム内のローカルな電子メールを処理するようにだけ設定され、他人にメールを送ったり、他人からメールを受け取ったりするようには設定されません。

exim4に外部の電子メールを処理させたい場合は、利用できる基本設定オプションに関して、次節を参照してください。メールが正确に送受信できることは、テストして確かめるようにしてください。

もしグラフィカルなメールプログラムを使ってインターネットサービスプロバイダ（ISP）あるいは会社のメールサーバを使用するつもりならば、外部の電子メールを処理するためにexim4を設定する必要は実際にはありません。電子メールを送受信するために、好みのグラフィカルなメールプログラムが正しいサーバを使用するようにだけ設定するだけです（設定方法は本マニュアルでは扱いません）。

しかしその場合には、電子メールを正しく送れるように個々のユーティリティを設定する必要があるかもしれません。そのようなユーティリティの一つに、Debianパッケージに対するバグ報告の提出を容易にするプログラムであるreportbugがあります。デフォルトでは、バグ報告を提出するためにexim4が使用可能であることが期待されます。

外部のメールサーバを使用するようにreportbugを正しく設定するため、reportbug --configure コマンドを実行し、MTAが利用可能かどうかという質問に「no」と答えてください。その後、バグ報告の提出に使用するSMTPサーバを尋ねられるでしょう。

2例えば: cron, quota, logcheck, aide, ...
3標準のユーザアカウントへのroot宛てのメールの転送は, /etc/aliasesで設定します。標準のユーザアカウントを作成しなかった場合、もちろんメールはrootアカウント自身に配送されます。
CHAPTER 8 次のステップとそれから

8.4.3 Exim4 Mail Transport Agent への設定

システムで外部の電子メールを処理するためにしたい場合、exim4 パッケージを再設定する必要があ ります。

```
# dpkg-reconfigure exim4-config
```

(root で) 上記のコマンドを入力した後に、設定ファイルを小さなファイルに分割するかどうか質 関されます。よく分からない場合は、デフォルトオプションを選択してください。

次に、一般的な複数のメールシナリオが提示されます。あなたが必要としていることに最も近いもの を一つ選択してください。

インターネットサイト・システムはネットワークに接続され、SMTPを使用して直接メールを送受信し ます。次の画面で、マシンのメール名や受信あるいは転送するメールのドメインリストなどのよ うな、いくつかの基本的な質問をされます。

スマートホストでメール送信 このシナリオでは、あなたの送信メールは、宛先先へのメッセージ送信 処理をする「スマートホスト」と呼ばれる他のマシンに転送されます。通常、スマートホストは、 あなたのコンピュータ宛てに送信されたメールを保管するので、ずっとオンラインである必要はありません。つまりそれは、fetchmailのようなプログラムによって、スマートホストのメールをダウンロードしなければならないことを意味します。

多くの場合、スマートホストはあなたの ISP のメールサーバで、このオプションはダイヤルアップ ユーザーにとっても適しています。またそれは、会社のメールサーバやあなた自身のネットワーク 上の別のシステムとすることもできます。

スマートホストでメール送信; ローカルメールなし このオプションは、システムがローカルの電子メ ールドメインを処理するように設定されないという点を除いては、基本的に前のものと同じで す。システム自体（例えば、システム管理者のため）のメールは処理されます。

ローカル配信のみ システムがデフォルトで設定されるオプションです。

今は設定しない 内容を理解できていると絶対に確信している場合のみ選択してください。このシナリ オは、メールシステムを未設定のままにしてしまおうメールシステムが設定されるまで、メールの送 受信は一切できず、システムユーティリティからの重要なメッセージも逃してしまうかもしれません。

以上のどのシナリオもあなたの必要とするものに合っていない場合や、より精細な設定が必要な場合は、インストール完了後に /etc/exim4 ディレクトリの設定ファイルを編集する必要があります。exim4に関するより多くの情報は、/usr/share/doc/exim4 ディレクトリにあります— README.Debian.gz ファイルには、exim4 の設定に関するその他の情報や、補足文書がどこで見つか るかなどの説明があります。

公式なドメイン名がない場合、インターネットに直接送信されたメールが受信サーバのスパム 対策のために拒絶され、結果として不着メールとなる可能性があることに注意してください。ISP のメ ールサーバの使用が望まれます。それでもメールを直接送信したい場合には、デフォルトで生成され るものとは異なる電子メールアドレスを使用した方が良いでしょう。MTAとして exim4を使用するな ら、/etc/email-addresses にエントリを追加することで可能です。

8.5 新しいカーネルのコンパイル

新しいカーネルをコンパイルしようとする動機はなんでしょう? Debianで提供している標準カーネル はほとんどの機能を利用できるようにしているので、あまり必要はないでしょう。

それでも独自のカーネルをコンパイルしたい場合はもちろんです。その場合は「make deb-pkg」 ターゲットの利用をお勧めしています。詳細については Debian Linux Kernel Handbook を参照してく ださい。

もちろん、exim4を削除し、他の MTA/MDAを使用することもできます。
8.6 起動しなくなってしまったシステムの回復

時に物事は失敗し、慎重にインストールしたはずのシステムはもはや起動しません。おそらくブートローダの設定ファイルを編集しているうちに壊してしまったか、あるいはインストールした新しいカーネルでは起動しないか、ことによると宇宙線がディスクに命中して/sbin/initの中のビットがちょっと弾きとばされてしまったのかもしれません。原因のいかんを問わず、問題を修正する間に動作するようなシステムが必要になるでしょう。レスキューモードはそんな時に役立ちます。

レスキューモードにアクセスするためには、ブートメニューから rescue を選択して boot: プロンプトで rescue とタイプするか、ブートパラメータに rescue/enable=true を指定して起動してください。インストールの最初で、これがフルインストールではなくレスキューモードだということを知らせる注意書きが、ディスプレイの隅にほんの少し表示されます。心配しないでください、あなたのシステムが上書きされるわけではありません！レスキューモードは単に、システムを修復している間にディスクやネットワークデバイスなどが利用できることを確認するために、ハードウェア検出機能を利用します。

パーティション分割ツールの代わりに、システム上のパーティションリストが示され、それらのうちの一つを選択するよう尋ねられるでしょう。通常は、修復する必要のあるルートファイルシステムを含むパーティションを選択すべきです。ディスク上で直接作成されたパーティションと同様に RAID や LVM デバイス上のパーティションも選択できます。可能であれば、インストーラは、選択したファイルシステムにおける、必要な修復を実行するために使えるシェルプロンプトを提供するようになっています。

選択したルートファイルシステムにあるシェルをインストーラが実行できない場合は、おそらくファイルシステムが壊れているので、インストーラは警告を発し、代わりにインストーラ環境でのシェルを提供することを提案します。この環境で利用できるツールは多くはありませんが、たいへいの場合、システムをとにかく復旧させるには充分でしょう。選択したルートファイルシステムは、/target ディレクトリーにマウントされます。

いずれの場合でも、シェルを抜けた後にシステムが再起動します。最後に、壊れてしまったシステムを修復するのは難しいことがあります。本マニュアルが、うまくいかない事や問題を修正する方法のすべてを説明しようとしているわけではないことに注意してください。もし問題があれば、専門家に相談してください。
Appendix A
インストール Howto

この文書は、新しい debian-installer で S/390（「s390x」）に Debian GNU/Linux bullseye をインストールする方法について説明します。これは、インストール作業の迅速なハーテработで、たいへいの導入のために必要となるであろうすべての情報を含んでいます。もっと多くの情報が有用な場合には、この文書内の他の部分にある、より詳細な説明にリンクします。

A.1 前置き

debian-installer はまだベータ版の状態です。インストール中にバグに遭遇した場合には、それらを報告する方法の説明のために項5.3.4を参照してください。この文書で答えることができない質問があれば、debian-boot メーリングリスト (debian-boot@lists.debian.org)で直接質問するか、IRC (OFTCネットワーク上の #debian-boot)で訊ねてください。

A.2 インストーラを起動する

インストールイメージへのリンクが直ちに必要な方は、debian-installer ホームページを確認してください。この文書で答えることができない質問があれば、debian-boot メーリングリスト(debian-boot@lists.debian.org)で直接質問するか、IRC (OFTCネットワーク上の #debian-boot)で訊ねてください。

A.2.1 光学ディスク

netinst CD イメージは、debian-installer での bullseye のインストールに使用するのに一般的なイメージです。このインストール方法はこのイメージから起動し、ネットワーク越しに追加パッケージをインストールするように意図されているので、「netinst」という名前がついています。また、インストーラを実行するために必要な、ソフトウェアコンポーネントと最小限の bullseye システムを提供する基本パッケージが含まれています。必要なら、ネットワークを必要としない、フルサイズ CD/DVDイメージを手に入ることもできます。その場合は一式の最初のイメージだけが必要です。

A.2.2 ネットワークからの起動

debian-installer をネットから完全に起動することもできます。netboot のための様々な方法は、アーキテクチャや netboot の設定に依存します。netboot/以下のファイルは、debian-installer をnetbootするために使用できます。

52
A.2.3 ハードディスクからの起動
リムーバブルメディアを使用せずに、単に既存のハードディスク（そこに異なるOSが含まれていない）を使ってインストールを起動することができます。hd-media/initrd.gz、hd-media/vmlinuz およびDebian CD/DVD イメージをハードディスクの一番上のディレクトリにダウンロードしてください。イメージのファイル名が.isoで終わっていることを確かめてください。これはinitrdを使ったLinuxの起動時の問題です。

A.3 インストール
インストールが立ち上がるとすぐに、歓迎の初期画面が表示されます。起動するためにEnterを押すか、他の起動方法やパラメータのための説明を読んでもらいます（項5.2をご覧ください）。
しばらくして、言語を選択するための質問がされます。矢印キーを使って言語を選び、継続するためにはEnterを押してください。次に、その言語が話される国々を含む選択肢が表示され、国を選択するよう質問されます。短いリスト上にはない場合は、世界中のすべての国のリストから選択できます。
次にインストールは、ネットワークを検知し、DHCPによってネットワーク設定をしようと思います。ネットワーク設定にないか、DHCPが無いかなければならない場合は、ネットワークを手動で設定する機会が与えられます。
ネットワーク設定後に続き、ユーザアカウントの作成を行います。デフォルトでは、「root」（管理者）アカウントのパスワードと、一般ユーザアカウントの作成に必要な情報を尋ねます。「root」ユーザのパスワードを指定しない場合、このアカウントは無効になります。新しいシステムで管理権限が必要なタスクを行うために、後でsudoパッケージをインストールすることになります。デフォルトではそのシステムで最初に作成されたユーザに、rootになるためのsudo コマンドを使う権限が与えられます。
次のステップは、時計とタイムゾーンの設定です。インストールは、時計が正しく設定されるのを保証するため、インターネット上のタイムサーバに接続します。タイムゾーンは、あらかじめ選択した国を元にしますが、その国に複数のゾーンがある場合の分岐が合わせます。
次の画面でパーティションテーブル（パーティションデータをフォーマットするか、それをどこにマウントするか）を見ることになります。修正や削除をするためには、パーティションテーブルを選択してください。もし自動パーティション分割を行っているか、設定をしたものを使用するメニューから、パーティションテーブルの終了とディスクの終了を含むネットワークの設定を行うと、パックージングの終了がインストールされている場合を確認できます。スワップスペースのためには、少なくとも1つのパーティションを割り当てることを忘れずにご確認ください。パーティション分割ツールの使い方に関する詳細情報は、項6.3.4をご覧ください。また、付録の付録Cにパーティション分割に関するもっと多くの情報があります。
それが debian-installer はパーティションフォーマットし、基本システムのインストール（時間のかかることがありません）を始めます。続いてカーネルがインストールされます。
最初にインストールされた基本システムは動作しますが、最低限のものしかインストールされていません。もっと機能的になるには、次のステップでタスクを選択し、追加パッケージをインストールしてください。なお、パッケージはインストールする前に、パッケージをどこから取得してインストールするかの設定を、aptに設定する必要があります。「標準システム」タスクはデフォルトで選択され、通常は既にインストールされているはずです。インストール後はグライフッドスクトップが必要であれば、「デスクトップ環境」を選択してください。このステップについてのさらなる情報は、項6.3.5.2をご覧ください。
最後の段階はブートローダーをインストールすることです。コンピュータ上に他のオペレーティングシステムを検出した場合は、インストールがブートメニューにそれらを加えて知らせられます。
次にdebian-installerは、インストールが完了したことを伝えるCD-ROM やその他の起動メディアを取り出して、マシンを再起動するためにEnterを叩いてください。新しくインストールしたシステムが起動し、ログインできるはずです。これは第7章で説明しています。
インストール手順についてもっと多くの情報が必要ならば、第6章をご覧ください。
A.4 インストールレポートを送ってください

debian-installerで首尾よくインストールをやり遂げられたならば、レポート提出のためにしばらく時間をかけてください。reportbugパッケージをインストールして(apt install reportbug)、項8.4.2の説明にあるようにreportbugを設定し、reportbug installation-reportsと実行するのが最も簡単な方法です。

もしインストールが完了しなかったのならば、おそらくdebian-installerのバグを発見しました。インストーラを改善するためには、私たちがそれらについて知っていることが必要ですので、バグ報告するための時間をとってください。問題を報告するためにはインストールレポートが使用できます。インストールが完全に失敗する場合は、項5.3.3をご覧ください。

A.5 そして最後に…

Debianのインストールが快適であり、Debianが役に立つことに気づいていただければと思います。第8章を読むのが良いでしょう。
Appendix B

preseed を利用したインストールの自動化

本付録は preseed の方法を説明します。これは debian-installer の質問に回答しておくインストールを自動化するものです。

本付録で使用する設定の断片は、https://d-i.debian.org/manual/example-preseed.txt のサンプル事前設定ファイルでも利用できます。

B.1 概要

preseed は、インストールの実行中に手動で回答を入力せずに、インストールプロセス中の質問の答を設定する方法を提供します。これにより、ほとんどの方法のインストールを自動化し、さらに通常のインストールでは利用できない特徴もあります。

preseed は必須ではありません。空の preseed ファイルを使用すると、インストーラは通常の手動インストールと同じ振る舞いをします。preseed した各質問は、(正しく与えていれば!) ベースラインからと同じ方法で、インストールの内容を変更します。

B.1.1 preseed の方法

preseed を利用するには、initrd, file, network と 3 種類の方法があります。initrd preseed は、いずれのインストール方法でも動作し、より多くの preseed をサポートしますが、多くの準備が必要です。file preseed や network preseed は、それぞれインストール方法が異なる場合に使用されます。

以下の表では、各インストール方法で使用できる preseed 方法を示します。

<table>
<thead>
<tr>
<th>インストール方法</th>
<th>initrd</th>
<th>file</th>
<th>network</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/DVD/USB</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>netboot</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>hd-media</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>generic</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

preseed 方法の重要な違いは、事前設定ファイルを読込・処理するポイントです。initrd preseed では、インストールの始め（最初の質問が行われる前）に読み込まれます。カーネルコマンドラインからの preseed がその直後に続きます。そのため、(可能なブートローダの場合) ブートローダの設定、またはブートローダのブート時に手作業でカーネルコマンドラインを編集することにより initrd 中での設定状況に上書きできます。file preseed では、インストールイメージが読み込まれた後です。network preseed では、ネットワークの設定の後でないと読み込まれません。

1ネットワークアクセスを行う場合だけでなく、適切な preseed/url を設定する場合。
APPENDIX B. PRESEED を利用したインストーラーの設定

B.2. PRESEED の利用

事前設定ファイルを最初に作成し、使用する場所に配置する必要があります。事前設定ファイルの作成は本付録で後ほど扱います。network preseed の場合や、ファイルを USB メモリから読み込む場合、簡単に正しい位置に事前設定ファイルを配置できます。インストール ISO イメージにファイルを含めただければ、イメージを再度マスタリングする必要があります。initrd に含まれている事前設定ファイルを取り出す方法は、この文書では扱いません。debian-installer の開発者向け文書を参照してください。

B.2.1 事前設定ファイルの読み込み

initrd preseed を使用する場合、preseed.cfg というファイルが initrd のルートディレクトリに確実にある必要があります。インストールでは、このファイルがあるか自動的にチェックし、読み込みます。

他の preseed 方法では、起動時にどのファイルを読み込むか、インストールに指定する必要があります。通常、カーネルのプートパラメータで渡して行います。これは起動時に手動で与えるか、プートローダ設定ファイル（例：syslinux.cfg）を編集し、カーネルへの append 行の最後にパラメータを追加します。

プートローダの設定で事前設定ファイルを指定する場合、設定を変更すれば、インストールの起動時に ENTER を押す必要はありません。syslinux ではこの設定をするのに、syslinux.cfg でタイムアウトを 1 にします。

インストールが確実に正しい事前設定ファイルを取得するのには、このファイルのチェックサムを指定できます。現在、これらには md5sum 値の指定が必要です。指定した値と事前設定ファイルの値は一致しなければなりません。一致しない場合は、インストールは事前設定ファイルを使用しません。

ブートパラメータの設定:
- netboot の場合:
 - preseed/url=http://host/path/to/preseed.cfg
 - preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
- または
 - preseed/url=tftp://host/path/to/preseed.cfg
 - preseed/url/checksum=5da499872beccfeda2c4872f9171c3d
APPENDIX B. PRESEEDを利用したインストール

B.2. PRESEED の利用

リマスタリングしたインストールイメージで起動する場合:
preseed/file=/cdrom/preseed.cfg
preseed/file/checksum=5da499872beccfeda2c4872f9171c3d

USB メディアで起動する場合（事前設定ファイルを USB メモリのトップレベルディレクトリに置くこと）:
preseed/file=/hd-media/preseed.cfg
preseed/file/checksum=5da499872beccfeda2c4872f9171c3d

ブートパラメータに渡す際に、preseed/url は url に、preseed/file は file に、preseed/file/checksum は preseed-md5 に短縮できることに注意してください。

B.2.2 preseed が質問するブートパラメータの利用

事前設定ファイルを preseed の各段階で使用できない場合でも、preseed の値をインストーラ起動時のコマンドラインに与えることで、インストールを自動で行えます。

preseed を使用せずに指定した質問への答を設定したい場合にも、ブートパラメータを使用します。有用な使用法のサンプルが、このマニュアルの別の場所にあります。

debain-installer 内部で使用する値をセットするには、path/to/variable=value のように本付録の例にある preseed 変数を渡すだけです。値がターゲットシステムのパッケージを設定することがある場合、owner2 変数を、あらかじめ用意し、owner:path/to/variable=value で使用する必要があります。

通常、この方法で答をあらかじめ設定しておくと、質問してしまいます。質問のデフォルト値を指定しているのに、まだ質問する場合には、「=」演算子の代わりに、「?=」を使用してください。

ブートオプションの「---」は特別な意味を持ちます。最後の「---」に続きカーネルパラメータがある場合には、インストーラがサポートするブートローダの場合、インストール済みのブートローダの設定にコピーされます。

ブートパラメータに空白を含んだ値を設定するのには、引用符で囲むことにも注意が必要です。有効なエイリアスは、本サンプル内で完全な変数名の代わりに使用しています。例えば preseed/url 変数には url というエイリアスがあります。もう一つ、tasks というエイリアスがあり、これは tasksel:tasksel/first に変換されます。

ブートローダ設定ファイルにある (vga=normal) などのデフォルトオプションを安全に削除できるかもしれません。これにより preseed 用にもっとオプションを追加できます。

注意
現在の Linux カーネル（2.6.9 以降）では、最大（インストーラがデフォルトで指定するオプションを含め）コマンドラインオプションを 32 個、環境オプションを 32 個受け取ります。この数を超えると、カーネルはパニック（クラッシュ）してしまう（以前のカーネルではこの数がもっと少ないです）。

ほとんどのインストールでは、ブートローダ設定ファイルにある (vga=normal のような) デフォルトオプションを安全に削除できるかもしれません。これにより preseed 用にもっとオプションを追加できます。

注意
ブートパラメータに空白を含んだ値を設定するのは、引用符で囲んだとしてもいつもうまくいくとは限りません。

2debconf 変数（やテンプレート）の所有者（owner）は、debconf テンプレートに含まれるように、通常パッケージ名です。インストーラ自体が使用する値は、「d-i」になっています。テンプレートや変数は、複数の owner を持つ、パッケージを完全削除する際に debconf データベースから削除できるかどうかを決定するのに利用されます。
B.2.3 自動モード

プートプロンプトでの非常に簡単なコマンドラインで、自動インストールに対して任意の複雑なカスタマイズを行えるよう組み合せる、Debian インストーラの機能がいくつかあります。

これは起動時の選択からインストールの自動化を使うことで有効化できます。アーキテクチャや起動方法によっては auto とも呼ばれます。ここでは、auto パラメータではなく、起動時の選択でそれを選択して起動時のプロンプトに以下のパラメータを付加するという意味になります。

これを説明するために、以下にプートプロンプトで使用できる例を示します。

```plaintext
auto url=autoserver
```

これは、DNS で autoserver の名前解決ができ（おそらく DHCP でローカルドメイン追加後）、そのマシンが DHCP サーバであることの前提です。example.com というドメインのサイトが、普通のまもなく DHCP を設定していれば、http://autoserver.example.com/d-i/bullseye./preseed.cfg カら、preseed ファイルを取得することができます。

URL (d-i/bullseye./preseed.cfg) の最後の部分は、auto-install/defaultroot から取られています。デフォルトでは、将来のバージョンでコードネームを指定して移行していくように、bullseye ディレクトリが含まれています。// は、その後に続くパスが確定するように、ルートからの相対パスを示します (preseed/include や preseed/run で使用)。これにより、完全な URL や / で始まるパス、前回 preseed が見つかった場所からの相対パスでファイルを指定できます。スクリプトの階層構造は壊さずに新しい場所に移動できる（例えばウェブサーバで開始し、USB メモリにコピーする）よりポータブルなスクリプトを構成するのに便利です。このサンプルでは、preseed ファイルの preseed/run に /scripts/late_command.sh が設定されている場合、http://autoserver.example.com/d-i/bullseye./scripts/late_command.sh カラファイルを取得します。

手元に DHCP や DNS のインフラがない場合や、preseed.cfg のデフォルトパスを使用したくない場合でも、きちんとした URL を使用できる、// がなければ、パスの開始点を決定できます（例えば URL の 3 つ目の//）。以下は、手元のネットワークインフラから最低限必要な物のサンプルです。

```plaintext
auto url=http://192.168.1.2/path/to/mypreseed.file
```

この方法は次のように動作します。

• URL が見つからない場合、http だと仮定します。
• ホスト名セクションにピリオドがなければ、DHCP から引き出して追加します。
• ホスト名の後に / がなければ、デフォルトパスを追加します。

URL を指定するのに加えて、debian-installer 自身の振る舞いには直接影響しない設定も追加できますが、読み込んだ preseed ファイルの preseed/run で指定した、スクリプトに渡すことができます。現在のところ、classes というエイリアスを持つ、auto-install/classes のサンプルのみです。以下のように使用します。

```plaintext
auto url=example.com classes=class_A;class_B
```

classes にはこのサンプルでは、インストールするシステムのタイプや、地域化を指定するのに使用できます。

この概念はもちろん拡張でき、もうそれのように、auto-install 名前空間を使用するのが妥当です。ですから、次にあたるのスクリプトで使用する auto-install/style のような物かもしれないかもしれません。それが必要だと思うのなら、名前空間の衝突を避けるために debian-boot@lists.debian.org メーリングリストで提案してください。おそらくパラメータのエイリアスが加わることでしょう。

auto ブートの選択肢は、まだ全てのアーキテクチャで定義されていません。カーネルのコマンドラインに、単にパラメータを 2 つ auto=true priority=critical を追加すると、同じ効果を得られます。auto カーネルパラメータは auto-install/enable のエイリアスで、true に設定するとロケールやキーボードの質問を preseed で行えるよう遅らせます。また、priority は debconf/priority のエイリアスで、critical に設定すると、優先度の低質問を抑制するようになります。

DHCP を使用してインストールの自動化を行う際に、関連する追加オプションは以下の通りです。

```plaintext
interface=auto netcfg/dhcp_timeout=60
```

これはマシンが最初の使用可能 NIC を選択し、DHCP 問い合わせに対する返答をもっと我慢強く待つようになります。
テイップ

スクリプトやクラスのサンプルを含む、フレームワークの使用法についての大規模なサンプルが、開発者のウェブサイトにあります。そこで得られるサンプルでも、事前設定の独創的な使用を成し遂げる、たくさんのすばらしい効果があります。

B.2.4 preseedで利用できるエイリアス

以下のエイリアスは、(自動モード) preseed の際に、役に立つ場合があります。これらは単に、質問名の短いエイリアスであることに注意してください。そのうえで、常に値を指定する必要があります。例えば、auto=trueやinterface=eth0のようにです。

<table>
<thead>
<tr>
<th>キー</th>
<th>エイリアス</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>debconf/priority</td>
</tr>
<tr>
<td>fb</td>
<td>debian-installer/framebuffer</td>
</tr>
<tr>
<td>language</td>
<td>debian-installer/language</td>
</tr>
<tr>
<td>country</td>
<td>debian-installer/country</td>
</tr>
<tr>
<td>locale</td>
<td>debian-installer/locale</td>
</tr>
<tr>
<td>theme</td>
<td>debian-installer/theme</td>
</tr>
<tr>
<td>auto</td>
<td>auto-install/enable</td>
</tr>
<tr>
<td>classes</td>
<td>auto-install/classes</td>
</tr>
<tr>
<td>file</td>
<td>preseed/file</td>
</tr>
<tr>
<td>url</td>
<td>preseed/url</td>
</tr>
<tr>
<td>domain</td>
<td>netcfg/get_domain</td>
</tr>
<tr>
<td>hostname</td>
<td>netcfg/get_hostname</td>
</tr>
<tr>
<td>interface</td>
<td>netcfg/choose_interface</td>
</tr>
<tr>
<td>protocol</td>
<td>mirror/protocol</td>
</tr>
<tr>
<td>suite</td>
<td>mirror/suite</td>
</tr>
<tr>
<td>modules</td>
<td>anna/choose_modules</td>
</tr>
<tr>
<td>recommends</td>
<td>base-installer/install-recommends</td>
</tr>
<tr>
<td>tasks</td>
<td>tasksel:tasksel/first</td>
</tr>
<tr>
<td>desktop</td>
<td>tasksel:tasksel/desktop</td>
</tr>
<tr>
<td>dmraid</td>
<td>disk-detect/dmraid/enable</td>
</tr>
<tr>
<td>keymap</td>
<td>keyboard-configuration/xkb-keymap</td>
</tr>
<tr>
<td>preseed-md5</td>
<td>preseed/file/checksum</td>
</tr>
</tbody>
</table>

B.2.5 ブートプロンプトのpreseedの例

ここではブートプロンプトの見た目の例を示します（これを必要に応じて調整してください）。

```
# To set French as language and France as country:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz language=fr ←
country=FR --- quiet
# To set English as language and Germany as country, and use a German keyboard layout:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz language=en ←
country=DE locale=en_US.UTF-8 keymap=de --- quiet
# To install the MATE desktop:
/install. amd/vmlinuz vga=788 initrd=/install. amd/gtk/initrd.gz desktop=mate- ←
desktop --- quiet
# To install the web-server task:
/install. amd/vmlinuz initrd=/install. amd/initrd.gz tasksel:tasksel/first=web- ←
server ---
```
B.2.6 事前設定ファイルを指定するための DHCP の利用方法

事前設定ファイルをネットワークからダウンロードするよう指定するのに、DHCP も使用できます。DHCP はファイル名の指定ができます。通常これは netboot のファイルですが、URL 形式になっていると、network preseed をサポートするインストールメディアが、URL からファイルをダウンロードし、事前設定ファイルとして使用します。以下は、ISC DHCP サーバのバージョン3用 dhcpd.conf で設定するサンプルです。

```conf
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
    filename "http://host/preseed.cfg";
}
```

上記の例は、「d-i」を名乗る DHCP クライアントにこのファイル名を渡すよう制限されており、通常の DHCP クライアントではなく、インストールにのみ影響を与えることに注意してください。この文脈で、ネットワーク上の全マシンに preseed でインストールするのではなく、特定のホストに対して行うようにもできます。

DHCP preseed を使用するよい方法は、自分のネットワークには、Debian ミラーレットのような preseed の値のみ指定することです。自分のネットワークにこの方法でインストールすると、選択したようなミラーレットから自動で取得しますが、インストールの挙のプロセスはインタラクティブに行われます。DHCP preseed を用いた Debian の完全自動インストールは、充分注意しなければ行うべきではありません。

B.3 事前設定ファイルの作成

事前設定ファイルのフォーマットは、debconf-set-selections コマンドで使用されるものと同じです。事前設定ファイルの行の一般的なフォーマットは以下のようになります。

```bash
<所有者> <質問名> <質問タイプ> <値>
```

このファイルの内容は `_preseed_V1` から始まります
事前設定ファイルを記述する際には、ちょっとした規則があることに注意してください。

- 型と値の間に、空白かタブを 1 つだけおいてください。空白を追加すると、値の一部として解釈されます。空値を指定する場合は、型の後に空白かタブを、ひとつ記述したままにしてください。

- 行継続文字としてバックスラッシュ（「\」）を付けて複数行に分割できます。質問名の後で分割するのが適当でしょう。型と値の間はよくありません。値の途中で行を分割するのは、パーティション分割のレシピを除いてはサポートしていません。

- インストール自でみ使用する debconf 変数（テンプレート）では、所有者を「d-i」と設定しておきます。インストールされたシステムで使用する preseed 変数では、対応する debconf テンプレートを含むパッケージ名を使用するべきです。所有者が「d-i」ではない変数だけを、インストールしたシステムの debconf データベースに伝播させます。

- ほとんどの質問では、訳した値ではなく英語の値を指定する必要がありますが、(partman など) 訳した値を使用できる質問もあります。

- 質問の中には、インストール中に表示される英語のテキストの代わりに、コードを取るものがあります。

- `_preseed_V1` から始まります

- コメントは先頭がハッシュ記号（「#」）の行で、その行の最後まで続きます。

事前設定ファイルを作成する簡単な方法は、項 B.4 にあるサンプルファイルを元にして作業することです。

その他には、手動インストールを行い、再起動してから debconf-utils パッケージの debconf-get-selections を使用します。以下のように debconf データベースとインストールの cdebconf データベースを 1 ファイルに出力してください。

60
$ echo "#.preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file

しかし、この方法で生成したファイルでは preseed されない項目があります。ほとんどのユーザはサンプルファイルから始めるのがよいでしょう。

注意
この方法は、インストーラの cdebconf データベースが、インストールしたシステムの /var/log/installer/cdebconf に保存されているのを前提にしています。しかし、データベースに機密情報が含まれる可能性がありますので、デフォルトでは root にのみ読み込みが許可されています。
/var/log/installer ディレクトリとその中のファイルは、installation-report パッケージを完全削除することで、削除されます。

有効な質問の値をチェックするのに、インストール中に /var/lib/cdebconf のファイルを、nanoを使用して確認できます。生のテンプレートは templates.dat を、現在の値や変数に割り当てられた値は questions.dat を確認してください。

インストールを実行する前に、事前設定ファイルのフォーマットが適切かどうかを調べるには、
debconf-set-selections -c preseed.cfg が使えます。

B.4 事前設定ファイルの内容 (bullseye 用)

B.4.1 地域化
通常のインストール中、地域化について最初に質問されるため、地域化に関する質問は initrd またはカーネルプートパラメータによる方法でのみ preseed 可能となります。自動モード（項 B.2.3）では auto-install/enable=true の設定を（通常は preseed の別名 auto 経由で）盛り込むことになります。それにより地域化の質問を聞く機会が後になるため、どの方法でも preseed できるようになります。

ローカルは言語と国を両方指定でき、debian-installer がサポートする言語と認識する国のいずれかの組み合わせでもかまいません。組み合わせが正しいローカルの形になっていない場合、インストーラは選択した言語から正しいロケールを自動選択します。プートパラメータでロケールを指定するには、locale=en_US としてください。

この方法は非常に簡単ですが、言語・国・ロケールの利用可能な組み合わせを、すべて preseed できるわけではありません 3。言語と国は、どちらもプートパラメータで指定できます。

Preseeding only locale sets language, country and locale.
d-i debian-installer/locale string en_US

d-i debian-installer/language string en

d-i debian-installer/country string NL

d-i debian-installer/locale string en_GB.UTF-8

3例えば、preseed で locale を en_NL とするとき、インストーラしたシステムのデフォルトロケールは en_US.UTF-8 になります。例えば en_GB.UTF-8 を期待するのであれば、preseed にその値を設定する必要があります。
B.4. 事前設定ファイルの内容 (BULLSEYE 用)

キーボード設定は、キーマップの選択と、(非ラテンキーマップ向けの)非ラテンキーマップとUSキーマップとの、切り替えキーの選択から成っています。インストール中では基本的なキーマップバリエーションしか有効ではありません。詳細なバリエーションは、インストールしたシステムでdpkg-reconfigure keyboard-configurationを実行することでのみ有効になります。

キーボード設定をスキップするには、keymapをskip-configとpreseedしてください。これにより、カーネルのキーマップが有効になったままとなります。

B.4.2 ネットワーク設定
もちろん、ネットワークから事前設定ファイルを読み込む場合、preseedのネットワーク設定は動作しません。しかし、光学ディスクやUSBメモリから起動するときには重要です。ネットワークから事前設定ファイルを読み込む場合、ネットワーク設定パラメータは、カーネルブートパラメータで渡すことになります。

ネットワークから事前設定ファイルを読み込む前にnetbootするとき、特定のインターフェースを選ぶ必要があるなら、interface=eth1のようにブートパラメータを使用してください。

「preseed/url」でnetworkpreseedを使用する際、ネットワーク設定のpreseedは通常不可能ですが、例えば、ネットワークインタフェースに静的アドレスを設定するといった、以下のハックを利用して動作させることができます。このハックは、以下のコマンドを含む「preseed/run」スクリプトを作成し、事前設定ファイルを読み込んだ後でネットワークの設定を強制的に再度行う、というものです。

```bash
kill -all-dhcp; netcfg
```

以下のdebconf変数は、ネットワークの設定と関係があります。

```bash
# Disable network configuration entirely. This is useful for cdrom
# installations on non-networked devices where the network questions,
# warning and long timeouts are a nuisance.
#d-i netcfg/enable boolean false

# netcfg will choose an interface that has link if possible. This makes it
# skip displaying a list if there is more than one interface.
d-i netcfg/choose_interface select auto

# To pick a particular interface instead:
d-i netcfg/choose_interface select eth1

# To set a different link detection timeout (default is 3 seconds).
# Values are interpreted as seconds.
d-i netcfg/link_wait_timeout string 10

# If you have a slow dhcp server and the installer times out waiting for
# it, this might be useful.
d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpv6_timeout string 60

# Automatic network configuration is the default.
# If you prefer to configure the network manually, uncomment this line and
# the static network configuration below.
d-i netcfg/disable_autoconfig boolean true

# If you want the preconfiguration file to work on systems both with and
# without a dhcp server, uncomment these lines and the static network
# configuration below.
d-i netcfg/dhcp_failed note
```
APPENDIX B. PRESEEDを利用したインストール… B.4. 事前設定ファイルの内容（BULLSEYE用）

#d-i netcfg/dhcp_options select Configure network manually

Static network configuration.
IPv4 example
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/confirm_static boolean true
#
IPv6 example
#d-i netcfg/get_ipaddress string fc00::2
#d-i netcfg/get_netmask string ffff:ffff:ffff:ffff::
#d-i netcfg/get_gateway string fc00::1
#d-i netcfg/get_nameservers string fc00::1
#d-i netcfg/confirm_static boolean true

Any hostname and domain names assigned from dhcp take precedence over
values set here. However, setting the values still prevents the questions
from being shown, even if values come from dhcp.
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain

If you want to force a hostname, regardless of what either the DHCP
server returns or what the reverse DNS entry for the IP is, uncomment
and adjust the following line.
d-i netcfg/hostname string somehost

Disable that annoying WEP key dialog.
d-i netcfg/wireless_wep string
The wacky dhcp hostname that some ISPs use as a password of sorts.
d-i netcfg/dhcp_hostname string radish

If non-free firmware is needed for the network or other hardware, you can
configure the installer to always try to load it, without prompting. Or
change to false to disable asking.
d-i hw-detect/load_firmware boolean true

netcfg/get_netmask が preseed されていない場合、netcfg は自動的にネットマスクを決定することに注意してください。この場合、自動インストールを行うためには、この変数を seen としてマークされていなければなりません。同様に、netcfg/get_gateway が設定されていないと、netcfg は適切なアドレスを選択します。特殊な場合として、netcfg/get_gateway に「none」と設定して、ゲートウェイを使用しないようにできます。

B.4.3 ネットワークコンソール

Use the following settings if you wish to make use of the network-console
component for remote installation over SSH. This only makes sense if you
intend to perform the remainder of the installation manually.
d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password r00tme
#d-i network-console/password-again password r00tme

network-console に関する詳細な情報は項6.3.10で参照してください。

B.4.4 ミラーサイト設定

使用するインストール方法に依存しますが、インストーラの追加コンポーネントのダウンロードや、基本システムのインストール、インストールしたシステムの /etc/apt/sources.list のセットアップにミラーサイトを使用できます。
mirror/suite パラメータでは、インストールするシステム用の組を設定します。
mirror/udeb/suite パラメータでは、インストーラの追加コンポーネントの組を設定します。実際にコンポーネントをネットワークでダウンロードする場合に役立つだけです。また、インストールで使用するインストール方法のための initrd を生成するには、この組が一致していないければなりません。通常インストーラは、自動的に正しい値を設定しますので、設定する必要はありません。

Mirror protocol:
If you select ftp, the mirror/country string does not need to be set.
Default value for the mirror protocol: http.
#d-i mirror/protocol string ftp
#d-i mirror/country string manual
#d-i mirror/http/hostname string http.us.debian.org
#d-i mirror/http/directory string /debian
#d-i mirror/http/proxy string

Suite to install.
#d-i mirror/suite string testing
Suite to use for loading installer components (optional).
#d-i mirror/udeb/suite string testing

B.4.5 アカウント設定

root アカウント用のパスワードや、最初のユーザアカウントの名前・パスワードは preseed できます。パスワードには、平文か crypt(3) ハッシュのどちらかを使用できます。

警告

パスワードを知っている事前設定ファイルに誰でもアクセスできるため、preseed のパスワードは、完全に安全というわけではないことを知っておいてください。保存するパスワードをハッシュ化することで、総当たり攻撃を許す DES や MD5 のような弱いハッシュ化アルゴリズムを使わない限りは安全だと考えられます。ハッシュ化アルゴリズムとしては SHA-256 か SHA512 をお勧めします。

Skip creation of a root account (normal user account will be able to
use sudo).
#d-i passwd/root-login boolean false
Alternatively, to skip creation of a normal user account.
#d-i passwd/make-user boolean false

Root password, either in clear text
#d-i passwd/root-password password rO0tme
#d-i passwd/root-password-again password rO0tme
or encrypted using a crypt(3) hash.
#d-i passwd/root-password-crypted password [crypt(3) hash]

To create a normal user account.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
Normal user’s password, either in clear text
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
or encrypted using a crypt(3) hash.
#d-i passwd/user-password-crypted password [crypt(3) hash]
Create the first user with the specified UID instead of the default.
#d-i passwd/user-uid string 1010

The user account will be added to some standard initial groups. To
override that, use this.
#d-i passwd/user-default-groups string audio cdrom video

passwd/root-password-crypted 变数や passwd/user-password-crypted 变数では、preseed で「!」という値を取れます。この場合、そのアカウントは無効となります。もちろん管理権限での実行や root ログインを許可する代替手段（例えば SSH キー認証や sudo）を用いておいた上で、root アカウントに設定すると便利です。

以下のコマンド（whois パッケージから利用できます）を、パスワードの SHA-512 ベースの crypt(3) ハッシュを生成するのに利用できます。

mkpasswd
- m sha-512

B.4.6 時計と時間帯の設定

Controls whether or not the hardware clock is set to UTC.
#d-i clock-setup/utc boolean true

You may set this to any valid setting for $TZ; see the contents of
/usr/share/zoneinfo/ for valid values.
#d-i time/zone string US/Eastern

Controls whether to use NTP to set the clock during the install
#d-i clock-setup.ntp boolean true
NTP server to use. The default is almost always fine here.
#d-i clock-setup.ntp-server string ntp.example.com

B.4.7 パーティション分割

ハードディスクのパーティション分割にpreseed を使用するのは、partman-auto でサポートしている機能に限定されています。パーティションはディスクに既存の空き領域とディスク全体のどちらかから選べます。ディスクレイアウトは、あらかじめ定義したレシピ、レシピファイルによるカスタムレシピ、事前設定ファイルに書いたレシピから選択できます。

RAID、LVM、暗号化を用いた高度なパーティションセットアップを、preseed ではサポートしていますが、preseed を用いずにインストールしたときに使用できるような、完全な柔軟性があるわけではないです。

以下の例は、レシピを使用する際の基本的な情報のみを提供しています。詳細情報は、debian-installer パッケージにある、partman-auto-recipe.txt と partman-auto-raid-recipe.txt をご覧ください。どちらのファイルも debian-installer ソースリポジトリにもあります。リリースごとに、サポートする機能が変更されることがありますので、注意してください。

警告

ディスクの識別は、ドライバの読み込み順に依存します。複数のディスクがシステムにある場合、preseed を使用する前に、正しいディスクを確実に選択できないようにしなければなりません。

B.4.7.1 パーティション分割の例

If the system has free space you can choose to only partition that space.
This is only honoured if partman-auto/method (below) is not set.
#d-i partman-auto/init_automatically_partition select biggest_free

Alternatively, you may specify a disk to partition. If the system has only
one disk the installer will default to using that, but otherwise the device
name must be given in traditional, non-devfs format (so e.g. /dev/sda
and not e.g. /dev/discs/disc0/disc).
APPENDIX B. PRESEED を利用したインストー… B.4. 事前設定ファイルの内容 (BULLSEYE 用)

For example, to use the first SCSI/SATA hard disk:
#d-i partman-auto/disk string /dev/sga
In addition, you’ll need to specify the method to use.
The currently available methods are:
- regular: use the usual partition types for your architecture
- lvm: use LVM to partition the disk
- crypto: use LVM within an encrypted partition
#d-i partman-auto/method string lvm

You can define the amount of space that will be used for the LVM volume
group. It can either be a size with its unit (e.g. 20 GB), a percentage of
free space or the 'max' keyword.
#d-i partman-auto-lvm/guided_size string max

If one of the disks that are going to be automatically partitioned
contains an old LVM configuration, the user will normally receive a
warning. This can be preseeded away...
#d-i partman-lvm/device_remove_lvm boolean true
The same applies to pre-existing software RAID array:
#d-i partman-md/device_remove_md boolean true
And the same goes for the confirmation to write the lvm partitions.
#d-i partman-lvm/confirm boolean true
#d-i partman-lvm/confirm_nooverwrite boolean true

You can choose one of the three predefined partitioning recipes:
- atomic: all files in one partition
- home: separate /home partition
- multi: separate /home, /var, and /tmp partitions
#d-i partman-auto/choose_recipe select atomic

Or provide a recipe of your own...
If you have a way to get a recipe file into the d-i environment, you can
just point at it.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe

If not, you can put an entire recipe into the preconfiguration file in one
(logical) line. This example creates a small /boot partition, suitable
swap, and uses the rest of the space for the root partition:
#d-i partman-auto/expert_recipe string
boot-root ::
40 50 100 ext3
$primary{ } $bootable{ }
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ /boot }
.
500 10000 1000000000 ext3
method{ format } format{ }
use_filesystem{ } filesystem{ ext3 }
mountpoint{ / }
.
64 512 300% linux-swap
method{ swap } format{ }
.

The full recipe format is documented in the file partman-auto-recipe.txt
included in the ‘debian-installer’ package or available from D-I source
repository. This also documents how to specify settings such as file
system labels, volume group names and which physical devices to include
in a volume group.

Partitioning for EFI
If your system needs an EFI partition you could add something like
this to the recipe above, as the first element in the recipe:
APPENDIX B. PRESEEDを利用したインストール… B.4. 事前設定ファイルの内容（BULLSEYE用）

B.4.7.2 RAIDを用いたパーティション分割

ソフトウェアRAIDアレイにパーティションをセットアップすることも、preseedを使用してできます。サポートしているのは、RAID0,1,5,6,10、や縮退アレイの作成、スペアデバイスの指定です。

警告

自動パーティション分割でのこの形式は、誤動作をしやすいです。またこの機能は、debian-installerの開発者によって、相対的にまだあまりテストを受けていません。様々な条件で正しく動作するかの責任（理解でき衝突しない限り）は、ユーザーの側にあります。問題が発生したら、/var/log/syslogをチェックしてください。

The method should be set to "raid".
d-i partman-auto/method string raid
Specify the disks to be partitioned. They will all get the same layout,
so this will only work if the disks are the same size.
d-i partman-auto/disk string /dev/sda /dev/sdb

Next you need to specify the physical partitions that will be used.
d-i partman-auto/expert_recipe string \
multiraid :: \
1000 5000 4000 raid \
$primary{ } method{ raid } \
. \
64 512 300% raid \
method{ raid } \
. \
500 10000 1000000000 raid \
method{ raid } \
.

Last you need to specify how the previously defined partitions will be
APPENDIX B. PRESEED を利用したインストール… B.4. 事前設定ファイルの内容 (BULLSEYE 用)

used in the RAID setup. Remember to use the correct partition numbers
for logical partitions. RAID levels 0, 1, 5, 6 and 10 are supported;
devices are separated using "#".
Parameters are:
<raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
<devices> <sparedevices>

#d-i partman-auto-raid/recipe string \
1 2 0 ext3 / \
1 2 0 swap - \
0 2 0 ext3 /home \
.

For additional information see the file partman-auto-raid-recipe.txt
included in the 'debian-installer' package or available from D-I source
repository.

This makes partman automatically partition without confirmation.
#d-i partman-md/confirm boolean true
#d-i partman-partitioning/confirmitwrite_new_label boolean true
#d-i partman/choose_partition select finish
#d-i partman/confirm boolean true
#d-i partman/confirm_nooverwrite boolean true

B.4.7.3 パーティションマウントの制御

通常、ファイルシステムは、汎用一意識別子 (UUID) をキーとしてマウントされます。これにより、デバイス名が変更されたとしても、適切にマウントできます。UUIDは長く読みにくいため、お好みにより、インストーラは、伝統的なデバイス名やあなたが割り当てたラベルをベースにして、ファイルシステムをマウントできます。インストーラにラベルでマウントさせる場合、ラベルがないファイルシステムは、UUIDでマウントされます。

LVM 論理ボリュームのような不変名のデバイスは、UUIDではなく伝統的な名前で使用され続けます。

警告

伝統的なデバイス名は、ブート時にカーネルが検出する順番によって、変わってしまう可能性があり、そのため、誤ったファイルシステムをマウントする原因になります。同様に、新しいディスクや USB ドライブを挿すと、ラベルが競合してしまいます。こうなってしまうと、起動時の挙動が不確定になってしまうでしょう。

The default is to mount by UUID, but you can also choose "traditional" to
use traditional device names, or "label" to try filesystem labels before
falling back to UUIDs.
#d-i partman/mount_style select uuid

B.4.8 基本システムのインストール

インストールのこの段階で、実際に preseed できる項目は多くありません。質問はカーネルのインストールに関するものだけです。
APPENDIX B. PRESEED を利用したインストール B.4. 事前設定ファイルの内容 (BULLSEYE 用)

Configure APT to not install recommended packages by default. Use of this
option can result in an incomplete system and should only be used by very
experienced users.
#d-i base-installer/install-recommends boolean false

The kernel image (meta) package to be installed; "none" can be used if no
kernel is to be installed.
#d-i base-installer/kernel/image string linux-image-686

B.4.9 apt 設定

/etc/apt/sources.list のセットアップと基本設定オプションは、インストール方法と初期の質問への
回答から、完全に自動的に行われます。さらに、他の (ローカルな) リポジトリを追加できます。

追加インストールメディアをスキャンしたい場合は選んでください
(デフォルト：false).
#d-i apt-setup/cdrom/set-first boolean false
non-free および contrib ソフトウェアのインストールを選択できます
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
ネットワークミラーを使うない場合は以下のコメントを外してください。
#d-i apt-setup/use_mirror boolean false
以下のアップデートを使うかを選択します；利用するミラーを指定します。
以下で表示される値は通常のデフォルト値です。
#d-i apt-setup/services-select multiselect security, updates
#d-i apt-setup/security_host string security.debian.org

追加リポジトリ、local[0-9] が利用できます
#d-i apt-setup/local0/repository string \
http://local.server/debian stable main
#d-i apt-setup/local0/comment string local server
deb-src 行を有効にする
#d-i apt-setup/local0/source boolean true
ローカルリポジトリの公開鍵 URL；鍵を指定しないと apt は認証されていないリポジトリ
に対して警告を出し、sources.list 行はコメントアウトされたままになります。
#d-i apt-setup/local0/key string http://local.server/key
指定した鍵ファイルが “.asc” で終わる場合、
その鍵ファイルは ASCII 形式の PGP 鍵である必要が、
“.gpg” で終わる場合は “GPG key public keyring” 形式である必要があり、
"keybox database" 形式は今の所サポートされていません。
デフォルトではインストーラーは既知の GPG 鍵で認証されたリポジトリを必要とします。
以下の設定はこの認証を無効化するために利用します。
警告: 安全でなく、推奨されません。
#d-i debian-installer/allow_unauthenticated boolean true

i386 向けの multiarch 設定を追加するには以下のコメントをはずします
#d-i apt-setup/multiarch string i386

B.4.10 パッケージ選択

有効なタスクを組み合わせてインストールするものを選べることができます。有効なタスクを以下に書き出します。

• standard (標準ツール)
• desktop (グラフィカルデスクトップ)
• gnome-desktop (Gnome デスクトップ)
APPENDIX B. PRESEEDを利用したインストール... B.4.事前設定ファイルの内容（BULLSEYE用）

- xfce-desktop (XFCEデスクトップ)
- kde-desktop (KDE Plasma デスクトップ)
- cinnamon-desktop (Cinnamonデスクトップ)
- mate-desktop (MATEデスクトップ)
- lxde-desktop (LXDEデスクトップ)
- web-server (webサーバ)
- ssh-server (SSHサーバ)

タスクをインストールしないこともできますし、他の方法でパッケージのセットが強制的にインストールされることもあります。standardタスクは常に含めるのをお勧めします。
あるいはtaskselのダイアログを全く表示させたくないという場合は、pkgsel/run_taskselのpreseedを設定してください（この場合、taskselではパッケージは何もインストールされません）。
タスクでインストールするパッケージに加えて、特定のパッケージをインストールする場合、pkgsel/includeパラメータを使用できます。このパラメータの値は、カーネルコマンドラインと同様に簡単に仕様できるよう、カンマまたは空白で区切ったパッケージのリストを取れます。

```
#tasksel tasksel/first multiselect standard, web-server, kde-desktop
# Or choose to not get the tasksel dialog displayed at all (and don't install
# any packages):
#d-i pkgsel/run_tasksel boolean false

# Individual additional packages to install
#d-i pkgsel/include string openssh-server build-essential
# Whether to upgrade packages after debootstrap.
# Allowed values: none, safe-upgrade, full-upgrade
#d-i pkgsel/upgrade select none

# You can choose, if your system will report back on what software you have
# installed, and what software you use. The default is not to report back,
# but sending reports helps the project determine what software is most
# popular and should be included on the first CD/DVD.
#popularity-contest popularity-contest/participate boolean false
```

B.4.11 インストールの仕上げ

```
# During installations from serial console, the regular virtual consoles
# (VT1-VT6) are normally disabled in /etc/inittab. Uncomment the next
# line to prevent this.
#d-i finish-install/keep-consoles boolean true

# Avoid that last message about the install being complete.
d-i finish-install/reboot_in_progress note

# This will prevent the installer from ejecting the CD during the reboot,
# which is useful in some situations.
#d-i cdrom-detect/eject boolean false

# This is how to make the installer shutdown when finished, but not
# reboot into the installed system.
#d-i debian-installer/exit/halt boolean true
# This will power off the machine instead of just halting it.
#d-i debian-installer/exit/poweroff boolean true
```
B.4.12 他パッケージの preseed

```bash
# Depending on what software you choose to install, or if things go wrong
# during the installation process, it’s possible that other questions may
# be asked. You can preseed those too, of course. To get a list of every
# possible question that could be asked during an install, do an
# installation, and then run these commands:
#   debconf-get-selections --installer > file
#   debconf-get-selections >> file
```

B.5 高度なオプション

B.5.1 インストール中のカスタムコマンド実行

事前設定ツールには、インストール中の一定の箇所でコマンドやスクリプトを実行するといった、と
ても強力で柔軟なオプションが存在します。
ターゲットシステムのファイルシステムがマウントされると/target以下で利用できるようにな
ります。インストール CD を利用している場合はマウント後には/cdrom 以下で利用できるようにな
ります。

```bash
# d-i preseeding is inherently not secure. Nothing in the installer checks
# for attempts at buffer overflows or other exploits of the values of a
# preconfiguration file like this one. Only use preconfiguration files from
# trusted locations! To drive that home, and because it’s generally useful,
# here’s a way to run any shell command you’d like inside the installer,
# automatically.

# This first command is run as early as possible, just after
# preseeding is read.
#d-i /early_command stringanna-install some-udeb
# This command is run immediately before the partitioner starts. It may be
# useful to apply dynamic partitioner preseeding that depends on the state
# of the disks (which may not be visible when preseed/early_command runs).
#d-i /partman/early_command 
#   string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
# This command is run just before the install finishes, but when there is
# still a usable /target directory. You can chroot to /target and use it
# directly, or use the apt-install and in-target commands to easily install
# packages and run commands in the target system.
#d-i /late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

B.5.2 preseed を用いたデフォルト値変更

preseed を用いて、質問へのデフォルトの回答を変更できますが、この状態でも質問されるままにで
きます。そのためには、質問への回答を設定した後で、seen フラグを「false」に再設定してください。

```bash
d-i foo/bar string value
d-i foo/bar seen false
```

ブートプロンプトで preseed/interactive=true パラメータを設定し、すべての質問に対して同じ効
果を及ぼすこともできます。これは事前設定ファイルのテストやデバッグにも便
利です。
「d-i」という owner は、インストール者が使用する変数でのみ、使用するべきであることに注意
してください。ターゲットシステムにインストールされたパッケージに属する変数用には、パッケー
ジ名を代わりに使用するべきです。項B.2.2 の脚注をご覧ください。

ブートパラメータを利用して preseed を行う場合、質問に対して「?=」演算子を使用して回答で
きます。例: foo/bar?=value (もしくは owner:foo/bar?=value) これはもちろん、インストール中に実
際に入れられる質問に対応するパラメータのみ効果を及ぼし、「内部」パラメータには効果を及ぼし
ません。
詳細なデバッグ情報を取得するためには、ブートパラメータ `DEBCONF_DEBUG=5` を使用してください。これにより `debconf` が、各変数の現在の設定と各パッケージのインストールスクリプトの動作について、より詳細な情報を出力してくれます。

B.5.3 事前設定ファイルのチェーンロード

事前設定ファイルから他の事前設定ファイルを読み込めます。先に読み込まれたファイルの既存設定を、後から読み込まれた設定で上書きします。これは例えば、あるファイルに一般的なネットワークの設定を書いておき、他のファイルで具体的な設定を指定する、という使い方ができます。

```bash
# More than one file can be listed, separated by spaces; all will be
# loaded. The included files can have preseed/include directives of their
# own as well. Note that if the filenames are relative, they are taken from
# the same directory as the preconfiguration file that includes them.
d-i preseed/include string x.cfg

# The installer can optionally verify checksums of preconfiguration files
# before using them. Currently only md5sums are supported, list the md5sums
# in the same order as the list of files to include.
d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d

# More flexibly, this runs a shell command and if it outputs the names of
# preconfiguration files, includes those files.
d-i preseed/include_command 
  # string if [ "'hostname'" = bob ]; then echo bob.cfg; fi

# Most flexibly of all, this downloads a program and runs it. The program
# can use commands such as debconf-set to manipulate the debconf database.
# More than one script can be listed, separated by spaces.
# Note that if the filenames are relative, they are taken from the same
# directory as the preconfiguration file that runs them.
d-i preseed/run string foo.sh
```

また `initrd` や `filepreseed` の段階で、あらかじめ用意したファイルの `preseed/url` で設定した `networkpreseed` へ、チェーンロードを行うことが出来ます。これにより、ネットワークに接続した時点で `networkpreseed` を行えます。この場合、2 種類の異なる `preseed` が実行されることに注意してください。例えば、`preseed/early` コマンドを実行する機会が 2 度あり、2 回目はネットワークに接続した時に発生するということです。
Appendix C

Debianでのパーティション分割

C.1 Debianのパーティションとそのサイズを決める

必要最小限の構成でも、GNU/Linuxは自分のために少なくとも1つのパーティションを必要とします。オペレーティングシステム全体、アプリケーション、個人ファイルは1つのパーティションに収められます。多くの人はこれと別にスワップパーティションも必要と思っているようですが、これは厳密には正しくありません。「スワップ」とはオペレーティングシステムが用いるメモリの一時退避用空間で、これを用いるとシステムはディスク装置を仮想メモリとして使えるようになります。スワップを独立したパーティションに割り当てると、Linuxからの利用がずっと効率的になります。スワップを独立したパーティションに割り当てると、Linuxからの利用がずっと効率的になります。Linuxは普通のファイルを無理やりスワップとして利用することもできますが、これはお勧めできません。

とはいえ大抵の人は、この最低限必要な数よりも多くのパーティションをGNU/Linuxに割り当てます。ファイルシステムをいくつかのより小さなパーティションに分割する理由は2つあります。1つめは安全性です。もし偶然に何かがファイルシステムを破壊したとしても、一般的にその影響を被るのは1つのパーティションだけです。そのため、システムの一部を(注意深く保持していたバックアップと)置き換えるだけです。少なくとも、いわゆる「ルートパーティション」は別にすることを考慮しましょう。ここにはシステムの最も基本的な構成部分が収められており、もし他のパーティションに破損が生じたとしても、Linuxを起動してシステムを補修できます。システムをゼロから再インストールしなければならないようなトラブルが防げます。

2つめの理由は、一般的にビジネスで使う際により重要になってくるものです。これはコンピュータの利用方法にかなり依存します。例えばスパムメールをたくさん受け取ったメールサーバは、パーティションを簡単に溢れさせてしまうかもしれません。もしメールサーバ上の独立したパーティションを/var/mailに割り当てれば、スパムメールを取り込んでシステムの大半は問題なく動作するでしょう。

たくさんのパーティションを利用する際に唯一の不利になる点は、どのようなパーティションが必要かをあらかじめ予測するのが、ほとんどの場合難しいということです。用意したパーティションが小さすぎると、システムを再インストールしたり、容量の足りないパーティションからちょっとうフライを移動して、スペースを空けたりしなければならないでしょう。一方、あまりに大きなパーティションを用意すれば、他で利用できるスペースを浪費しかねません。近頃はディスクも安価になったとはいえ、お金を無駄に使う必要はないでしょう？

C.2 ディレクトリツリー

ディレクトリーとファイルの名前について、Debian GNU/LinuxはFilesystem Hierarchy Standardに従っています。この規格を用いると、ユーザやプログラムは、ファイルやディレクトリの場所を予想しやすくなります。根っこ（ルート＝root）にあるディレクトリは、単にスラッシュ／で表されます。ルートのレベルには、Debianシステムでは必ず以下のようディレクトリが含まれます。

<table>
<thead>
<tr>
<th>ディレクトリ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>基本的なコマンドハイテリ</td>
</tr>
<tr>
<td>boot</td>
<td>ブートローダの静的ファイル</td>
</tr>
<tr>
<td>dev</td>
<td>デバイスファイル</td>
</tr>
<tr>
<td>etc</td>
<td>ホスト固有のシステム設定</td>
</tr>
<tr>
<td>home</td>
<td>ユーザのホームディレクトリ</td>
</tr>
</tbody>
</table>

73
ディレクトリ	内容
lib | 基本的な共有ライブラリとカーネルモジュール
media | 取替え可能なメディア用のマウントポイントを含む
mnt | ファイルシステムを一時的にマウントするためのポイント
proc | システム情報を含む仮想ディレクトリ
root | rootユーザのホームディレクトリ
run | ランタイム可変データ
sbin | 基本的なシステムバイナリ
sys | システム情報を含む仮想ディレクトリ
tmp | 一時ファイル用
usr | 第2階層
var | 可変データ
srv | システムによって割り当てられた、サービスのためのデータ
opt | アドオンアプライケーションソフトウェアパッケージ

以下の一覧は、ディレクトリまたはパーティションについて重要となる考え方を説明したものであります。与えられたシステム構成や特別な使用パターンによって、ディスク使用状況は大きく変化することに注意して下さい。ここで提案するのは一般的なガイドラインであり、パーティション分割の第一歩を提供しています。

- ルートパーティション/は、必ず/etc、/bin、/sbin、/lib、/devを物理的に含んでいなければなりません(つまりこれらのディレクトリを別のパーティションにしてはいけません)。さもなくと起動ができなくなります。一般的にここは250–350MB程度を必要とします。
- /usr: すべてのユーザプログラムを含む(/usr/bin)、ライブラリ(/usr/lib)、文書(/usr/share/doc)など。ここは一般に、ファイルシステムの中でも最も容量を必要とするところです。少なくとも500MBのディスク容量を割り当てるべきでしょう。インストールしようとするパッケージの数やタイプによっては、もっと多くのディスク容量を割り当てなければならないかもしれません。ディスク容量がたっぷりあるワークステーションやサーバのインストールでは4–6GBを割り当てるべきです。
- 現在は/usrをrootパーティションに置くことが勧められます。そうしない場合はブート時に問題を引き起こす可能性があります。つまり、/usrを含めたルートパーティションには最低でも600–750MB、ワークステーションやサーバの場合は5–6GBのディスク容量を割り当てるべきだということです。
- /var: インターネット、電子メール、ウェブコンテンツ、データベース、バックアップシステムのキャッシュなど、様々な可変データがこのディレクトリに収められます。このディレクトリの容量はシステムの利用方法に大きく左右されますが、たいていの場合はバックアップ管理ツールの使う分が最も大きな影響を持つことになるでしょう。Debianが提供するものすべてをいっべんにフルインストールする場合でも、/varには2–3GBほどの容量を割り当てておけば足りるはずです。一度にすべてをインストールせず、部分部分を徐々に(例えば、まずサービスやユーティリティを、次にコンソール用のもの、次にX用のもの…というように)インストールするなら、300–500MBの空き容量があれば良いでしょう。ハードディスクの空き容量が足りてでも、メジャーアップデートをするためにも、30–40MBほどでもなんとかやっていけるでしょう。
- /tmp: プログラムが作成する一時データは、普通このディレクトリを利用します。通常は40–100MBがあれば十分です。いくつかのアプリケーション（アーカイブマネージャーや、CD/DVDオーサリングツール、およびマルチメディアソフトウェアを含む）を、一時イメージファイルを保存するのに使用するかかもしれません。そのようなアプリケーションを使用する計画があるなら、それに応じて/tmpで利用できる容量を調整すべきです。
- /home: 各ユーザは、個人的なデータをこのディレクトリのサブディレクトリに収めます。その容量は、このシステムを利用するユーザの数や、ユーザディレクトリにどのようなファイルが収められるかによって異なってきます。システムの使い方にもよりますが、ユーザごとに約100MBほど必要でしょう。しかしこの値は必要に応じて調節しなければなりません。もし、たくさん
C.3 お勧めするパーティションルール

新規ユーザやDebianマシンを個人で使う人、家庭で使うシステム、その他ユーザ1人で使うようなマシンには、/パーティション1つとスワップで済ませるのが、恐らくもっとも簡単で素直なやり方でしょう。お勧めのパーティションタイプはext4です。

マルチユーザーシステムやたくさんのディスク容量があるシステムでは、/var, /tmp, /homeをそれぞれ/パーティションとは別に独立したパーティションにするのが良いでしょう。

Debianのディストリビューーションには含まれていないプログラムをたくさんインストールするつもりなら、/usr/localパーティションが必要となるかもしれません。またメールサーバーとして利用するなら、/var/mailを別のパーティションにする必要があるかもしれません。たくさんのユーザーカウンタを抱えるサーバーを設定するなら、独立した大きな/homeパーティションを用意することも大抵は良い考えです。このように、利用方法に応じて、パーティションの配置状態はコンピュータによって様々です。

とても複雑なシステムのためには、Multi Disk HOWTOをご覧になるとよいでしょう。こちらには、ISPやサーバーの管理者が関心を持つような事柄の多くが、詳細な情報として含まれています。

スワップスペースの問題に関しては、様々な見方があります。大雑把ながらも悪くないやり方は、搭載しているシステムメモリと同じ容量のスワップを用意することです。ただし多くの場合は512MB以下にすべきではないかもしれません。もちろんこのルールにも例外はあります。

一つ例として、以前の自宅用マシンを紹介しましょう。このマシンは512MBのRAMと/dev/sdaに20GB SATAのハードディスクを搭載していました。/dev/sda1には別のOS用に8GBのパーティションがあり、/dev/sda3を512MBのスワップパーティションとして使用し、残りの約11.4GBの/dev/sda2をLinuxパーティションにしていました。

システムのインストールが完了した後に入れることになるであろう各タスク(task)の占める領域については項D.2を調べてください。

C.4 Linuxにおけるデバイス名

Linuxにおけるディスクおよびパーティションの命名法は、他のオペレーティングシステムとは異なっています。パーティションを作成したりマウントしたりする際には、Linuxがどのようなディスク名を用いるのか知っておく必要があります。以下は基本的な命名法の仕組みです。

- 第1DASDデバイスは/dev/dasdaと名付けられる。
- 第2DASDデバイスは/dev/dasdbと名付けられ、以下も同様。

各ディスクのパーティションは、ディスク名に十進数を付け加えることで表します。例えばdasda1とdasda2は、それぞれシステムの第1DASDデバイスの第1, 第2パーティションを表します。

C.5 Debianのパーティション分割プログラム

いろいろな種類のパーティション分割ツールがDebian開発者によって組み込まれ、様々な形式のハードディスクやコンピュータアーキテクチャで動作するようになっています。以下に、それらのアーキテクチャで使えるプログラムのリストを示します。

partman Debian 推奨のパーティション分割ツールです。このアーミーナイフは、パーティションサイズを変更したり、ファイルシステムを作成したり、マウントポイントを指定したりすることもできます。

fdasd S/390用のfdiskです。詳細は、fdasd manページかDevice Drivers and Installation Commandsの13章をご覧ください。

ディスクのパーティショニング（あるいは同様のもの）を選択すると、上記のプログラムの中のひとつがデフォルトで実行されます。VT2のコマンドラインから、異なるパーティション分割ツールを使うこともできますがお勧めしません。
Appendix D
雑多な事柄

D.1 Linux のデバイス

Linux では、/dev に特別なファイルがいろいろあります。このファイルはデバイスファイルと呼ばれ、通常のファイルと異なる振る舞いをします。デバイスファイルの一般的なものは、ブロックデバイスとキャラクタデバイスです。このファイルは、ハードウェアにアクセスする実際のドライバ（Linux カーネルの一部）へのインターフェースです。その他、あまり一般的ではないパイプというデバイスファイルの形式もあります。以下に、最も重要なデバイスファイルを一覧します。

<table>
<thead>
<tr>
<th>記号</th>
<th>デスクリプション</th>
</tr>
</thead>
<tbody>
<tr>
<td>sda</td>
<td>第1ハードディスク</td>
</tr>
<tr>
<td>sdb</td>
<td>第2ハードディスク</td>
</tr>
<tr>
<td>sda1</td>
<td>最初のハードディスクの最初のパーティション</td>
</tr>
<tr>
<td>sdb7</td>
<td>2番目のハードディスクの7番目のパーティション</td>
</tr>
<tr>
<td>sr0</td>
<td>第1CD-ROM</td>
</tr>
<tr>
<td>sr1</td>
<td>第1CD-ROM</td>
</tr>
<tr>
<td>tty50</td>
<td>シリアルポート 0、MS-DOS では COM1</td>
</tr>
<tr>
<td>tty31</td>
<td>シリアルポート 1、MS-DOS では COM2</td>
</tr>
<tr>
<td>psaux</td>
<td>PS/2 マウスデバイス</td>
</tr>
<tr>
<td>gpmdata</td>
<td>疑似デバイス、GPM(マウス) デーモンからのリピータデータ</td>
</tr>
<tr>
<td>cdrom</td>
<td>CD-ROMドライブへのシンボリックリンク</td>
</tr>
<tr>
<td>mouse</td>
<td>マウスデバイスファイルへのシンボリックリンク</td>
</tr>
<tr>
<td>null</td>
<td>書き込まれたものをすべて消してしまうデバイス</td>
</tr>
<tr>
<td>zero</td>
<td>無限に0を読み出すデバイス</td>
</tr>
</tbody>
</table>

D.2 タスクに必要なディスクの空き容量

amd64 アーキテクチャの全標準パッケージを含む標準インストールで、デフォルトのカーネルを用いると、971MB 以上のディスク領域が必要となります。「標準システム」タスクを選択しない最小の基本インストールでは、769MB 必要でしょう。
APPENDIX D. 雑多な事柄

D.3. UNIX/Linux システムからの Debian GNU/Linux のインストール

この節は、マニュアルの他の部分で説明されているメニューードリブンインストーラを使用せずに、既存の UNIX・Linux システムから Debian GNU/Linux をインストールする方法について説明します。この「クロスインストール」HOWTO は、Red Hat, Mandriva, SUSE から Debian GNU/Linux に移行するユーザの要望で書かれていました。本節では、*nix コマンドの入力について熟知し、ファイルシステムを操作できるのが前提となっています。本節では、# が Debian chroot に入力されたコマンドを示し、$ はユーザの現在のシステムに入力されるコマンドを表します。

一旦、新しい Debian システムを作成し設定したら、既存のユーザデータを(必要なら)移動したまま移行できます。したがって、これは「ダウンタイム無し」での Debian GNU/Linux インストールになります。またこれは、様々な起動・インストールメディアと相性のよくないハードウェアに対処するうまい方法です。
注意
これはほとんど手作業になりますから、自分でシステムの大部分の基本設定を行う必要があります。それには通常のインストールよりもDebianやLinuxの一般的な知識が必要なことを覚えておいてください。また、この手順で通常のインストールと全く同じシステムになるとは限らないようです。これはシステムをセットアップする基本的な手順でしかありません。追加インストールや追加設定が必要になるかもしれません。

D.3.1 はじめに
今の*nixのパーティション分割ツールで、スワップと最低1つファイルシステムを作成するよう、ハードディスクを希望に添って再分割してください。コンソールのみのインストールには、最低769MBの空き領域が必要ですし、Xをインストールする予定なら2271MB(GNOMEやKDE Plasmaのようなデスクトップ環境をインストールする場合はもっと)必要です。
次に、パーティションにファイルシステムを作成してください。例えば、/dev/sda6パーティションに、ext3ファイルシステムを作成するには、以下のようにします。(今回の例ではこのパーティションをrootパーティションとします)

```
# mke2fs -j /dev/sda6
```

ext3ではなくext2ファイルシステムを作成するには、-jを取ってください。

スワップを以下のように初期化して有効にしてください。(パーティション番号は、Debianスワップパーティションにするパーティション番号に、読み替えてください)

```
# mkswap /dev/sda5
# sync
# swapon /dev/sda5
```

パーティションを /mnt/debinst(インストールポイント。新システムのroot(/)ファイルシステムになります)にマウントしてください。厳密にいうとマウントポイント名は何でも構いません。以降の説明ではこれを使用します。

```
# mkdir /mnt/debinst
# mount /dev/sda6 /mnt/debinst
```

注意
分割したパーティションをファイルシステムの一部(例/usr)にマウントする場合、次のステージに進む前に、手動でそのディレクトリを作成・マウントする必要があります。

D.3.2 debootstrapのインストール
Debianインストーラが使用するユーティリティで、Debian基本システムをインストールする公式の方法と認められているのがdebootstrapです。wgetとarを使用しますが、/bin/shと基本的なUnix/Linuxツールにのみ依存しています。今のシステムにまだインストールしていなければ、wgetとarをインストールし、その後debootstrapをダウンロード・インストールしてください。
また、手動でインストールするには、以下の手順になります。まず.debを展開するために作業フォルダを次のように作ってください。

```
# mkdir work
# cd work
```

1これには、sed, grep, tar, gzipといった、GNUコアユーティリティが含まれます。
D.3.3 debootstrapの実行

debootstrapを実行すると、アーカイブから必要なファイルを直接ダウンロードできます。以下のコマンドの例では、http.us.debian.org/debianとしていますが、ネットワーク的に近いDebianアーキブミラーサイトで代用できます。ミラーサイトは、http://www.debian.org/mirror/listに一覧があります。

bullseye Debian GNU/Linuxインストールイメージを持っていて、/cdromにマウントしていれば、http URLに代えてfile URL(file:/cdrom/debian/)を使用することができます。

```bash
# /mnt/debinst http://ftp.us.debian.org/debian
```

のようにします。所用のアーキテクチャがホストとは異なる場合には--foreignオプションを追加します。

D.3.4 基本システムの設定

さあ、これでディスクに真のDebianシステムを(いくぶん中がスカスカですが)手に入れました。そこでchrootしてください。

```bash
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

所用のアーキテクチャがホストとは異なる場合には、qemu-user-staticを新しいホストにコピーする必要があるかもしれません。

```bash
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

chrootした後でDebian基本システムと互換のある端末定義を設定する必要があるかもしれません。

```bash
# export TERM=xterm-color
```

のようにします。TERMの値により、その値をサポートするのにncurses-termパッケージをインストールする必要があるかもしれません。

所用のアーキテクチャがホストとは異なる場合には複数段階の前処理を終えておく必要があります。

```bash
/debootstrap/debootstrap --second-stage
```

D.3.4.1 デバイスファイルの作成

この時点で、/dev/には、非常に基本的なデバイスファイルがあるだけです。おそらくインストールの次のステップで、追加デバイスファイルが必要になります。インストールに使用するホストシステムがモジュール化カーネルを使用するかどうかや、新しいシステムで動的デバイスファイル(例: udevを使用)と静的デバイスファイルのどちらを使用するかにより、どの方法で行うかが異なります。

以下のような選択肢があります。

• makedevパッケージをインストールし、次のようにして(chrootしてから)、デフォルトの静的デバイスファイル群を作成してください。

apt install makedev
mount none /proc -t proc
cd /dev
MAKEDEV generic

- MAKEDEVを使用して、指定したデバイスファイルのみを手で作成します。
- ホストシステムの/devをターゲットシステムの/devの先頭にマウントします。いくつかのパッケージのpostinstスクリプトでは、デバイスファイルを作成しようとするのに注意してください。そのため、この選択肢は注意深く使用するべきです。

D.3.4.2 パーティションのマウント
/etc/fstabを作成する必要があります。

editor /etc/fstab

以下のサンプルを自分に合うように編集できます。

```bash
# /etc/fstab: static file system information.
#
# file system   mount point  type    options     dump pass
/dev/XXX       /           ext3    defaults    0 1
/dev/XXX       /boot       ext3    ro,nosuid,nodev 0 2
/dev/XXX       none        swap    sw          0 0
proc           /proc       proc    defaults    0 0
/dev/cdrom     /media/cdrom iso9660 noauto,ro,user,exec 0 0
/dev/XXX       /tmp        ext3    rw,nosuid,nodev 0 2
/dev/XXX       /var        ext3    rw,nosuid,nodev 0 2
/dev/XXX       /usr        ext3    rw,nodev     0 2
/dev/XXX       /home       ext3    rw,nosuid,nodev 0 2
```

/etc/fstabで指定したファイルシステムを、すべてマウントするにはmount -aとしてください。また、ファイルシステムを別々にマウントするには、以下のようにしてください。

mount /path # e.g.: mount /usr

現在Debianシステムでは、リムーバブルメディアのマウントポイントを/mediaにしていますが、/にシンボリックリンクを置き互換性を保っています。以下の例のように、必要であれば作成してください。

cd /media
mkdir cdrom0
ln -s cdrom0 cdrom
cd /
ln -s media/cdrom

procファイルシステムは、どこでも何度でもマウントすることができますが、慣習的に/procにマウントします。mount -aを使用しなかった場合は、以下のように先に進む前に必ずprocをマウントしてください。

mount -t proc proc /proc

ls /procコマンドは、今度は空のディレクトリにはならないはずです。これが失敗するようなら、以下のようにchrootの外側からprocをマウントできるかもしれません。

mount -t proc /mnt/debinst/proc

80
D.3.4.3 タイムゾーンの設定

/etc/adjtime ファイルの3行目に、「UTC」か「LOCAL」を設定し、システムがハードウェアの時計をUTCとして解釈するか、それぞれの現地時間として解釈するかを決定します。以下のコマンドで、上記の選択とタイムゾーンの選択を行えます。

```
# editor /etc/adjtime
```

以下に例を示します。

```
0.0 0 0.0
0
UTC
```

以下のコマンドでタイムゾーンの選択ができます。

```
# dpkg-reconfigure tzdata
```

D.3.4.4 ネットワークの設定

ネットワークの設定をするには、/etc/network/interfaces, /etc/resolv.conf, /etc/hostname and /etc/hosts を編集してください。

```
# editor /etc/network/interfaces
```

次は、/usr/share/doc/ifupdown/examples のシンプルな例です。

```
#########################################################################
# /etc/network/interfaces -- ifup(8), ifdown(8) 用設定ファイル
# どのようなオプションが使えるかについては interfaces(5) man ページを参照してください
#########################################################################

# loopback インターフェイスは絶対に必要では無くなっていますが、必要になった時に使えます
# auto lo
iface lo inet loopback

# dhcp を使う:
#
# auto eth0
iface eth0 inet dhcp

# 静的 IP 設定の例: (network, broadcast, gateway はオプション)
#
# auto eth0
iface eth0 inet static
  address 192.168.0.42
  network 192.168.0.0
  netmask 255.255.255.0
  broadcast 192.168.0.255
  gateway 192.168.0.1
```

/etc/resolv.conf に、ネームサーバと search ディレクティブを入力してください。

```
# editor /etc/resolv.conf
```

以下は、/etc/resolv.conf の簡単な例です。

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

システムのホスト名 (2から63文字) を入力してください。

```
# echo DebianHostName > /etc/hostname
```

また、IPv6 をサポートした基本的な /etc/hosts は以下のようにします。
127.0.0.1 localhost
127.0.1.1 DebianHostName

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
to0::0 ip6-localnet
to0::0 ip6-mcastprefix
to0::1 ip6-allnodes
to0::2 ip6-allrouters
to0::3 ip6-allhosts

複数のネットワークカードを持っているなら、/etc/modules ファイルに希望の順番で、ドライバモジュールの名前を配置してください。その後起動中に、各カードは期待通りにインターフェース名 (eth0, eth1 など) と結びつけられます。

D.3.4.5 apt の設定

debbootstrap は、追加パッケージをインストールする、非常に基本的な/etc/apt/sources.listを作成します。しかし、他のパッケージ取得先を追加したくなると思います。以下の例はソースパッケージとセキュリティ更新を追加しています。

```
deb-src http://ftp.us.debian.org/debian bullseye main

deb http://security.debian.org/ bullseye-security main
deb-src http://security.debian.org/ bullseye-security main
```

sources list を更新したら、apt update を必ず実行してください。

D.3.4.6 ロケールとキーボードの設定

英語以外の言語を使用するようロケールの設定をするために、ロケールをサポートするパッケージ (locales) をインストール・設定してください。現在はUTF-8 ロケールを使用するのお勧めします。

```
# apt install locales
# dpkg-reconfigure locales
```

(chroot 内では、キーボードを設定できませんが、再起動後に有効になることに注意してください。

D.3.5 カーネルのインストール

このシステムを起動できるようにするなら、おそらく Linux カーネルとブートローダが必要でしょう。以下のようにして、パッケージ化済みカーネルを確認してください。

```
# apt search linux-image
```

その後、パッケージ名を指定して、選択したカーネルパッケージをインストールしてください。

```
# apt install linux-image-arch-etc
```

D.3.6 ブートローダのセットアップ

Debian GNU/Linux システムを起動できるようにするために、インストールしたカーネルを新しい root パーティションから読み込むように、ブートローダをセットアップしてください。debootstrapは、ブートローダをインストールしないことに注意してください。とは言え、セットアップするのに Debian chroot 内部の apt を使用できます。

/dev/sda デバイスファイルは、作成済みだと仮定していることに注意してください。grub2 のインストールには別のか方法もありますが、それはこの付録では扱いません。
D.3.7 リモートアクセス: SSH のインストールとアクセス方法の設定
コンソール経由でシステムにログインできる場合はこの節を飛ばせます。後でネットワーク経由でシステムにアクセスできるようにする必要がある場合は SSH をインストールしてアクセス方法を用意する必要があります。

```
# apt install ssh
```

パスワードによる root のログインはデフォルトで無効になっているため、パスワードを設定してパスワードによる root のログインを有効にしてアクセス方法を用意します:

```
# passwd
# editor /etc/ssh/sshd_config
```

有効にするオプション:
```
PermitRootLogin yes
```

root アカウントに SSH の鍵を追加してアクセス方法を用意することもできます:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

最後に、root ユーザを追加してパスワードを設定してアクセス方法を用意することもできます:

```
# adduser joe
# passwd joe
```

D.3.8 仕上げに
すでに述べたように、インストールしたシステムは非常に基本的な物になります。もっと成熟したシステムにしたければ、優先度が「standard」のパッケージを、すべてインストールする簡単な方法があります。以下のようにしてください。

```
# tasksel install standard
```

もちろん apt で、個々のパッケージをインストールすることもできます。
インストールが終わると、ダウンロードしたパッケージが /var/cache/apt/archives/ に大量に残っています。以下のようにして、ディスク領域を解放できます。

```
# apt clean
```
Appendix E
付記

E.1 この文書について

本マニュアルは、初期のDebianインストールマニュアルを元にした、boot-floppies用のwoodyインストールマニュアルを元に、sarge用debian-installerのために書かれました。また、2003年GPLでリリースした、Progenyディストリビューションマニュアルも元にしています。

この文書はDocBookXMLを用いて書かれています。出力形式は、docbook-xmlパッケージやdocbook-xslパッケージの情報を使って、様々なプログラムで生成されます。

この文書では、そのメンテナンス性を高めるために、実体やプロファイル属性など数々のXMLの特徴を利用しています。これらは、プログラミング言語の変数や条件に似た機能を果たします。このXMLソースには、異なるアーキテクチャの情報が含まれていますが、各アーキテクチャ固有の文章のまとまりを分離するために、プロファイル属性が使われています。

E.2 この文書への貢献

この文書に関する問題や提案がある場合には、それらをinstallation-guideパッケージに対するバグ報告として提出してください。その方法についてはreportbugパッケージやDebianバグ追跡システムのオンラインドキュメントをご覧ください。なお同じ問題が報告済みかどうかを調べるためには、installation-guideパッケージに関するバグ報告を確認するとよいでしょう。もし同じ問題が報告済みならば、XXX@bugs.debian.org宛に、確証のための追加情報や有益な情報を提供することができます。XXXには、報告済みのバグに付けられた番号を当てはめてください。

もちろんこの文書のDocBookソースを入手し、それに対するパッチを作成していただけると助かります。DocBookソースはsalsa上のinstallation-guideprojectにあります。DocBookに慣れていない方でも心配しないでください。あなたが始められるよう、マニュアルディレクトリに簡単なチートシートがあります。htmlに似ていますが、表示方法ではなく、テキストの意味の方を重視しています。パッチはdebian-bootメーリングリスト(以下を参照)に提出してください。gitでソースを取り出す方法については、ソースのルートディレクトリのREADMEをご覧ください。

どうか、この文書の著者に直接連絡をとるようなことはしないでください。このマニュアルの題目も含め、debian-installerに関する議論を行うメーリングリストがあります。その宛先はdebian-boot@lists.debian.orgです。またDebianメーリングリスト購読ページには、このメーリングリストの購読に関する説明があります。またDebianメーリングリストアーカイブでは、その写しをオンラインで読むこともできます。

E.3 多大な貢献

もともとこの文書はBrucePerens,SvenRudolph,IgorGrobman,JamesTreacy,AdamDiCarloが書きました。SebastianLeyがインストールHowtoを書きました。
Miroslav Kuře には、Sarge の debian-installer の新機能について、たくさん記述していただきました。Frans Pop は、Etch, Lenny, Squeeze の主任編集者で、かつリリースマネージャでした。

非常に多くの Debian ユーザや開発者がこの文書に貢献しています。特に、さまざまな文書を編集、著述している Michael Schmitz (m68k のサポート), Frank Neumann (Amiga install manual の原著者), Arto Astala, Eric Delaunay/Ben Collins (SPARC に関する情報), Tapio Lehtonen, Stéphane Bortzmeyer には多大なご協力をいただきました。また、Pascal Le Bail には USB メモリから起動する方法について、有益な情報をいただいたことに感謝いたします。

Jim Mintha によるネットワークブートに関する HOWTO (利用可能な URL が不明) や、Debian FAQ, Linux/m68k FAQ, SPARC プロセッサ向け Linux FAQ, Linux/Alpha FAQ やその他の文書には、極めて有用な文章や情報があります。これらの自由に利用できる素晴らしい情報源をメンテナンスされている方々は、高く評価されるべきでしょう。

本マニュアルの chroot してのインストールに関する節 (項 D.3) は、Karsten M. 自身が著作権を持つドキュメントの一部が元になっています。

E.4 商標表示

すべての商標には、それぞれに所有者がいます。
Appendix F

GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

F.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the gnu General Public License is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the gnu Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

F.2 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The `Program`, below, refers to any such program or work, and a `work based on the Program` means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term `modification`.) Each licensee is addressed as `you`.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with Subsection
b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and if any later version, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL AND COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

F.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the `Copyright (C) year name of author' line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with absolutely no warranty; for details type show w. This is free software, and you are welcome to redistribute it under certain conditions; type show c
The hypothetical commands 「show w」and 「show c」should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than 「show w」and 「show c」; they could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a 「copyright disclaimer」 for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program Gnomovision (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.